math.py 252.0 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17

18
import numpy as np
19

20
import paddle
21 22
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils
23 24
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

25
from ..common_ops_import import Variable
26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31
    convert_dtype,
)
32 33 34 35
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
36
    in_dynamic_mode,
37 38 39
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
40
from .manipulation import cast, cast_
41
from .ops import abs  # noqa: F401
G
GGBond8488 已提交
42
from .ops import abs_  # noqa: F401
43
from .ops import acos  # noqa: F401
G
GGBond8488 已提交
44
from .ops import acos_  # noqa: F401
45
from .ops import acosh  # noqa: F401
G
GGBond8488 已提交
46
from .ops import acosh_  # noqa: F401
47
from .ops import asin  # noqa: F401
G
GGBond8488 已提交
48
from .ops import asin_  # noqa: F401
49
from .ops import asinh  # noqa: F401
G
GGBond8488 已提交
50
from .ops import asinh_  # noqa: F401
51
from .ops import atan  # noqa: F401
G
GGBond8488 已提交
52
from .ops import atan_  # noqa: F401
53
from .ops import atanh  # noqa: F401
G
GGBond8488 已提交
54
from .ops import atanh_  # noqa: F401
55 56 57
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
G
GGBond8488 已提交
58
from .ops import cos_  # noqa: F401
59
from .ops import cosh  # noqa: F401
G
GGBond8488 已提交
60
from .ops import cosh_  # noqa: F401
61
from .ops import erf  # noqa: F401
G
GGBond8488 已提交
62
from .ops import erf_  # noqa: F401
63 64 65
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
G
GGBond8488 已提交
66
from .ops import expm1_  # noqa: F401
67 68 69 70 71 72 73 74
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
75 76
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
77
from .ops import sin  # noqa: F401
G
GGBond8488 已提交
78
from .ops import sin_  # noqa: F401
79
from .ops import sinh  # noqa: F401
G
GGBond8488 已提交
80
from .ops import sinh_  # noqa: F401
81 82
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
83
from .ops import square  # noqa: F401
G
GGBond8488 已提交
84
from .ops import square_  # noqa: F401
85
from .ops import tan  # noqa: F401
G
GGBond8488 已提交
86
from .ops import tan_  # noqa: F401
87

88 89
__all__ = []

90 91 92 93 94 95 96 97 98 99 100 101 102
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
137 138
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
139 140 141
    return reduce_all, axis


142 143
def log(x, name=None):
    r"""
C
Chen Long 已提交
144
    Calculates the natural log of the given input Tensor, element-wise.
145 146 147

    .. math::

148
        Out = \ln(x)
149 150

    Args:
151
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
152 153 154 155 156 157 158 159 160 161
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

162
            >>> import paddle
163

164 165 166 167 168 169
            >>> x = [[2, 3, 4], [7, 8, 9]]
            >>> x = paddle.to_tensor(x, dtype='float32')
            >>> print(paddle.log(x))
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.69314718, 1.09861231, 1.38629436],
             [1.94591010, 2.07944155, 2.19722462]])
170
    """
171
    if in_dynamic_mode():
172
        return _C_ops.log(x)
173
    else:
174
        check_variable_and_dtype(
175 176 177 178
            x,
            'x',
            ['int32', 'int64', 'uint16', 'float16', 'float32', 'float64'],
            "log",
179
        )
180 181 182 183 184 185
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
186 187


188 189 190 191 192 193 194 195 196 197 198
@inplace_apis_in_dygraph_only
def log_(x, name=None):
    r"""
    Inplace version of ``log`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log`.
    """

    if in_dynamic_mode():
        return _C_ops.log_(x)


199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
216
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
217
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
218 219 220 221
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
222 223

    Returns:
C
Chen Long 已提交
224
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
225 226 227

    Examples:
        .. code-block:: python
228

229 230
            >>> # scale as a float32 number
            >>> import paddle
231

232 233 234 235 236 237 238 239 240 241
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> res = paddle.scale(data, scale=2.0, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
242 243 244

        .. code-block:: python

245 246
            >>> # scale with parameter scale as a Tensor
            >>> import paddle
247

248 249 250 251 252 253 254 255 256 257 258
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> factor = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.scale(data, scale=factor, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
259 260 261

    """

262
    if in_dynamic_mode():
W
Weilong Wu 已提交
263 264
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
265 266
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
267 268
    else:
        check_variable_and_dtype(
269
            x,
270 271 272 273 274 275 276 277 278 279 280 281 282
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
283
        )
284 285 286 287 288 289 290 291 292 293 294
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
295

296 297 298 299
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
300 301 302


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
303 304
    r"""

305 306 307 308
    stanh activation.

    .. math::

309
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
310 311 312 313 314

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
315
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
316 317 318 319 320 321 322

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

323
            >>> import paddle
324

325 326 327 328 329
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = paddle.stanh(x, scale_a=0.67, scale_b=1.72)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00616539, 1.49927628, 1.65933096, 1.70390463])
330 331 332

    """

333
    if in_dynamic_mode():
Z
zyfncg 已提交
334
        return _C_ops.stanh(x, scale_a, scale_b)
335 336
    else:
        check_variable_and_dtype(
337
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
338
        )
339

340 341 342 343 344 345 346 347 348
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
349

350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
382
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
383

384 385 386 387 388 389 390
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

391
            >>> import paddle
392

393 394 395 396 397 398 399 400 401
            >>> img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            >>> img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            >>> inputs = [img1, img2]
            >>> index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
            >>> res = paddle.multiplex(inputs, index)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[5., 6.],
             [3., 4.]])
402 403

    """
404
    if in_dynamic_mode():
405
        return _C_ops.multiplex(inputs, index)
406 407
    else:
        helper = LayerHelper('multiplex', **locals())
408

409 410 411 412 413 414 415 416 417 418 419 420
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
421
        check_variable_and_dtype(
422
            index, "index", ['int32', 'int64'], 'multiplex'
423
        )
424

425 426 427 428 429 430 431
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
432

433

434 435 436 437 438 439
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
440
    if in_dynamic_mode():
441
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
442 443


444
def pow(x, y, name=None):
445
    """
C
Chen Long 已提交
446
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
447

448
    .. math::
449
        out = x^{y}
450

451
    Note:
I
Infinity_lee 已提交
452 453 454
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
455 456


457
    Args:
458
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
459
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
460
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
461

462
    Returns:
463
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
464 465 466

    Examples:

467
        .. code-block:: python
468

469
            >>> import paddle
470

471
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
472

473 474 475 476 477 478 479 480 481
            >>> # example 1: y is a float or int
            >>> res = paddle.pow(x, 2)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
            >>> res = paddle.pow(x, 2.5)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.         , 5.65685415 , 15.58845711])
482

483 484 485 486 487 488
            >>> # example 2: y is a Tensor
            >>> y = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.pow(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
489 490

    """
491
    # in dynamic graph mode
492
    if in_dynamic_mode():
493
        if isinstance(y, (int, float)):
494
            return _C_ops.pow(x, y)
495
        elif isinstance(y, (paddle.Tensor, Variable)):
496
            return _C_ops.elementwise_pow(x, y)
497
        else:
498
            raise TypeError(
499 500
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
501 502
    else:
        # in static graph mode
503
        if isinstance(y, (int, float)):
504 505 506 507 508 509
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
510
            )
511 512 513 514 515 516
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
517
        else:
518
            raise TypeError(
519
                'y must be scalar or tensor type, but received: %s ' % (type(y))
520
            )
521 522


523 524 525 526
@inplace_apis_in_dygraph_only
def pow_(x, y, name=None):
    """
    Inplace version of ``pow`` API, the output Tensor will be inplaced with input ``x``.
527
    Please refer to :ref:`api_paddle_pow`.
528 529 530 531
    """
    if isinstance(y, (int, float)):
        return _C_ops.pow_(x, y)
    else:
G
GGBond8488 已提交
532
        raise TypeError('y must be scalar type, but received: %s ' % (type(y)))
533 534


535
OP_NAMEMAPPING = {
536 537 538 539 540 541 542 543
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
544
    'elementwise_mod': 'remainder',
545
}
546

547

548 549 550 551 552 553
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

554 555
    out = helper.kwargs.get('out', None)

556 557
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
558 559 560 561 562
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
563
        "elementwise_max",
564 565 566 567 568 569 570 571 572 573 574 575 576 577
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
578 579 580 581 582 583 584 585 586
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
587
    check_variable_and_dtype(
588 589
        x,
        'x',
590
        data_type,
591 592
        original_op_type,
    )
593
    check_variable_and_dtype(
594 595
        y,
        'y',
596
        data_type,
597 598
        original_op_type,
    )
599 600 601 602

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
603 604 605 606 607

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
608 609 610 611 612 613 614 615 616 617
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
618 619 620
    return helper.append_activation(out)


Y
Yang Zhang 已提交
621
def add(x, y, name=None):
622
    """
623 624 625 626 627 628 629 630
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

631 632
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
633 634

    There are two cases for this operator:
635 636 637 638

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

639
    For case 2:
640 641

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
642
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
643
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
644 645 646

