imperative.cc 128.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/data_loader.h"
45
#include "paddle/fluid/imperative/gloo_context.h"
K
kuizhiqing 已提交
46
#include "paddle/fluid/imperative/heter_ccl_context.h"
47
#include "paddle/fluid/imperative/hooks.h"
48
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
49
#include "paddle/fluid/imperative/nccl_context.h"
50
#include "paddle/fluid/imperative/partial_grad_engine.h"
51
#include "paddle/fluid/imperative/profiler.h"
52
#include "paddle/fluid/imperative/reducer.h"
53
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
54
#include "paddle/fluid/imperative/type_defs.h"
55
#include "paddle/fluid/imperative/xccl_context.h"
56
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
57
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
58
#include "paddle/fluid/pybind/cuda_streams_py.h"
59
#include "paddle/fluid/pybind/eager_utils.h"
60
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
61
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
62
#include "paddle/fluid/pybind/tensor_py.h"
63
#include "paddle/fluid/pybind/uva_utils.h"
64
#include "paddle/phi/core/compat/arg_map_context.h"
65
#include "paddle/phi/core/type_defs.h"
66

67
PHI_DECLARE_bool(set_to_1d);
68 69 70
namespace paddle {
namespace pybind {

71
std::atomic<int> VarBaseUniqueNameID{0};
72 73
PyTypeObject *g_varbase_pytype = nullptr;

74 75
namespace py = ::pybind11;

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
109 110
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
128 129 130 131 132
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
133 134 135 136 137 138
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
139 140 141 142 143
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
144 145
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
146 147
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
148 149
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
150 151
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
152 153
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
154 155
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
156
        "Place should be one of "
张春乔 已提交
157
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/IPUPlace/"
张春乔 已提交
158
        "CustomPlace"));
L
Leo Chen 已提交
159 160 161
  }
}

L
Leo Chen 已提交
162
// only initialize varbase, but not its tensor.
163 164 165 166
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
167 168 169 170
  auto name_ = name.empty()
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
L
Leo Chen 已提交
171 172 173

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
174
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
175 176 177 178 179 180 181 182 183
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
184 185 186 187 188 189 190
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
191
  InitVarBaseOnly(self, name, persistable, stop_gradient);
192
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
193
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
194
  if (platform::is_cpu_place(place)) {
195
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
196
  } else if (platform::is_xpu_place(place)) {
197
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_gpu_place(place)) {
199
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
200
  } else if (platform::is_cuda_pinned_place(place)) {
201 202
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
203 204
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
205
  } else if (platform::is_custom_place(place)) {
206 207
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
208
  } else {
L
Leo Chen 已提交
209
    PADDLE_THROW(platform::errors::InvalidArgument(
210
        "Place should be one of "
张春乔 已提交
211
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/IPUPlace/"));
J
Jiabin Yang 已提交
212
  }
213
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
214 215 216 217
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
218
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
219 220 221 222 223 224
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
225 226 227
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
228
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
229 230 231 232 233 234 235

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
236 237
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
238 239 240
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
241
}
242

243 244
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
245 246
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
247 248
                                        bool persistable = false,
                                        bool zero_copy = false,
249 250 251 252 253
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
254
  if (name.empty()) {
255 256
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
257
  }
258 259
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
260
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
261
  new (self) imperative::VarBase(name);
262
  self->SetPersistable(persistable);
263
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
264 265 266
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
267 268
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
269
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
270 271 272
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
273 274
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
275
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
276
  InitVarBaseAndTensor(self, array, place, "");
277
}
278

B
Baibaifan 已提交
279
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
280
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
281
                                                const std::string &name) {
282 283
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
284 285 286 287
  auto name_ = name.empty()
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
B
Baibaifan 已提交
288
  new (self) imperative::VarBase(name_);
289 290
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
291
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
292
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
C
cyberslack_lee 已提交
293
  // Same place, share data directly
294 295 296 297 298 299 300 301 302
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

303 304
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
305
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
306 307
                                         const P &place,
                                         const std::string &name) {
308
  VLOG(4) << "Init VarBase";
309 310 311 312
  auto name_ = name.empty()
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
B
Baibaifan 已提交
313
  new (self) imperative::VarBase(name_);
314 315
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
316
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
317
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
C
cyberslack_lee 已提交
318
  // Same place, share data directly
319 320 321 322 323 324 325 326 327
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

328 329 330 331 332
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
333
  } else {
334
    return framework::ToTypeName(var.Var().Type());
335 336
  }
}
L
Leo Chen 已提交
337

J
Jiabin Yang 已提交
338 339 340 341 342 343
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
344
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
345 346
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
347
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
348 349 350 351
        "method, when you reach this means we got another type index."));
  }
}

352
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
353 354 355 356 357 358 359 360 361 362 363 364 365

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

366
  if (PyList_Check(py_obj)) {  // List of VarBase
367 368 369
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
370 371 372
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
373 374 375
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
376
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
377 378 379
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
380 381 382
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
383 384 385
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
386 387 388
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
389 390 391 392
  }

  return result;
}
393

J
Jiabin Yang 已提交
394 395 396
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
397 398 399 400 401 402
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
403

404
  PADDLE_ENFORCE_EQ(
405 406
      PyErr_Occurred(),
      nullptr,
407
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
408 409 410
  return result;
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
428 429
      PyErr_Occurred(),
      nullptr,
430 431 432 433
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

434
template <typename P>
435 436
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
437 438
                        const P &dst_device,
                        const bool blocking) {
439 440 441 442 443 444 445 446
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
447 448 449
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
450 451 452 453 454 455 456 457 458
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
459 460
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
461
        auto *dst_selected_rows =
462
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
463 464
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
465 466
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
C
co63oc 已提交
487
        "The destination Tensor(%s) can not copy when it is not empty.",
488 489 490 491
        dst.Name()));
  }
}

492
// Bind Methods
J
Jiabin Yang 已提交
493
void BindImperative(py::module *m_ptr) {
494 495
  auto &m = *m_ptr;

496 497
#ifndef _WIN32
  // Dygraph DataLoader signal handler
498 499
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
500 501
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
502 503 504 505 506 507 508 509 510 511
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
512
  });
513 514
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
536 537
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
538
              platform::errors::InvalidArgument(
539
                  "Failed to convert input data to a regular ndarray.\n  * "
540 541 542 543
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
C
co63oc 已提交
544
          // 2. construct LoDTensor
545
          phi::DenseTensor t;
546 547
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
548
          // 3. allocate shared memory
549
          void *data_ptr = t.data();
550
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
551 552 553 554 555 556
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
557 558 559 560 561
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
562 563 564 565 566 567 568 569
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

570 571 572 573 574 575
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
576 577
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
578
            platform::errors::InvalidArgument(
579
                "Failed to convert input data to a regular ndarray.\n  * "
580 581 582 583
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
C
co63oc 已提交
584
        // 2. construct LoDTensor
585
        phi::DenseTensor t;
586 587
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
588 589
        // 3. allocate shared memory
        void *data_ptr = t.data();
590
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
591 592 593 594 595 596
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
597 598 599 600 601
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
602 603 604 605 606
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
607

608 609
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
610
      auto t = tensor_list[i].cast<phi::DenseTensor>();
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
626 627 628 629 630

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
631 632
#endif

633 634
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
635 636 637 638
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
639 640
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
641 642 643
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
644 645
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
646
          egr::Controller::Instance().SetCurrentTracer(tracer);
647
          imperative::SetCurrentTracer(tracer);
648
        });
649 650 651 652
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
653 654 655 656 657 658 659
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
660
      .def("__init__",
661 662
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
663
              const std::vector<int64_t> &dims,
664 665 666
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
667
             VLOG(4) << "Init VarBase";
668 669 670
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
671
                   "generated_tensor");
672 673 674 675
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
676 677 678 679
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
680
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
681
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
682 683
             }
           })
684 685 686 687 688 689 690
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
691
           py::arg("stop_gradient") = -1)
692 693 694 695 696 697 698
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
699
           py::arg("stop_gradient") = -1)
700 701 702 703 704 705 706
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
707
           py::arg("stop_gradient") = -1)
708 709 710 711 712 713 714
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
715
           py::arg("stop_gradient") = -1)
716 717 718 719 720 721 722
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
723
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
724
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
753
           py::arg("name") = "")
754
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
755 756
      .def(
          "__setitem_varbase__",
757 758
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
759 760 761 762
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
763
                self->MutableVar()->GetMutable<phi::DenseTensor>();
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