        For example:

647
        .. code-block:: text
648

649 650 651 652 653 654
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
655

656
    Args:
657 658 659
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
660 661

    Returns:
H
HongyuJia 已提交
662
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
663 664 665

    Examples:

666
        .. code-block:: python
667

668
            >>> import paddle
669

670 671 672 673 674 675
            >>> x = paddle.to_tensor([2, 3, 4], 'float64')
            >>> y = paddle.to_tensor([1, 5, 2], 'float64')
            >>> z = paddle.add(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [3., 8., 6.])
676
    """
677

678
    if in_dynamic_mode():
679
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
680
    else:
681
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
682 683


684 685 686 687 688 689 690 691 692
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
693
        raise ValueError(
694 695 696 697
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
698

699
    return _C_ops.add_(x, y)
700 701


Z
zhiboniu 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

728
        .. code-block:: text
Z
zhiboniu 已提交
729 730 731 732 733 734 735 736 737

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
H
Hui Zhang 已提交
738 739
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
Z
zhiboniu 已提交
740 741 742 743 744 745 746
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

747
        .. code-block:: python
Z
zhiboniu 已提交
748

749
            >>> import paddle
Z
zhiboniu 已提交
750

751 752 753 754 755 756
            >>> x = paddle.to_tensor([-1, -2, -3], 'float64')
            >>> y = paddle.to_tensor([-1], 'float64')
            >>> z = paddle.logaddexp(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-0.30685282, -0.68673831, -0.87307199])
Z
zhiboniu 已提交
757 758 759 760 761
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


762 763
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
764
    Substract two tensors element-wise. The equation is:
765 766 767 768

    .. math::
        out = x - y

769
    Note:
I
Infinity_lee 已提交
770 771 772
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
773 774 775 776 777 778 779 780 781 782 783 784

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[5, 6], [3, 4]])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-4, -4],
             [ 4,  4]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([1, 0, 4])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[ 0,  2, -1],
              [ 0,  2, -1]]])

            >>> x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            >>> y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
            >>> y = paddle.to_tensor([1, 4, 5], dtype='float64')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 4.  ,  inf., -inf.])
817
    """
818
    if in_dynamic_mode():
819
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
820
    else:
821
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
822 823


824 825 826 827 828 829 830 831 832
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
833
        raise ValueError(
834 835 836 837
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
838

839
    return _C_ops.subtract_(x, y)
840 841


842
def divide(x, y, name=None):
843
    """
844
    Divide two tensors element-wise. The equation is:
845

846 847
    .. math::
        out = x / y
848

849
    Note:
I
Infinity_lee 已提交
850 851 852
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
853

854 855 856 857
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
858

859
    Returns:
860
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
861

862
    Examples:
863

864
        .. code-block:: python
865

866
            >>> import paddle
867

868 869 870 871 872 873
            >>> x = paddle.to_tensor([2, 3, 4], dtype='float64')
            >>> y = paddle.to_tensor([1, 5, 2], dtype='float64')
            >>> z = paddle.divide(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [2.        , 0.60000000, 2.        ])
874

875
    """
876
    if in_dynamic_mode():
877
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
878
    else:
879 880
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.divide(x, y)
881
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
882 883


884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
@inplace_apis_in_dygraph_only
def divide_(x, y, name=None):
    r"""
    Inplace version of ``divide`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_divide`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
    return _C_ops.divide_(x, y)


900 901
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
902
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
903

904
    .. math::
L
Lin Manhui 已提交
905
        out = trunc(x / y)
906

H
hg-1099255210 已提交
907 908 909
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

910
    Note:
I
Infinity_lee 已提交
911 912 913 914
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
915
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
916

917
    Args:
918 919
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
920
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
921

922 923
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
924

925
    Examples:
926

927
        .. code-block:: python
928

929
            >>> import paddle
930

931 932 933 934 935 936
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.floor_divide(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 0, 2, 2])
937

938
    """
939
    if in_dynamic_mode():
940
        return _C_ops.floor_divide(x, y)
941
    else:
942
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
943 944


945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
@inplace_apis_in_dygraph_only
def floor_divide_(x, y, name=None):
    r"""
    Inplace version of ``floor_divide`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_floor_divide`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
    return _C_ops.floor_divide_(x, y)


961
def remainder(x, y, name=None):
962
    r"""
963 964 965
    Mod two tensors element-wise. The equation is:

    .. math::
966

967 968
        out = x \% y

969
    Note:
I
Infinity_lee 已提交
970 971 972
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
973 974

    Args:
975 976
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
977 978 979
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
980
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
981 982 983

    Examples:

984
        .. code-block:: python
985

986
            >>> import paddle
987

988 989 990 991 992 993
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.remainder(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 3, 2, 1])
994 995

    """
996
    if in_dynamic_mode():
997
        return _C_ops.remainder(x, y)
998
    else:
999
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
1000 1001


1002 1003 1004 1005 1006 1007 1008 1009 1010
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
1011 1012 1013 1014
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
1015
    return _C_ops.remainder_(x, y)
1016 1017


1018 1019
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
mod_ = remainder_  # noqa: F841
mod_.__doc__ = r"""
    Inplace version of ``mod`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_mod`.
    """
floor_mod_ = remainder_  # noqa: F841
floor_mod_.__doc__ = r"""
    Inplace version of ``floor_mod_`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_floor_mod_`.
    """
1030 1031


1032
def multiply(x, y, name=None):
1033
    """
1034
    multiply two tensors element-wise. The equation is:
1035

1036 1037
    .. math::
        out = x * y
1038

1039
    Note:
I
Infinity_lee 已提交
1040 1041 1042
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1043

1044
    Args:
W
will-jl944 已提交
1045 1046
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
1047
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1048

1049
    Returns:
1050
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1051

1052 1053
    Examples:

1054
        .. code-block:: python
1055

1056
            >>> import paddle
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
            >>> x = paddle.to_tensor([[1, 2], [3, 4]])
            >>> y = paddle.to_tensor([[5, 6], [7, 8]])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[5 , 12],
             [21, 32]])
            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([2])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[2, 4, 6],
              [2, 4, 6]]])
1072 1073

    """
1074
    if in_dynamic_mode():
1075
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
1076
    else:
1077 1078
        if x.dtype != y.dtype:
            raise TypeError(
1079
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
1080
            )
1081

1082
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
1083

1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


1103 1104 1105 1106 1107
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
1108 1109
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1130
    if in_dynamic_mode():
1131 1132 1133
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1134
        return _elementwise_op(LayerHelper(op_type, **locals()))
1135 1136 1137 1138


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1139
    if in_dynamic_mode():
1140 1141 1142 1143 1144
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1145
        return _elementwise_op(LayerHelper(op_type, **locals()))
1146 1147 1148 1149


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1150
    if in_dynamic_mode():
1151 1152 1153 1154 1155
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1156
        return _elementwise_op(LayerHelper(op_type, **locals()))
1157 1158 1159 1160


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1161
    if in_dynamic_mode():
1162 1163 1164
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1165
        return _elementwise_op(LayerHelper(op_type, **locals()))
1166 1167


1168
def maximum(x, y, name=None):
1169
    """
W
Wei Shengyu 已提交
1170
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1171

1172 1173
    .. math::
        out = max(x, y)
1174

1175
    Note:
I
Infinity_lee 已提交
1176 1177 1178
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
1223
    """
1224
    if in_dynamic_mode():
1225
        return _C_ops.maximum(x, y)
1226
    else:
1227
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1228

1229

1230
def minimum(x, y, name=None):
1231
    """
C
Chen Long 已提交
1232
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1233

1234 1235
    .. math::
        out = min(x, y)
1236

1237
    Note:
I
Infinity_lee 已提交
1238 1239 1240
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1241 1242 1243 1244 1245 1246 1247

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1248
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1249 1250 1251 1252 1253

    Examples:

        .. code-block:: python

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
1285
    """
1286
    if in_dynamic_mode():
1287
        return _C_ops.minimum(x, y)
1288
    else:
1289
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1290

1291

L
LJQ❤️ 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1301
    Note:
I
Infinity_lee 已提交
1302 1303 1304
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1305 1306

    Args:
1307 1308
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1349
    """
1350
    if in_dynamic_mode():
1351
        return _C_ops.fmax(x, y)
1352
    else:
1353
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1354

1355

L
LJQ❤️ 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1365
    Note:
I
Infinity_lee 已提交
1366 1367 1368
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1369 1370

    Args:
1371 1372
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1413
    """
1414
    if in_dynamic_mode():
1415
        return _C_ops.fmin(x, y)
1416
    else:
1417
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1418

Y
Yang Zhang 已提交
1419

1420
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1421 1422 1423 1424
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1425
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1426 1427
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1428
            Tensor with a single element, otherwise must be in the
1429 1430 1431 1432 1433 1434 1435
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1436
            value is False.
1437
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1438 1439

    Returns:
1440
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1441
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1442
        otherwise it's data type is the same as `x`.
1443 1444 1445 1446

    Examples:
        .. code-block:: python

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
            >>> import paddle