788 789 790 791 792
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

C
co63oc 已提交
793
            // 1. Check arguments
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
816 817 818 819 820 821 822 823 824 825
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
842 843
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
844 845 846 847 848 849
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

850
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
851 852 853
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
854 855 856 857 858 859

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
860 861 862 863 864 865 866
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
867
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
868 869 870 871
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
872
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
873 874 875 876
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
877 878
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
879 880 881 882
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
883 884
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
885 886 887 888
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
889
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
890
                  }
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX64) {
                  if (!py::isinstance<py::array_t<std::complex<float>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<float>>(
                            value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX128) {
                  if (!py::isinstance<py::array_t<std::complex<double>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<double>>(
                            value_obj);
                  }
907 908 909 910
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
911 912
                      "float32, float64, complex64, complex128, int32 or "
                      "int64, "
913 914 915
                      "please check the type of tensor."));
                }

916 917 918 919 920
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
921 922 923 924 925 926
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
927 928
                    py::isinstance<py::bool_>(value_obj) ||
                    PyComplex_Check(value_obj.ptr())) {
929
                  if (self->DataType() == framework::proto::VarType::FP32) {
930 931
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
932 933
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
934 935
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<double>()};
936 937
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
938 939
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int32_t>()};
940 941
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
942 943
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int64_t>()};
944 945
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
946 947
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<bool>()};
948 949
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
950 951 952 953 954 955 956 957 958 959
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX64) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<float>>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX128) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<double>>()};
960 961 962 963
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
964 965
                        "float32, float64, complex64, complex128, int32, int64 "
                        "or float16, "
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
982 983 984 985
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
986 987 988 989 990 991 992 993 994 995
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
996
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
997 998 999 1000 1001 1002
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1003 1004
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1005 1006
            }
          })
1007
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1008
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1009
             VLOG(4) << "Call _getitem_index_not_tensor";
1010
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1011 1012 1013 1014
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1015
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1027 1028 1029
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1030

Z
zyfncg 已提交
1031
             auto out = slice_axes.empty() && !list_select_flag
1032 1033 1034 1035
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1036

1037
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1038
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1057 1058

             bool set_to_1d = FLAGS_set_to_1d;
1059 1060 1061 1062 1063 1064 1065 1066

             if (set_to_1d) {
               // NOTE(zoooo0820): When all axes are decreased, the output
               // will be 1-D with FLAGS_set_to_1d=True. In this case, one
               // `None` should be pop out, otherwise the output shape will be
               // not correct.
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
J
JYChen 已提交
1067
                 VLOG(1) << "Warning: In Tensor '__getitem__', if the number "
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
                            "of scalar "
                            "elements "
                            "in the index is equal to the rank of the Tensor, "
                            "the output "
                            "should "
                            "be 0-D. In order to be consistent with the "
                            "behavior of previous "
                            "versions, it will be processed to 1-D. But it is "
                            "not correct and "
                            "will be "
                            "removed in release 2.6. "
                            "If 1-D is still wanted, please modify the index "
                            "element from "
                            "scalar to slice "
                            "(e.g. 'x[i]' => 'x[i:i+1]'). ";
                 if (!none_axes.empty()) {
1084 1085 1086
                   none_axes.pop_back();
                 }
               }
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
             }
             if (!none_axes.empty()) {
               // Deal with cases that decrease_axes is not empty
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
               for (auto &axis : none_axes) {
                 int len = 0;
                 for (int da : decrease_axis) {
                   if (da < axis) {
                     len++;
1098 1099
                   }
                 }
1100
                 axis -= len;
1101
               }
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

               imperative::NameVarBaseMap ins = {{"X", {out}}};
               framework::AttributeMap attrs = {{"axes", none_axes}};
               auto new_out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto out_xshape = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                  {"XShape", {out_xshape}}};
               tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

               return new_out;
1114 1115
             }

Z
zyfncg 已提交
1116 1117 1118 1119
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1120 1121
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1122 1123
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1124 1125
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1126 1127 1128 1129 1130 1131 1132

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1133
             return out;
1134
           })
1135 1136 1137
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1138
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1139
            PADDLE_ENFORCE_EQ(
1140 1141
                tensor.IsInitialized(),
                true,
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1160 1161
                  numel,
                  1,
1162 1163 1164 1165 1166 1167
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1168 1169
                  offset,
                  numel,
1170 1171 1172
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1173 1174
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1175 1176 1177 1178 1179 1180
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1181 1182
                    index,
                    dims[i],
1183 1184
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1185 1186 1187
                        index,
                        i,
                        dims[i]));
1188 1189 1190 1191
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1192
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1193 1194
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1195 1196
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1197 1198 1199 1200 1201
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1202
                "Unsupported tensor data type: %s", tensor.dtype()));
1203 1204
          },
          py::return_value_policy::copy)
1205 1206 1207 1208
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1209 1210
                 var->IsInitialized(),
                 true,
1211 1212 1213 1214 1215
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1216 1217 1218 1219 1220 1221 1222 1223
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1224 1225 1226 1227 1228
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1229 1230
      .def(
          "numpy",
1231

1232
          [](imperative::VarBase &self) -> py::array {
1233
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1234
            PADDLE_ENFORCE_EQ(
1235 1236
                tensor.IsInitialized(),
                true,
1237 1238 1239 1240 1241 1242
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1243
        Returns a numpy array shows the value of current Tensor.
1244

1245
        Returns:
Z
Zhou Wei 已提交
1246
            ndarray: The numpy value of current Tensor.
1247 1248

        Returns type:
Z
Zhou Wei 已提交
1249
            ndarray: dtype is same as current Tensor
1250 1251 1252 1253

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1254
                import paddle
1255 1256
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1257 1258 1259 1260
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1261
       )DOC")
1262 1263 1264 1265 1266
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1267 1268
                self.Var().IsInitialized(),
                true,
1269 1270
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1271

1272
            PADDLE_ENFORCE_EQ(
1273
                self.Var().IsType<phi::DenseTensor>() ||
1274 1275 1276 1277 1278
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1279

1280 1281
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1282

1283 1284 1285
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1286

1287 1288
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1289
              PADDLE_ENFORCE_EQ(
1290 1291
                  origin_tensor.IsInitialized(),
                  true,
1292 1293 1294 1295
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1296
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1307 1308
                  origin_selected_rows.value().IsInitialized(),
                  true,
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1326 1327
          py::return_value_policy::take_ownership,
          R"DOC(
1328

1329
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1330 1331
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1332

1333
        Returns: The detached Tensor.
1334 1335 1336 1337

        Examples:
            .. code-block:: python

1338
                import paddle
Z
Zhou Wei 已提交
1339

1340
                x = paddle.to_tensor([1.0], stop_gradient=False)
Z
Zhou Wei 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1360
                y.backward()
Z
Zhou Wei 已提交
1361 1362
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1363

1364
       )DOC")
1365 1366 1367 1368
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1369

1370
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1371

1372
        The Gradient of current Tensor will be set to ``0`` .
1373 1374 1375 1376 1377 1378

        Returns:  None

        Examples:
             .. code-block:: python

1379
                import paddle
Z
Zhou Wei 已提交
1380 1381 1382 1383 1384 1385 1386
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1387
      )DOC")
1388 1389
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1390 1391
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1392 1393 1394
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1395
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1396 1397
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1409 1410
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1442
      .def("_grad_name", &imperative::VarBase::GradVarName)
1443 1444 1445
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1446
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1447 1448
          },
          py::return_value_policy::reference)
1449 1450 1451 1452
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1453
      .def("_reset_grad_inplace_version",
1454
           [](imperative::VarBase &self, bool set_to_zero) {
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1466 1467
             py::gil_scoped_release release;