            >>> # x is a Tensor with following elements:
            >>> #    [[0.2, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, 0.6, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.sum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.50000000)
            >>> out2 = paddle.sum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.30000001, 0.50000000, 1.10000002, 1.59999990])
            >>> out3 = paddle.sum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.89999998, 1.60000002])
            >>> out4 = paddle.sum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.89999998],
             [1.60000002]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, 2], [3, 4]],
            >>> #      [[5, 6], [7, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, 2], [3, 4]],
            ...                       [[5, 6], [7, 8]]])
            >>> out5 = paddle.sum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [10, 26])
            >>> out6 = paddle.sum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [16, 20])

            >>> # x is a Tensor with following elements:
            >>> #    [[True, True, True, True]
            >>> #     [False, False, False, False]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[True, True, True, True],
            ...                       [False, False, False, False]])
            >>> out7 = paddle.sum(x)
            >>> out7
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
            >>> out8 = paddle.sum(x, axis=0)
            >>> out8
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 1, 1, 1])
            >>> out9 = paddle.sum(x, axis=1)
            >>> out9
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [4, 0])
1506
    """
1507

1508 1509 1510 1511
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1512

1513
    if in_dynamic_mode():
1514
        return _C_ops.sum(x, axis, dtype, keepdim)
1515
    else:
1516 1517
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.sum(x, axis, dtype, keepdim)
1518 1519
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1520

1521
        if dtype_flag:
1522
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1523

1524 1525 1526 1527 1528
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1529
                'uint16',
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1541

1542 1543 1544
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1558

1559

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
            >>> import paddle

            >>> x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            >>> out1 = paddle.nan_to_num(x)
            >>> out1
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out2 = paddle.nan_to_num(x, nan=1)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out3 = paddle.nan_to_num(x, posinf=5)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              5.                                      ,
             -340282346638528859811704183484516925440.])
            >>> out4 = paddle.nan_to_num(x, nan=10, neginf=-99)
            >>> out4
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 10.                                    ,
              0.30000001                             ,
             340282346638528859811704183484516925440.,
             -99.                                    ])
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
@inplace_apis_in_dygraph_only
def nan_to_num_(x, nan=0.0, posinf=None, neginf=None, name=None):
    r"""
    Inplace version of ``nan_to_num`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_nan_to_num`.
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x_not_nan = paddle.logical_not(paddle.isnan(x))
    x = paddle.where_(x_not_nan, x, nan)
    x = paddle.where_(x != posinf_value, x, posinf)
    x = paddle.where_(x != neginf_value, x, neginf)
    return x


W
wangguanqun 已提交
1662 1663 1664 1665 1666
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1667
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1679
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1680 1681 1682 1683 1684 1685 1686

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

1687
            >>> import paddle
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

            >>> # x is a Tensor with following elements:
            >>> #    [[nan, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, -nan, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
            >>> out1 = paddle.nansum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.69999981)
            >>> out2 = paddle.nansum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.50000000, 0.50000000, 1.59999990])
            >>> out3 = paddle.nansum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.70000005, 1.        ])
            >>> out4 = paddle.nansum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.70000005],
             [1.        ]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, nan], [3, 4]],
            >>> #       [[5, 6], [-nan, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out5 = paddle.nansum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [8. , 19.])
            >>> out6 = paddle.nansum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [9. , 18.])
W
wangguanqun 已提交
1727
    """
1728
    check_variable_and_dtype(
1729
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1730
    )
W
wangguanqun 已提交
1731 1732 1733 1734 1735 1736 1737
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]])
            >>> out1 = paddle.nanmean(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.44999996)
            >>> out2 = paddle.nanmean(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.25000000, 0.50000000, 0.79999995])
            >>> out3 = paddle.nanmean(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.10000000, 0.25000000, 0.50000000, 0.79999995]])
            >>> out4 = paddle.nanmean(x, axis=1)
            >>> out4
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.56666666, 0.33333334])
            >>> out5 = paddle.nanmean(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.56666666],
             [0.33333334]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out6 = paddle.nanmean(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2.66666675, 6.33333349])
            >>> out7 = paddle.nanmean(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3., 6.])
1806 1807 1808
    """
    if isinstance(axis, int):
        axis = [axis]
1809 1810 1811
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1812 1813 1814
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1815 1816 1817
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1818 1819
        cnt.astype(x.dtype),
    )
1820 1821


1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            >>> out1 = paddle.count_nonzero(x)
            >>> out1
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            3)
            >>> out2 = paddle.count_nonzero(x, axis=0)
            >>> out2
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 2])
            >>> out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 2]])
            >>> out4 = paddle.count_nonzero(x, axis=1)
            >>> out4
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 1, 0])
            >>> out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[2],
             [1],
             [0]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
            ...                         [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            >>> out6 = paddle.count_nonzero(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [3, 6])
            >>> out7 = paddle.count_nonzero(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 3, 5])
1883 1884
    """

1885 1886
    if isinstance(axis, int):
        axis = [axis]
1887 1888 1889 1890 1891 1892

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1893
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1894
def add_n(inputs, name=None):
1895
    """
1896
    Sum one or more Tensor of the input.
1897

S
Steffy-zxf 已提交
1898 1899 1900
    For example:

    .. code-block:: text
1901

S
Steffy-zxf 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1915

S
Steffy-zxf 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1931 1932

    Args:
1933
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1934
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1935
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1936 1937

    Returns:
S
Steffy-zxf 已提交
1938
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1939 1940 1941

    Examples:
        .. code-block:: python
1942

1943
            >>> import paddle
1944

1945 1946 1947 1948 1949 1950 1951
            >>> input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            >>> input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            >>> output = paddle.add_n([input0, input1])
            >>> output
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[8. , 10., 12.],
             [14., 16., 18.]])
1952
    """
1953
    if in_dynamic_mode():
1954 1955
        if isinstance(inputs, Variable):
            inputs = [inputs]
1956
        return _C_ops.add_n(inputs)
1957
    else:
1958 1959 1960
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.add_n(inputs)

1961 1962
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1963
        if isinstance(inputs, (list, tuple)):
1964 1965 1966 1967 1968
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1969 1970 1971 1972 1973 1974 1975 1976
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1977 1978 1979 1980 1981 1982
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1983
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1984 1985
                'add_n',
            )
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1996

1997
        return out
1998 1999


2000 2001 2002
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
2003

2004 2005 2006
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2007

2008 2009
    Returns:
        Tensor: The output Tensor of trunc.
2010

2011 2012 2013
    Examples:
        .. code-block:: python

2014
            >>> import paddle
2015

2016 2017 2018 2019 2020 2021
            >>> input = paddle.to_tensor([[0.1, 1.5], [-0.2, -2.4]], 'float32')
            >>> output = paddle.trunc(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.,  1.],
             [-0., -2.]])
2022
    '''
2023
    if in_dynamic_mode():
2024
        return _C_ops.trunc(input)
2025
    else:
2026 2027
        inputs = {"X": input}
        attrs = {}
2028

2029 2030 2031 2032 2033
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
2034

2035 2036 2037 2038
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2039 2040


2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
@inplace_apis_in_dygraph_only
def trunc_(input, name=None):
    r"""
    Inplace version of ``trunc`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_trunc`.
    """
    if in_dynamic_mode():
        return _C_ops.trunc_(input)


W
WuHaobo 已提交
2051
def mm(input, mat2, name=None):
2052
    """
S
swtkiwi 已提交
2053

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
2065
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
2066
        mat2 (Tensor): The input tensor which is a Tensor.
2067
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2068 2069

    Returns:
N
Noel 已提交
2070
        Tensor: The product Tensor.
2071

W
wawltor 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

2104 2105 2106
    Examples:
        .. code-block:: python

2107 2108 2109 2110 2111 2112 2113 2114 2115
            >>> import paddle
            >>> input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            >>> mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            >>> out = paddle.mm(input, mat2)
            >>> out
            Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[11., 14., 17., 20.],
             [23., 30., 37., 44.],
             [35., 46., 57., 68.]])
2116

N
Noel 已提交
2117

2118
    """
2119
    if in_dynamic_mode():
2120
        return _C_ops.matmul(input, mat2, False, False)
2121
    else:
2122

2123 2124 2125 2126 2127
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
2128
                )
2129 2130 2131 2132 2133 2134
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
2135

2136 2137 2138
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
2139
                    raise ValueError(
2140 2141
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
2142 2143 2144
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
2145
                    )
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
2170

2171

Y
yaoxuefeng 已提交
2172
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
2173 2174 2175
    """
    **addmm**

2176
    Perform matrix multiplication for input $x$ and $y$.
2177 2178 2179 2180 2181 2182 2183 2184 2185
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
2186 2187 2188
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
2189 2190
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
2191
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2192 2193

    Returns:
2194
        Tensor: The output Tensor of addmm.
2195 2196

    Examples:
2197
        .. code-block:: python
2198

2199
            >>> import paddle
2200

2201 2202 2203
            >>> x = paddle.ones([2, 2])
            >>> y = paddle.ones([2, 2])
            >>> input = paddle.ones([2, 2])
Y
yaoxuefeng 已提交
2204