1468 1469 1470
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1471 1472 1473
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1474 1475
             }
           })
1476 1477 1478 1479 1480 1481 1482
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1483 1484
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1496 1497 1498 1499
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1500 1501
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1502
             return self.Var().IsType<phi::SelectedRows>();
1503
           })
1504 1505 1506 1507 1508
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1509
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1510
#if NCCL_VERSION_CODE >= 2212
1511
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1512
#else
1513
               if (!self.Var().IsType<phi::SelectedRows>()) {
1514 1515 1516 1517
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
C
co63oc 已提交
1518
                     "paddle is compiled with NCCL version lower than v2.2.12. "
1519 1520 1521 1522 1523 1524 1525 1526
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1527
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1528 1529 1530
            }
          },
          py::call_guard<py::gil_scoped_release>())
1531 1532 1533
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1534 1535
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1536
                 platform::errors::InvalidArgument(
1537 1538 1539
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1540 1541 1542 1543 1544
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1545 1546
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1547
                 platform::errors::InvalidArgument(
1548 1549 1550
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1551
           })
1552 1553 1554
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1555 1556
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1568 1569 1570 1571
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1572 1573
                self.IsLeaf(),
                true,
1574 1575 1576
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1577 1578
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1579 1580 1581 1582 1583 1584 1585 1586
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1587 1588 1589 1590 1591
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
C
co63oc 已提交
1592
             1. This backward hook will be executed after the gradient accumulation completed across batches,
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1629

1630 1631 1632 1633
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1634 1635 1636
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1637
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1638 1639 1640 1641
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1642
#endif
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1668 1669 1670
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1671 1672
             py::handle &handle,
             bool blocking) {
1673
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1674 1675 1676
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1677
#else
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1712
#endif
1713
          },
1714 1715 1716
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1717 1718
        Returns a copy of this Tensor in GPU memory.

1719
        If this Tensor is already in GPU memory and device_id is default,
1720
        then no copy is performed and the original Tensor is returned.
1721

1722
        Args:
1723
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1724
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1725 1726 1727 1728 1729
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1730
              # required: gpu
1731 1732
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1733
              print(x.place)        # Place(cpu)
1734 1735

              y = x.cuda()
1736
              print(y.place)        # Place(gpu:0)
1737

1738
              y = x.cuda(None)
1739
              print(y.place)        # Place(gpu:0)
1740