2205
            >>> out = paddle.addmm(input=input, x=x, y=y, beta=0.5, alpha=5.0)
Y
yaoxuefeng 已提交
2206

2207 2208 2209 2210
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[10.50000000, 10.50000000],
             [10.50000000, 10.50000000]])
2211
    """
Y
yaoxuefeng 已提交
2212 2213 2214
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
2215
    if not len(x_shape) == len(y_shape) == 2:
2216
        raise ValueError(
2217 2218 2219 2220
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
2221
    if x_shape[1] != y_shape[0]:
2222
        raise ValueError(
2223 2224 2225 2226
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
2227 2228 2229
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
2230
                raise ValueError(
2231 2232 2233 2234
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
2235
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
2236
                raise ValueError(
2237 2238 2239 2240
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2241 2242
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
2243
                raise ValueError(
2244 2245 2246 2247
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2248 2249
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2250
            raise ValueError(
2251 2252 2253 2254
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2255
    else:
2256
        raise ValueError(
2257 2258 2259 2260
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2261

2262
    if in_dynamic_mode():
2263
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2264
    else:
2265 2266
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2267

2268 2269
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2270 2271 2272 2273 2274 2275 2276
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2277 2278
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2279

2280 2281 2282 2283
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2284

2285

G
GGBond8488 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
@inplace_apis_in_dygraph_only
def addmm_(input, x, y, beta=1.0, alpha=1.0, name=None):
    """
    Inplace version of ``addmm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_label_addmm`.
    """
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
    if x_shape[1] != y_shape[0]:
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
    else:
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )

    if in_dynamic_mode():
        return _C_ops.addmm_(input, x, y, beta, alpha)


S
seemingwang 已提交
2346 2347 2348 2349 2350 2351 2352
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2353
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
2367
        .. code-block:: python
2368

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
            >>> import paddle
            >>> input = [[[2.0, 2, -2], [3, 0.3, 3]],
            ...          [[2, -8, 2],   [3.1, 3.7, 3]]]
            >>> x = paddle.to_tensor(input,dtype='float32')
            >>> y = paddle.renorm(x, 1.0, 2, 2.05)
            >>> print(y)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[ 0.40594056,  0.29285714, -0.41000000],
              [ 0.60891086,  0.04392857,  0.61500001]],
             [[ 0.40594056, -1.17142856,  0.41000000],
              [ 0.62920785,  0.54178572,  0.61500001]]])
2380

S
seemingwang 已提交
2381 2382 2383
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2384 2385
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2386 2387 2388
                axis, len(input_shape), input_shape
            )
        )
2389
    if not axis >= 0:
S
seemingwang 已提交
2390
        if not axis >= -1 * len(input_shape):
2391
            raise ValueError(
2392 2393 2394 2395
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2396
        axis = axis + len(input_shape)
2397
    if in_dynamic_mode():
2398
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2399
        return out
2400
    else:
2401
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2402 2403
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2404

2405 2406
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2407

2408 2409 2410 2411
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2412

2413

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
@inplace_apis_in_dygraph_only
def renorm_(x, p, axis, max_norm):
    """
    Inplace version of ``renorm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_renorm`.
    """
    input_shape = x.shape
    if not axis < len(input_shape):
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
                axis, len(input_shape), input_shape
            )
        )
    if not axis >= 0:
        if not axis >= -1 * len(input_shape):
            raise ValueError(
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
        axis = axis + len(input_shape)
    if in_dynamic_mode():
        out = _C_ops.renorm_(x, p, axis, max_norm)
        return out


Z
zhiboniu 已提交
2440 2441 2442 2443
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2444

Z
zhiboniu 已提交
2445 2446 2447 2448 2449
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2450
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2451 2452 2453 2454 2455 2456 2457

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

2458 2459 2460 2461 2462 2463 2464 2465
            >>> import paddle
            >>> x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            >>> y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            >>> out = paddle.inner(x, y)
            >>> print(out)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[14. , 32. , 50. ],
             [32. , 77. , 122.]])
Z
zhiboniu 已提交
2466 2467 2468 2469 2470 2471 2472 2473


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2474
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2475

Z
zhiboniu 已提交
2476 2477 2478
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2479
        if in_dynamic_mode():
2480
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2481
        else:
Z
zhiboniu 已提交
2482

2483 2484 2485 2486 2487
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2488
                    )
2489 2490 2491 2492 2493 2494 2495 2496 2497
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2498 2499 2500
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2523 2524
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2525
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2526 2527 2528 2529 2530 2531 2532

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

2533 2534 2535 2536 2537 2538 2539 2540 2541
            >>> import paddle
            >>> x = paddle.arange(1, 4).astype('float32')
            >>> y = paddle.arange(1, 6).astype('float32')
            >>> out = paddle.outer(x, y)
            >>> print(out)
            Tensor(shape=[3, 5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 2. , 3. , 4. , 5. ],
             [2. , 4. , 6. , 8. , 10.],
             [3. , 6. , 9. , 12., 15.]])
Z
zhiboniu 已提交
2542 2543 2544 2545 2546 2547


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2548
    if in_dynamic_mode():
2549
        return _C_ops.matmul(nx, ny, False, False)
2550
    else:
Z
zhiboniu 已提交
2551

2552 2553 2554 2555
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
2556 2557 2558 2559
                    val,
                    name,
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'outer',
2560
                )
Z
zhiboniu 已提交
2561

2562
        __check_input(nx, ny)
Z
zhiboniu 已提交
2563

2564 2565 2566 2567 2568 2569
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2570 2571


2572
def logsumexp(x, axis=None, keepdim=False, name=None):
2573
    r"""
2574
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2575

2576
    .. math::
2577
       logsumexp(x) = \log\sum exp(x)
2578

2579
    Args:
2580
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2581
            have no more than 4 dimensions.
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2598

2599
    Returns:
2600 2601
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2602

2603
    Examples:
2604

2605
    .. code-block:: python
2606

2607
        >>> import paddle
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617
        >>> x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        >>> out1 = paddle.logsumexp(x)
        >>> out1
        Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
        3.46912265)
        >>> out2 = paddle.logsumexp(x, 1)
        >>> out2
        Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
        [2.15317822, 3.15684605])
2618 2619

    """
2620
    reduce_all, axis = _get_reduce_axis(axis, x)
2621

2622
    if in_dynamic_mode():
2623
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2624
    else:
2625
        check_variable_and_dtype(
2626
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2627
        )
2628 2629 2630 2631 2632 2633

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2634
        )
2635
        return out
2636

S
swtkiwi 已提交
2637

2638 2639
def inverse(x, name=None):
    """
2640 2641 2642 2643 2644
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2645
        x (Tensor): The input tensor. The last two
2646 2647 2648
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2649
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2650 2651

    Returns:
2652
        Tensor: A Tensor holds the inverse of x. The shape and data type
2653
                        is the same as x.
2654 2655 2656 2657

    Examples:
        .. code-block:: python

2658
            >>> import paddle
2659

2660 2661 2662 2663 2664 2665
            >>> mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
            >>> inv = paddle.inverse(mat)
            >>> print(inv)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.        ],
             [0.        , 0.50000000]])
2666 2667

    """
2668
    if in_dynamic_mode():
W
wanghuancoder 已提交
2669
        return _C_ops.inverse(x)
2670
    else:
2671

2672 2673 2674 2675 2676 2677 2678 2679
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2680

2681 2682 2683 2684 2685 2686 2687
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2688

2689

2690
def max(x, axis=None, keepdim=False, name=None):
2691
    """
S
swtkiwi 已提交
2692

2693
    Computes the maximum of tensor elements over the given axis.
2694

T
Tao Luo 已提交
2695 2696
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2697
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2698 2699 2700
        while max propagates gradient to all of them.


2701
    Args:
2702 2703
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2704
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2705
            `x` and return a Tensor with a single element,
2706 2707
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2708
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2709
            output Tensor. The result tensor will have one fewer dimension
2710
            than the `x` unless :attr:`keepdim` is true, default
2711
            value is False.
2712
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2713 2714

    Returns:
2715
        Tensor, results of maximum on the specified axis of input tensor,
2716
        it's data type is the same as `x`.
2717 2718 2719

    Examples:
        .. code-block:: python
2720

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.max(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.max(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.30000000, 0.60000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 1., 0., 1.],
             [0., 0., 1., 0.]])

            >>> x.clear_grad()
            >>> result3 = paddle.max(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> x.clear_grad()
            >>> result4 = paddle.max(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.70000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.max(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [4., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 1.]],
             [[0., 0.],
              [0., 1.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.max(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [7., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 0.]],
             [[0., 0.],
              [1., 1.]]])
2801 2802
    """

2803
    if in_dynamic_mode():
2804
        return _C_ops.max(x, axis, keepdim)
2805 2806 2807 2808
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2809 2810 2811 2812
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2813
        )
2814 2815
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2816

2817 2818 2819 2820 2821 2822 2823 2824
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2825

2826

2827
def min(x, axis=None, keepdim=False, name=None):
2828
    """
S
swtkiwi 已提交
2829

2830
    Computes the minimum of tensor elements over the given axis
2831

T
Tao Luo 已提交
2832 2833
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2834
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2835 2836
        while min propagates gradient to all of them.