1741 1742 1743
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1744
       )DOC")
1745 1746 1747
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1748
#ifndef _WIN32
1749
            PADDLE_ENFORCE_EQ(
1750 1751
                platform::is_cpu_place(self->Place()),
                true,
1752 1753 1754
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1755
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1768 1769 1770 1771 1772
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1773 1774
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1775 1776 1777 1778
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1779 1780
          },
          py::return_value_policy::reference)
1781
#if defined(PADDLE_WITH_CUDA)
1782 1783 1784
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1785 1786
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1787 1788 1789 1790
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1791
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1792 1793
            tensor_uva(self_tensor, device_id);
          },
1794 1795 1796
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1812
      .def("copy_", &imperative::VarBase::CopyFrom)
1813 1814 1815
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1816 1817
             const platform::CPUPlace &place,
             bool blocking) {
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1836 1837
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1848 1849
             const platform::XPUPlace &place,
             bool blocking) {
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1860 1861
             const platform::CUDAPlace &place,
             bool blocking) {
1862 1863 1864 1865 1866 1867 1868
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1881 1882 1883
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1884 1885
             const platform::CustomPlace &place,
             bool blocking) {
1886 1887 1888 1889 1890 1891 1892
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1893 1894 1895
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1896 1897
             const platform::Place &place,
             bool blocking) {
1898 1899 1900 1901 1902 1903 1904 1905
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1906 1907
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1908
          py::return_value_policy::reference)
1909 1910
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1911
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1912
             PADDLE_ENFORCE_EQ(
1913 1914
                 t->IsInitialized(),
                 true,
1915 1916
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1917 1918 1919 1920
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1921
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1922
             PADDLE_ENFORCE_EQ(
1923 1924
                 t->IsInitialized(),
                 true,
1925 1926
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1927 1928
             return t->offset();
           })
1929
      .def("_share_buffer_to",
1930
           [](const std::shared_ptr<imperative::VarBase> &self,
1931
              std::shared_ptr<imperative::VarBase> &dst) {
1932 1933
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1934
             PADDLE_ENFORCE_EQ(
1935 1936
                 src->IsInitialized(),
                 true,
1937 1938 1939
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1940
             dst_->ShareDataTypeWith(*src);
1941 1942 1943
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1944
              std::shared_ptr<imperative::VarBase> &dst) {
1945 1946
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1947 1948 1949 1950
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1951
           })
1952 1953 1954
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1955 1956
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1957
             PADDLE_ENFORCE_EQ(
1958 1959
                 src->IsInitialized(),
                 true,
1960 1961 1962 1963 1964 1965 1966 1967 1968
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1969 1970
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1971 1972 1973 1974 1975
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1976 1977
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1978 1979
              int64_t begin_idx,
              int64_t end_idx) {
1980
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1981
             PADDLE_ENFORCE_EQ(
1982 1983
                 t->IsInitialized(),
                 true,
1984 1985
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1986 1987 1988 1989 1990 1991 1992
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
1993
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1994 1995
             return t->numel();
           })
1996 1997
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2019 2020
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2021 2022 2023
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2024 2025
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2026
                    &imperative::VarBase::SetPersistable)
2027 2028 2029
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2030
            if (self.Var().IsType<phi::DenseTensor>()) {
2031
              auto value = phi::vectorize<int>(
2032 2033
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2050 2051
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2052 2053 2054 2055 2056 2057 2058 2059 2060
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2061 2062
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2090 2091 2092
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2093 2094
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2095
              return phi::DataLayoutToString(layout);
2096 2097 2098
            }
            return std::string("");
          })
2099 2100
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2101 2102 2103
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2104 2105
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2129
      .def_property_readonly(
2130 2131
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2132
          py::return_value_policy::copy)
2133 2134 2135 2136 2137 2138
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2139
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2140
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2141