2837
    Args:
2838 2839
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2840
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2841
            `x` and return a Tensor with a single element,
2842 2843
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2844
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2845
            output Tensor. The result tensor will have one fewer dimension
2846
            than the `x` unless :attr:`keepdim` is true, default
2847
            value is False.
2848
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2849

2850
    Returns:
2851
        Tensor, results of minimum on the specified axis of input tensor,
2852
        it's data type is the same as input's Tensor.
2853

2854 2855 2856
    Examples:
        .. code-block:: python

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.min(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.min(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.20000000, 0.50000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 1., 0.],
             [1., 1., 0., 1.]])

            >>> x.clear_grad()
            >>> result3 = paddle.min(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result4 = paddle.min(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.20000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                       [[5.0, 6.0], [7.0, 8.0]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.min(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 5.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 0.],
              [0., 0.]],
             [[1., 0.],
              [0., 0.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.min(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 2.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 1.],
              [0., 0.]],
             [[0., 0.],
              [0., 0.]]])
2937
    """
2938

2939
    if in_dynamic_mode():
2940
        return _C_ops.min(x, axis, keepdim)
2941 2942 2943 2944
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2945 2946 2947 2948
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2949
        )
2950

2951 2952 2953 2954 2955 2956 2957 2958
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2959

2960

T
Tao Luo 已提交
2961 2962 2963 2964 2965 2966
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2967
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2968 2969 2970
        while max propagates gradient to all of them.

    Args:
2971
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2972
            the dimension is no more than 4.
2973
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2974 2975 2976 2977
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2978
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2979 2980 2981
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2982
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2983 2984 2985 2986 2987 2988 2989 2990

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
            ...                         [0.9, 0.9, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 maximum elements:
            >>> # 1) amax evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while max propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amax(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_max = paddle.max(x)
            >>> result1_max.backward()
            >>> result1_max
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amax(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000, 0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amax(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amax(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.90000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
            ...                         [[0.9, 0.9], [0.6, 0.7]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amax(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amax(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
3087
    """
3088
    if in_dynamic_mode():
3089
        return _C_ops.amax(x, axis, keepdim)
3090

3091 3092 3093 3094 3095
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
3096
        )
T
Tao Luo 已提交
3097

3098 3099 3100 3101 3102 3103 3104 3105
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3106

3107

T
Tao Luo 已提交
3108 3109 3110 3111 3112 3113 3114
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
3115
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
3116 3117 3118
        while min propagates gradient to all of them.

    Args:
3119
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
3120
            the dimension is no more than 4.
3121
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
3122 3123 3124 3125
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
3126
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
3127 3128 3129
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
3130
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
3131 3132 3133 3134 3135 3136 3137 3138

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
            ...                         [0.1, 0.1, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 minimum elements:
            >>> # 1) amin evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while min propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amin(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_min = paddle.min(x)
            >>> result1_min.backward()
            >>> result1_min
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amin(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000, 0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amin(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amin(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.10000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
            ...                       [[0.1, 0.1], [0.6, 0.7]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amin(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amin(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
3235
    """
3236
    if in_dynamic_mode():
3237
        return _C_ops.amin(x, axis, keepdim)
3238

3239 3240 3241 3242 3243
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
3244
        )
T
Tao Luo 已提交
3245

3246 3247 3248 3249 3250 3251 3252 3253
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3254

3255

W
WuHaobo 已提交
3256
def log1p(x, name=None):
3257
    r"""
3258
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
3259

3260
    .. math::
3261
        Out = \ln(x+1)
S
Steffy-zxf 已提交
3262

3263
    Args:
3264
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3265
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3266

3267
    Returns:
S
Steffy-zxf 已提交
3268
        Tensor, the natural log of the input Tensor computed element-wise.
3269

3270 3271
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
3272

3273
            >>> import paddle
S
Steffy-zxf 已提交
3274

3275 3276 3277 3278 3279 3280
            >>> data = paddle.to_tensor([[0], [1]], dtype='float32')
            >>> res = paddle.log1p(data)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        ],
             [0.69314718]])
3281 3282
    """

3283
    if in_dynamic_mode():
W
wanghuancoder 已提交
3284
        return _C_ops.log1p(x)
3285
    else:
3286
        check_variable_and_dtype(
3287 3288 3289 3290
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log1p",
3291
        )
3292 3293 3294 3295 3296 3297
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
3298

3299

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
@inplace_apis_in_dygraph_only
def log1p_(x, name=None):
    r"""
    Inplace version of ``log1p`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log1p`.
    """

    if in_dynamic_mode():
        return _C_ops.log1p_(x)


J
joejiong 已提交
3311
def log2(x, name=None):
3312
    r"""
J
joejiong 已提交
3313 3314 3315 3316
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

3317
        Out = \log_2x
J
joejiong 已提交
3318 3319

    Args:
3320
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3321
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3322 3323 3324 3325 3326 3327 3328 3329


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3330

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [2.0]])
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3356
    """
3357
    if in_dynamic_mode():
W
wanghuancoder 已提交
3358
        return _C_ops.log2(x)
3359 3360
    else:
        check_variable_and_dtype(
3361 3362 3363 3364
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log2",
3365 3366 3367 3368 3369 3370 3371
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
3372

J
joejiong 已提交
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
@inplace_apis_in_dygraph_only
def log2_(x, name=None):
    r"""
    Inplace version of ``log2`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log2`.
    """

    if in_dynamic_mode():
        return _C_ops.log2_(x)


J
joejiong 已提交
3385
def log10(x, name=None):
3386
    r"""
J
joejiong 已提交
3387 3388 3389 3390
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

3391
        Out = \log_10_x
J
joejiong 已提交
3392 3393

    Args:
3394
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3395
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3396 3397 3398 3399 3400 3401 3402 3403


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [10.0]])
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3430
    """
3431
    if in_dynamic_mode():
W
wanghuancoder 已提交
3432
        return _C_ops.log10(x)
3433 3434
    else:
        check_variable_and_dtype(
3435 3436 3437 3438
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log10",
3439 3440 3441 3442 3443 3444 3445
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
3446 3447


3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
@inplace_apis_in_dygraph_only
def log10_(x, name=None):
    r"""
    Inplace version of ``log10`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log10`.
    """

    if in_dynamic_mode():
        return _C_ops.log10_(x)


Y
Yang Zhang 已提交
3459
def clip(x, min=None, max=None, name=None):
3460
    """
Y
Yang Zhang 已提交
3461
    This operator clip all elements in input into the range [ min, max ] and return
3462 3463 3464 3465
    a resulting tensor as the following equation:

    .. math::

3466
        Out = MIN(MAX(x, min), max)
3467 3468

    Args:
3469
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
3470 3471 3472 3473
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
3474
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3475 3476

    Returns:
Y
Yang Zhang 已提交
3477
        Tensor: A Tensor with the same data type and data shape as input.
3478 3479 3480 3481

    Examples:
        .. code-block:: python

3482
            >>> import paddle
N
Noel 已提交
3483

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
            >>> x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
            >>> out1 = paddle.clip(x1, min=3.5, max=5.0)
            >>> out1
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[3.50000000, 3.50000000],
             [4.50000000, 5.        ]])
            >>> out2 = paddle.clip(x1, min=2.5)
            >>> out2
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[2.50000000, 3.50000000],
             [4.50000000, 6.40000010]])
3495 3496
    """

3497 3498 3499 3500 3501 3502 3503
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
3504 3505 3506
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
3507 3508 3509
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
3510

3511
    if in_dynamic_mode():
C
chentianyu03 已提交
3512
        if isinstance(min, Variable):
3513
            min = min.item(0)
C
chentianyu03 已提交
3514
        if isinstance(max, Variable):
3515
            max = max.item(0)
C
chentianyu03 已提交
3516 3517
        min = min_ if min is None else min
        max = max_ if max is None else max
3518
        return _C_ops.clip(x, min, max)
3519 3520 3521 3522 3523 3524 3525
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
3526
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3527 3528 3529 3530 3531 3532 3533 3534 3535
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
3536
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3537 3538 3539
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
3540

3541
        check_variable_and_dtype(
3542 3543 3544 3545
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
3546
        )
Y
Yang Zhang 已提交
3547

3548 3549
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
3550

3551 3552 3553 3554 3555
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
3556

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3570

3571
        return output
F
Feiyu Chan 已提交
3572

W
WuHaobo 已提交
3573

3574 3575 3576 3577 3578 3579 3580 3581 3582
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3583
        min = min.item(0)
3584
    if isinstance(max, Variable):
3585
        max = max.item(0)
3586 3587
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3588

3589
    if in_dynamic_mode():
3590
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3591

3592

3593
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3594
    """
S
swtkiwi 已提交
3595