2142 2143 2144 2145 2146
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2147 2148
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
2149
      .value("OD", paddle::imperative::AmpLevel::OD)
L
Leo Chen 已提交
2150 2151 2152 2153 2154
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2155
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2156
      m, "Tracer", R"DOC()DOC")
2157
      .def("__init__",
J
Jiabin Yang 已提交
2158
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2159 2160 2161
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2162 2163 2164
      .def_property("_use_promote",
                    &imperative::Tracer::GetUsePromote,
                    &imperative::Tracer::SetUsePromote)
2165 2166
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2167
                    &imperative::Tracer::SetAmpLevel)
2168 2169
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2170
                    &imperative::Tracer::SetAmpDtype)
2171 2172
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2173
                    &imperative::Tracer::SetHasGrad)
2174 2175 2176 2177 2178 2179 2180 2181
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2182
              self.SetExpectedPlace(*p);
2183 2184
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2185 2186
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2187 2188 2189
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2190 2191
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2192 2193
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2194
              self.SetExpectedPlace(*p);
2195 2196
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2197 2198
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2199
              self.SetExpectedPlace(*p);
2200 2201
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2202 2203 2204 2205 2206
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2207 2208 2209 2210 2211
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2212 2213 2214 2215 2216
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2217
            } else {
L
Leo Chen 已提交
2218
              PADDLE_THROW(platform::errors::InvalidArgument(
2219
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
张春乔 已提交
2220
                  "CPUPlace, IPUPlace"
L
Leo Chen 已提交
2221 2222
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2223 2224
            }
          })
2225 2226 2227
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2228 2229
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2230
           py::arg("key") = "dygraph_tmp")
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2247
             VLOG(5) << "AMP operators changed, "
2248 2249
                     << imperative::AmpOperators::Instance();
           })
2250 2251 2252
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2253 2254
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2255
           })
C
Chen Weihang 已提交
2256
      .def("_get_kernel_signature",
2257 2258 2259 2260
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2278 2279
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2280 2281 2282
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2283 2284
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2285 2286
             }
           })
2287
      .def("trace",
2288 2289 2290 2291 2292 2293
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2294 2295 2296 2297 2298 2299
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2300 2301 2302 2303 2304 2305 2306
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2307 2308
             }
           })
2309
      .def("trace",
2310 2311 2312 2313 2314 2315
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2316 2317
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2318 2319 2320 2321
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2322 2323 2324 2325 2326 2327 2328
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2329 2330
             }
           })
M
minqiyang 已提交
2331
      .def("trace",
2332 2333 2334 2335 2336 2337
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2338 2339
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2340 2341
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2342 2343
             {
               py::gil_scoped_release release;
2344 2345 2346 2347 2348 2349 2350
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2351
             }
M
minqiyang 已提交
2352
           })
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2363 2364 2365
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2366 2367 2368 2369 2370 2371 2372
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2373 2374
             }
           })
J
Jiabin Yang 已提交
2375
      .def("trace",
2376 2377 2378 2379 2380 2381
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2382 2383
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2384 2385 2386 2387
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2388 2389 2390 2391 2392 2393 2394
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2395 2396
             }
           });
2397 2398

  // define parallel context
2399 2400 2401
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2402 2403
      .def_property(
          "nranks",
2404 2405
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2406 2407
            self.nranks_ = nranks;
          })
2408 2409 2410 2411 2412 2413 2414 2415
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2416 2417
      .def_property(
          "trainer_endpoints",
2418
          [](const imperative::ParallelStrategy &self) {
2419 2420
            return self.trainer_endpoints_;
          },
2421
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2422 2423
            self.trainer_endpoints_ = eps;
          })
2424 2425 2426 2427 2428 2429 2430 2431
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2432 2433 2434 2435 2436 2437
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2438

2439 2440 2441 2442
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2443
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
R
ronnywang 已提交
2444
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
2445

2446 2447 2448 2449 2450 2451 2452
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2467 2468 2469 2470 2471
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2472 2473 2474 2475
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2476 2477
         bool retain_graph,
         const imperative::Tracer &tracer) {
2478 2479 2480 2481 2482 2483 2484 2485
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2486 2487 2488
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||     \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
    defined(PADDLE_WITH_CUSTOM_DEVICE)
2489 2490 2491 2492 2493 2494
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2495 2496 2497 2498
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2509 2510
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2511
        py::arg("tensor_indices") = std::vector<int64_t>{},
2512
        py::call_guard<py::gil_scoped_release>());
2513
#endif
2514

2515
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2516 2517
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2518 2519 2520 2521
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2522 2523 2524 2525
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2526 2527
#endif

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  py::class_<imperative::XCCLParallelContext,
             imperative::ParallelContext,
             std::shared_ptr<imperative::XCCLParallelContext>>(
      m, "XCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CustomPlace &>())
      .def("init", [](imperative::XCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::XCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

2541
#if defined(PADDLE_WITH_XPU_BKCL)
2542 2543
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2544 2545 2546 2547
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2548 2549 2550 2551
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2552
#endif
2553 2554 2555

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2556 2557
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2558 2559 2560 2561 2562 2563 2564
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2565 2566 2567
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2568
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
2569
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
2570 2571
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2572 2573 2574 2575 2576 2577
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2578
#if defined(PADDLE_WITH_CUDA)
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2600 2601
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2615 2616 2617 2618
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2630
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2631 2632 2633 2634 2635 2636 2637 2638
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2639