3596
    Computes the sum along diagonals of the input tensor x.
3597 3598

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3599

3600
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3601
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3602
    of the input tensor x.
L
Li Fuchen 已提交
3603

3604
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3605 3606 3607 3608

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3609
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3610

L
Li Fuchen 已提交
3611
    Args:
3612 3613 3614 3615 3616
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3617 3618

    Returns:
3619
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3620 3621 3622 3623

    Examples:
        .. code-block:: python

3624
            >>> import paddle
3625

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
            >>> case1 = paddle.randn([2, 3])
            >>> case2 = paddle.randn([3, 10, 10])
            >>> case3 = paddle.randn([3, 10, 5, 10])
            >>> data1 = paddle.trace(case1)
            >>> data1.shape
            []
            >>> data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2)
            >>> data2.shape
            [3]
            >>> data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1)
            >>> data3.shape
            [3, 5]
L
Li Fuchen 已提交
3638
    """
3639

Z
zyfncg 已提交
3640
    def __check_input(x, offset, axis1, axis2):
3641 3642 3643 3644 3645 3646
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3647

3648
        input_shape = list(x.shape)
3649 3650 3651 3652
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3653

3654 3655
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3656

3657 3658
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3659
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3660
        )
L
Li Fuchen 已提交
3661

3662 3663
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3664
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3665
        )
L
Li Fuchen 已提交
3666

3667 3668 3669 3670
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3671

3672
    if in_dynamic_mode():
3673
        return _C_ops.trace(x, offset, axis1, axis2)
3674 3675
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3676

3677 3678
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3679

3680 3681 3682 3683 3684 3685 3686
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3687

3688

3689 3690
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3691
    Computes the diagonals of the input tensor x.
3692 3693

    If ``x`` is 2D, returns the diagonal.
3694
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3695 3696 3697 3698 3699 3700 3701
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3702

3703
    Args:
3704 3705 3706 3707 3708
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3709 3710 3711 3712 3713 3714 3715

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
            >>> import paddle

            >>> paddle.seed(2023)
            >>> x = paddle.rand([2, 2, 3],'float32')
            >>> print(x)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[0.86583614, 0.52014720, 0.25960937],
              [0.90525323, 0.42400089, 0.40641287]],
             [[0.97020894, 0.74437362, 0.51785129],
              [0.73292869, 0.97786582, 0.04315904]]])

            >>> out1 = paddle.diagonal(x)
            >>> print(out1)
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.73292869],
             [0.52014720, 0.97786582],
             [0.25960937, 0.04315904]])

            >>> out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            >>> print(out2)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])

            >>> out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            >>> print(out3)
            Tensor(shape=[3, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.90525323],
             [0.42400089],
             [0.40641287]])

            >>> out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            >>> print(out4)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])
3752

3753
    """
3754
    if in_dynamic_mode():
3755
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3756
    else:
W
wanghuancoder 已提交
3757

3758 3759 3760 3761
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3762 3763 3764 3765 3766 3767 3768 3769 3770
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3771 3772
                'diagonal',
            )
3773

3774 3775 3776 3777 3778
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3779

3780 3781
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3782

3783 3784 3785 3786
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3787

3788 3789 3790 3791
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3792

3793 3794 3795 3796
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3797

3798 3799 3800
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3801

3802 3803 3804 3805 3806 3807 3808
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3809 3810


W
WuHaobo 已提交
3811
def kron(x, y, name=None):
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3831 3832

    Args:
3833 3834
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3835
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3836 3837

    Returns:
3838
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3839 3840 3841

    Examples:
        .. code-block:: python
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
            >>> import paddle
            >>> x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            >>> y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            >>> out = paddle.kron(x, y)
            >>> out
            Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1 , 2 , 3 , 2 , 4 , 6 ],
             [4 , 5 , 6 , 8 , 10, 12],
             [7 , 8 , 9 , 14, 16, 18],
             [3 , 6 , 9 , 4 , 8 , 12],
             [12, 15, 18, 16, 20, 24],
             [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3855
    """
3856
    if in_dynamic_mode():
3857 3858 3859 3860 3861 3862 3863 3864 3865
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3866

3867 3868 3869 3870 3871
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3872 3873 3874 3875


def cumsum(x, axis=None, dtype=None, name=None):
    """
3876 3877
    The cumulative sum of the elements along a given axis.

3878
    Note:
3879
        The first element of the result is the same as the first element of the input.
3880 3881

    Args:
3882
        x (Tensor): The input tensor needed to be cumsumed.
3883
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3884
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3885 3886 3887
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3888
        Tensor, the result of cumsum operator.
3889 3890 3891

    Examples:
        .. code-block:: python
3892

3893
            >>> import paddle
3894

3895 3896
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
3897

3898 3899 3900 3901
            >>> y = paddle.cumsum(data)
            >>> y
            Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0 , 1 , 3 , 6 , 10, 15, 21, 28, 36, 45, 55, 66])
3902

3903 3904 3905 3906 3907 3908
            >>> y = paddle.cumsum(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 6 , 8 , 10],
             [12, 15, 18, 21]])
3909

3910 3911 3912 3913 3914 3915
            >>> y = paddle.cumsum(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 3 , 6 ],
             [4 , 9 , 15, 22],
             [8 , 17, 27, 38]])
3916

3917 3918
            >>> y = paddle.cumsum(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
3919 3920 3921 3922 3923 3924
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3925
        x = cast(x, dtype)
3926

3927
    if in_dynamic_mode():
3928 3929
        if axis is None:
            axis = -1
3930
        return _C_ops.cumsum(x, axis, flatten, False, False)
3931
    else:
3932 3933 3934
        check_variable_and_dtype(
            x,
            'x',
3935
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3936 3937
            'cumsum',
        )
3938 3939
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3940
        kwargs = {}
3941 3942 3943 3944 3945
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3946

3947

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
@inplace_apis_in_dygraph_only
def cumsum_(x, axis=None, dtype=None, name=None):
    r"""
    Inplace version of ``cumprod`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_cumprod`.
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast_(x, dtype)

    if in_dynamic_mode():
        if axis is None:
            axis = -1
        return _C_ops.cumsum_(x, axis, flatten, False, False)


3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
def cummax(x, axis=None, dtype='int64', name=None):
    """
    The cumulative max of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummaxed.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.

        indices (Tensor), The corresponding index results of cummax operation.

    Examples:
        .. code-block:: python

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
            >>> import paddle

            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummax(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1,  5,  5,  5,  5,  5])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 1, 1, 1, 1])

            >>> value, indices = paddle.cummax(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-1,  5,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 0, 1]])

            >>> value, indices = paddle.cummax(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  5],
             [-2, -2,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 1],
             [0, 0, 2]])

            >>> value, indices = paddle.cummax(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummax')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummax(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummax',
        )
        check_type(x, 'x', (Variable), 'cummax')
        helper = LayerHelper('cummax', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummax',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


def cummin(x, axis=None, dtype='int64', name=None):
    """
    The cumulative min of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummined.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.

        indices (Tensor), The corresponding index results of cummin operation.

    Examples:
        .. code-block:: python

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
            >>> import paddle
            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummin(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1, -1, -1, -2, -3, -3])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 3, 4, 4])

            >>> value, indices = paddle.cummin(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-2, -3,  0]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [1, 1, 0]])

            >>> value, indices = paddle.cummin(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1, -1, -1],
             [-2, -3, -3]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 1, 1]])

            >>> value, indices = paddle.cummin(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummin')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummin(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummin',
        )
        check_type(x, 'x', (Variable), 'cummin')
        helper = LayerHelper('cummin', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummin',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


4138 4139
def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
4140
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
4141 4142 4143 4144 4145 4146

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
4147

4148 4149 4150 4151 4152 4153
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
4154
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
4155 4156 4157
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4158
        Tensor, the result of logcumsumexp operator.
4159 4160 4161

    Examples:
        .. code-block:: python
4162

4163
            >>> import paddle
4164

4165 4166
            >>> data = paddle.arange(12, dtype='float64')
            >>> data = paddle.reshape(data, (3, 4))
4167

4168 4169 4170 4171 4172 4173
            >>> y = paddle.logcumsumexp(data)
            >>> y
            Tensor(shape=[12], dtype=float64, place=Place(cpu), stop_gradient=True,
            [0.         , 1.31326169 , 2.40760596 , 3.44018970 , 4.45191440 ,
             5.45619332 , 6.45776285 , 7.45833963 , 8.45855173 , 9.45862974 ,
             10.45865844, 11.45866900])
4174

4175 4176 4177 4178 4179 4180
            >>> y = paddle.logcumsumexp(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.         , 2.         , 3.         ],
             [4.01814993 , 5.01814993 , 6.01814993 , 7.01814993 ],
             [8.01847930 , 9.01847930 , 10.01847930, 11.01847930]])
4181

4182 4183 4184 4185 4186 4187
            >>> y = paddle.logcumsumexp(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.31326169 , 2.40760596 , 3.44018970 ],
             [4.         , 5.31326169 , 6.40760596 , 7.44018970 ],
             [8.         , 9.31326169 , 10.40760596, 11.44018970]])
4188

4189 4190
            >>> y = paddle.logcumsumexp(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
4191 4192 4193 4194 4195 4196 4197 4198
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

4199
    if in_dynamic_mode():
4200 4201
        if axis is None:
            axis = -1
4202
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
4203 4204
    else:
        check_variable_and_dtype(
4205
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
4206
        )
4207

4208 4209 4210 4211 4212 4213 4214 4215 4216
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
4217 4218


H
hlygit66666 已提交
4219 4220 4221 4222
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

4223 4224
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
4225 4226 4227

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
4228 4229 4230 4231 4232 4233 4234
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
4235 4236 4237 4238 4239 4240 4241

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

4242
            >>> import paddle
H
hlygit66666 已提交
4243

4244 4245 4246 4247 4248 4249 4250
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
            >>> data
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11]])
H
hlygit66666 已提交
4251

4252 4253 4254 4255 4256 4257
            >>> y = paddle.cumprod(data, dim=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0  , 1  , 2  , 3  ],
             [0  , 5  , 12 , 21 ],
             [0  , 45 , 120, 231]])
H
hlygit66666 已提交
4258

4259 4260 4261 4262 4263 4264
            >>> y = paddle.cumprod(data, dim=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0   , 0   , 0   , 0   ],
             [4   , 20  , 120 , 840 ],
             [8   , 72  , 720 , 7920]])
H
hlygit66666 已提交
4265

4266 4267 4268 4269 4270 4271
            >>> y = paddle.cumprod(data, dim=1, dtype='float64')
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.   , 0.   , 0.   , 0.   ],
             [4.   , 20.  , 120. , 840. ],
             [8.   , 72.  , 720. , 7920.]])
H
hlygit66666 已提交
4272

4273
            >>> assert y.dtype == paddle.float64
H
hlygit66666 已提交
4274 4275 4276 4277

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4278
        x = cast(x, dtype)
H
hlygit66666 已提交
4279

4280
    if in_dynamic_mode():
4281
        return _C_ops.cumprod(x, dim)
4282 4283 4284 4285
    else:
        check_variable_and_dtype(
            x,
            "x",
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4296 4297 4298
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
4299

4300 4301 4302 4303 4304 4305 4306 4307 4308
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
4309

4310

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
@inplace_apis_in_dygraph_only
def cumprod_(x, dim=None, dtype=None, name=None):
    r"""
    Inplace version of ``cumprod`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_cumprod`.
    """
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast_(x, dtype)

    if in_dynamic_mode():
        return _C_ops.cumprod_(x, dim)


J
Jack Zhou 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

4339
            >>> import paddle
N
Noel 已提交
4340

4341 4342 4343 4344 4345
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isfinite(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True , True , False, True , False, False])
J
Jack Zhou 已提交
4346
    """
4347
    if in_dynamic_mode():
4348
        return _C_ops.isfinite(x)
4349 4350 4351 4352 4353
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
4354 4355 4356 4357 4358 4359 4360 4361
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
4362 4363 4364 4365 4366 4367 4368
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
4369

4370

J
Jack Zhou 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

4386
            >>> import paddle
C
Chen Long 已提交
4387

4388 4389 4390 4391 4392
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isinf(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False, False, True , False, False, False])
J
Jack Zhou 已提交
4393
    """
4394
    if in_dynamic_mode():
4395
        return _C_ops.isinf(x)
4396 4397 4398
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
4410 4411 4412 4413
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4414

4415

J
Jack Zhou 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

4431
            >>> import paddle
4432

4433 4434 4435 4436 4437
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isnan(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, False, False, False, False, True , True ])
J
Jack Zhou 已提交
4438
    """
4439
    if in_dynamic_mode():
4440
        return _C_ops.isnan(x)
4441 4442 4443
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
4455 4456 4457 4458
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4459 4460


G
guofei 已提交
4461 4462 4463 4464 4465
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
4466
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
4467 4468 4469
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
4470
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
4471
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
4472
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
4473 4474 4475
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
4476
            of output is the same as input Tensor `x`.
4477
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
4478 4479 4480

    Returns:
        Tensor, result of product on the specified dim of input tensor.
4481

G
guofei 已提交
4482 4483 4484
    Examples:
        .. code-block:: python

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
            >>> import paddle

            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.prod(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.00022680)

            >>> out2 = paddle.prod(x, -1)
            >>> out2
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02700000, 0.00840000])

            >>> out3 = paddle.prod(x, 0)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02000000, 0.06000000, 0.30000001, 0.63000000])

            >>> out4 = paddle.prod(x, 0, keepdim=True)
            >>> out4
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.02000000, 0.06000000, 0.30000001, 0.63000000]])

            >>> out5 = paddle.prod(x, 0, dtype='int64')
            >>> out5
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 0])

            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]])
            >>> out6 = paddle.prod(y, [0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [105., 384.])

            >>> out7 = paddle.prod(y, (1, 2))
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [24.  , 1680.])
G
guofei 已提交
4527 4528 4529

    """
    if dtype is not None:
4530
        check_dtype(
4531 4532 4533 4534
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
4535
        )
G
guofei 已提交
4536
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4537
            x = cast(x, dtype)
G
guofei 已提交
4538

4539
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
4540
    if in_dynamic_mode():
4541
        return _C_ops.prod(x, axis, keepdim, reduce_all)
4542 4543 4544 4545 4546
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
4547
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
4548
            'reduce_prod',
4549
        )
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
4560 4561 4562 4563


def sign(x, name=None):
    """
4564
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
4565 4566

    Args:
4567 4568
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
4569 4570 4571 4572 4573 4574 4575

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

4576
            >>> import paddle
W
WangXi 已提交
4577

4578 4579 4580 4581 4582
            >>> x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
            >>> out = paddle.sign(x=x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.,  0., -1.,  1.])
W
WangXi 已提交
4583
    """
4584
    if in_dynamic_mode():
4585
        return _C_ops.sign(x)
4586 4587
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4588
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
4589 4590 4591
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
4592

4593
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
4594

4595
        return out
W
WangXi 已提交
4596 4597 4598


def tanh(x, name=None):
4599
    r"""
W
WangXi 已提交
4600 4601 4602
    Tanh Activation Operator.

    .. math::
4603
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
4604 4605

    Args:
4606
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

4616
            >>> import paddle
W
WangXi 已提交
4617

4618 4619 4620 4621 4622
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.tanh(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.37994900, -0.19737528,  0.09966799,  0.29131261])
W
WangXi 已提交
4623
    """
4624
    if in_dynamic_mode():
4625
        return _C_ops.tanh(x)
4626 4627
    else:
        check_variable_and_dtype(
4628
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
4629 4630 4631 4632 4633 4634
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
4635

4636

4637
@inplace_apis_in_dygraph_only
4638 4639 4640 4641 4642
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
4643
    return _C_ops.tanh_(x)
4644 4645


S
Steffy-zxf 已提交
4646 4647
def increment(x, value=1.0, name=None):
    """
4648
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
4649 4650 4651 4652
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
4653
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
4654 4655 4656 4657 4658 4659 4660 4661
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

4662
            >>> import paddle
S
Steffy-zxf 已提交
4663

4664 4665 4666 4667 4668
            >>> data = paddle.zeros(shape=[1], dtype='float32')
            >>> counter = paddle.increment(data)
            >>> counter
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])
S
Steffy-zxf 已提交
4669 4670

    """
4671
    if in_dynamic_mode():
4672
        return _C_ops.increment_(x, value)
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
4685 4686 4687 4688


def all(x, axis=None, keepdim=False, name=None):
    """
4689
    Computes the ``logical and`` of tensor elements over the given dimension.
4690 4691 4692 4693 4694

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4695
            Tensor with a single element, otherwise must be in the
4696 4697 4698 4699 4700 4701
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4702
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4703 4704 4705 4706 4707 4708 4709

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
            >>> import paddle

            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]
            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')

            >>> # out1 should be False
            >>> out1 = paddle.all(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            False)

            >>> # out2 should be [True, False]
            >>> out2 = paddle.all(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False])

            >>> # keepdim=False, out3 should be [False, True], out.shape should be (2,)
            >>> out3 = paddle.all(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True ])

            >>> # keepdim=True, out4 should be [[False], [True]], out.shape should be (2, 1)
            >>> out4 = paddle.all(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[False],
             [True ]])
4746

4747
    """
4748
    if in_dynamic_mode():
4749
        return _C_ops.all(x, axis, keepdim)
4750 4751 4752 4753 4754 4755 4756
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4757 4758 4759
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'all'
        )
4760
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
4761

4762
        helper = LayerHelper('all', **locals())
4763
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4764 4765 4766 4767 4768 4769 4770
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
4771 4772 4773 4774


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
4775
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
4776 4777 4778 4779 4780

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4781
            Tensor with a single element, otherwise must be in the
4782 4783 4784 4785 4786 4787
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4788
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4789 4790 4791 4792 4793 4794 4795

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x = paddle.assign(x)
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')
            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]

            >>> # out1 should be True
            >>> out1 = paddle.any(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            True)