S
Siming Dai 已提交
2640 2641 2642 2643 2644 2645 2646
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2647 2648 2649
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2650 2651 2652 2653
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2654
        PADDLE_ENFORCE_EQ(
2655 2656
            platform::is_gpu_place(src.Place()),
            true,
2657 2658 2659 2660
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2661 2662
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2663 2664 2665 2666 2667
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2668 2669
            platform::is_cpu_place(offset.Place()),
            true,
2670 2671 2672 2673
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2674 2675
            platform::is_cpu_place(count.Place()),
            true,
2676 2677 2678 2679 2680 2681
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2682 2683 2684 2685
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2686 2687
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2688 2689
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2690 2691
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2692 2693
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2694 2695
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2696 2697
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2698 2699 2700
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2701 2702
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2703 2704 2705 2706 2707
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2708 2709
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2710 2711 2712 2713 2714
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2715 2716
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2717 2718 2719 2720 2721 2722 2723 2724 2725

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2726 2727
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2728 2729
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2730 2731
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2732 2733
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2734 2735 2736 2737 2738
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2739 2740 2741 2742
          src_offset += c;
        }
      },
      R"DOC(
2743 2744 2745 2746 2747
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2748
  "gpu async_write to pin_memory".
2749

2750
  Arguments:
2751 2752

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2753 2754
                  Besides, `src` should be placed on CUDAPlace.

2755 2756 2757
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2758

2759 2760 2761 2762 2763 2764 2765
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2766 2767 2768 2769 2770 2771

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2772
          from paddle.fluid import core
2773
          from paddle.device import cuda
2774

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2795 2796 2797 2798 2799 2800 2801 2802
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2803 2804 2805 2806 2807
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2808 2809
            platform::is_gpu_place(dst.Place()),
            true,
2810 2811 2812 2813
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2814 2815
            platform::is_cpu_place(index.Place()),
            true,
2816 2817 2818 2819
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2820 2821
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2822 2823 2824 2825 2826
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2827 2828
            platform::is_cpu_place(offset.Place()),
            true,
2829 2830 2831 2832
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2833 2834
            platform::is_cpu_place(count.Place()),
            true,
2835 2836 2837 2838
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2839 2840 2841
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2842
        auto *buffer_tensor =
2843 2844 2845
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2846 2847 2848
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2849 2850
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2851 2852 2853 2854
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2855 2856
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2857 2858 2859 2860 2861
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2862 2863
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2864 2865 2866 2867
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2868 2869
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2870 2871 2872 2873
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2874 2875
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2876 2877 2878
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2879 2880
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2881 2882 2883 2884 2885 2886

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2887 2888
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2889 2890
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2891 2892
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2893 2894
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2895 2896
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2908 2909
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2910 2911 2912 2913 2914 2915 2916
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2917 2918
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2919 2920
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2921 2922
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2923 2924
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2925 2926 2927 2928 2929
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2930 2931 2932
            dst_offset += c;
          }
        } else {
2933 2934
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2935 2936 2937 2938 2939
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
2940 2941 2942
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
2943 2944 2945 2946 2947 2948 2949 2950 2951
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2952 2953
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2954 2955 2956 2957 2958 2959
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2960 2961
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2962
                        index_tensor.numel() * size * sizeof(float),
2963 2964
                        cudaMemcpyHostToDevice,
                        stream);
2965 2966
      },
      R"DOC(
2967 2968 2969 2970 2971
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
2972 2973 2974
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
2975 2976

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2977
                  Besides, `src` should be placed on CUDAPinnedPlace.
2978 2979 2980

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
2981 2982
                  be the same with `src` except for the first dimension.

2983 2984
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
2985 2986
                    be one-dimensional.

2987 2988
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
2989 2990
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

2991 2992
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
2993 2994
                     should be one-dimensional.

2995 2996
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
2997
                    should be one-dimensinal.
2998

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3017

3018 3019 3020
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3021

3022 3023
)DOC");
#endif
3024 3025 3026 3027
}

}  // namespace pybind
}  // namespace paddle