            >>> # out2 should be [True, True]
            >>> out2 = paddle.any(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=False, out3 should be [True, True], out.shape should be (2,)
            >>> out3 = paddle.any(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            >>> out4 = paddle.any(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[True],
             [True]])
4833

4834
    """
4835
    if in_dynamic_mode():
4836
        return _C_ops.any(x, axis, keepdim)
4837 4838 4839 4840 4841 4842 4843
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4844 4845 4846
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'any'
        )
4847
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4848

4849
        helper = LayerHelper('any', **locals())
4850
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4851 4852 4853 4854 4855 4856 4857
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4858

4859

L
Leo Chen 已提交
4860 4861
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4862 4863 4864 4865 4866 4867
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4868 4869 4870 4871

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4872

L
Leo Chen 已提交
4873 4874 4875 4876 4877 4878 4879

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

4880
            >>> import paddle
L
Leo Chen 已提交
4881

4882 4883 4884
            >>> shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            >>> shape
            [2, 3, 3]
4885

4886 4887
            >>> # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            >>> # ValueError (terminated with error message).
L
Leo Chen 已提交
4888 4889 4890 4891

    """

    return core.broadcast_shape(x_shape, y_shape)
4892

4893

4894 4895 4896 4897 4898
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4899
        x (Tensor): The input Tensor which hold the complex numbers.
4900
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4901
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4902 4903

    Returns:
C
Chen Long 已提交
4904
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4905 4906 4907 4908

    Examples:
        .. code-block:: python

4909
            >>> import paddle
4910

4911 4912 4913 4914 4915
            >>> data = paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
            >>> data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1+1j), (2+2j), (3+3j)],
             [(4+4j), (5+5j), (6+6j)]])
4916

4917 4918 4919 4920 4921
            >>> conj_data = paddle.conj(data)
            >>> conj_data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1-1j), (2-2j), (3-3j)],
             [(4-4j), (5-5j), (6-6j)]])
4922 4923

    """
4924
    if in_dynamic_mode():
4925
        return _C_ops.conj(x)
4926 4927 4928 4929
    else:
        check_variable_and_dtype(
            x,
            "x",
4930 4931 4932 4933
            [
                'complex64',
                'complex128',
                'float16',
4934
                'uint16',
4935 4936 4937 4938 4939
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4940 4941
            'conj',
        )
H
hong 已提交
4942

4943 4944 4945 4946
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4947

4948 4949
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4950

4951

Z
zyfncg 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4961
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4962 4963 4964 4965 4966 4967
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

4968
            >>> import paddle
Z
zyfncg 已提交
4969

4970 4971 4972 4973 4974 4975
            >>> data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            >>> res = paddle.digamma(data)
            >>> res
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.57721591,  0.03648996],
             [ nan       ,  5.32286835]])
Z
zyfncg 已提交
4976 4977
    """

4978
    if in_dynamic_mode():
4979
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4980
    else:
4981 4982 4983
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4984 4985 4986 4987
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4988

4989

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
@inplace_apis_in_dygraph_only
def digamma_(x, name=None):
    r"""
    Inplace version of ``digamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_digamma`.
    """
    if in_dynamic_mode():
        return _C_ops.digamma_(x)


5000 5001 5002 5003 5004 5005 5006 5007 5008
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
5009
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
5010 5011 5012 5013 5014 5015 5016 5017
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

5018
            >>> import paddle
5019

5020 5021 5022 5023 5024
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.lgamma(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.31452453, 1.76149762, 2.25271273, 1.09579790])
5025
    """
5026
    if in_dynamic_mode():
5027
        return _C_ops.lgamma(x)
5028
    else:
5029 5030 5031
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
5032 5033 5034 5035
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
5036 5037


5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
@inplace_apis_in_dygraph_only
def lgamma_(x, name=None):
    r"""
    Inplace version of ``lgamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_lgamma`.
    """
    if in_dynamic_mode():
        return _C_ops.lgamma_(x)


5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

5062
            >>> import paddle
5063

5064 5065 5066 5067 5068
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.neg(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.40000001,  0.20000000, -0.10000000, -0.30000001])
5069 5070
    """

5071 5072 5073
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
5074

R
ronnywang 已提交
5075

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
@inplace_apis_in_dygraph_only
def neg_(x, name=None):
    r"""
    Inplace version of ``neg`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_neg`.
    """
    return x.scale_(
        scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )


5087
def atan2(x, y, name=None):
R
ronnywang 已提交
5088
    r"""
5089
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
5090 5091 5092 5093

    Equation:
        .. math::

5094 5095 5096 5097 5098 5099 5100 5101
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
5102 5103

    Args:
5104 5105
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
5106 5107 5108 5109 5110 5111 5112 5113
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

5114
            >>> import paddle
R
ronnywang 已提交
5115

5116 5117 5118 5119
            >>> x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            >>> x
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  1,  1, -1])
R
ronnywang 已提交
5120

5121 5122 5123 5124
            >>> y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            >>> y
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  -1,  1, 1])
R
ronnywang 已提交
5125

5126 5127 5128 5129
            >>> out = paddle.atan2(x, y)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
5130 5131 5132

    """

5133
    if in_dynamic_mode():
5134
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
5135
    else:
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
5148

5149 5150 5151 5152 5153
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
5154

5155

W
wangzhen38 已提交
5156 5157 5158 5159 5160
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
5161

W
wangzhen38 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
5177
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
W
wangzhen38 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

5188
            >>> import paddle
W
wangzhen38 已提交
5189

5190 5191 5192 5193 5194
            >>> x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            >>> out1 = paddle.logit(x)
            >>> out1
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.02785587, -4.53624487, -0.95440406, -1.32673466,  1.44676447])
W
wangzhen38 已提交
5195 5196

    """
5197
    if eps is None:
W
wangzhen38 已提交
5198
        eps = 0.0
5199
    if in_dynamic_mode():
5200
        return _C_ops.logit(x, eps)
5201 5202
    else:
        check_variable_and_dtype(
5203
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
5214

5215

5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
@inplace_apis_in_dygraph_only
def logit_(x, eps=None, name=None):
    r"""
    Inplace version of ``logit`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_logit`.
    """
    if eps is None:
        eps = 0.0
    if in_dynamic_mode():
        return _C_ops.logit_(x, eps)


5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
5238 5239 5240
        x (Tensor): An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
5241 5242 5243 5244 5245 5246 5247 5248
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

5249
            >>> import paddle
5250

5251 5252 5253 5254 5255 5256 5257
            >>> x = paddle.arange(1., 5., dtype='float32')
            >>> y = paddle.empty([4], dtype='float32')
            >>> y.fill_(10.)
            >>> out = paddle.lerp(x, y, 0.5)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.50000000, 6.        , 6.50000000, 7.        ])
5258 5259

    """
5260 5261
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
5262

5263
    if in_dynamic_mode():
5264
        return _C_ops.lerp(x, y, weight)
5265 5266
    else:
        check_variable_and_dtype(
5267
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5268 5269
        )
        check_variable_and_dtype(
5270
            y, 'y', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5271 5272
        )
        check_variable_and_dtype(
5273 5274 5275 5276
            weight,
            'weight',
            ['uint16', 'float16', 'float32', 'float64'],
            'lerp',
5277
        )
5278

5279 5280 5281 5282 5283
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
5284

5285

5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
5299
        raise ValueError(
5300 5301 5302 5303
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
5304
    return _C_ops.lerp_(x, y, weight)
5305

5306

W
wuhuanzhou 已提交
5307 5308
def erfinv(x, name=None):
    r"""
5309
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
5310 5311 5312 5313 5314 5315

        .. math::

            erfinv(erf(x)) = x.

    Args:
5316
        x (Tensor): An N-D Tensor, the data type is float16, bfloat16, float32, float64.
W
wuhuanzhou 已提交
5317 5318 5319
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5320
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
5321 5322 5323 5324

    Example:
        .. code-block:: python

5325
            >>> import paddle
5326

5327 5328 5329 5330 5331
            >>> x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            >>> out = paddle.erfinv(x)
            >>> out
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.       , 0.47693631, -inf.     ])
W
wuhuanzhou 已提交
5332 5333

    """
5334
    if in_dynamic_mode():
5335
        return _C_ops.erfinv(x)
5336
    else:
5337 5338 5339
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'float16', 'uint16'], 'erfinv'
        )
5340 5341 5342 5343
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
5344

5345

W
wuhuanzhou 已提交
5346 5347 5348 5349 5350 5351 5352
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
5353
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
5354

5355

5356
def rad2deg(x, name=None):
5357
    r"""
5358
    Convert each of the elements of input x from angles in radians to degrees.
5359

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5375 5376
            >>> import paddle
            >>> import math
5377

5378 5379 5380 5381 5382 5383
            >>> x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            >>> result1 = paddle.rad2deg(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 180.02334595, -180.02334595,  359.98937988, -359.98937988,
              89.95437622 , -89.95437622 ])
5384

5385 5386 5387 5388 5389
            >>> x2 = paddle.to_tensor(math.pi/2)
            >>> result2 = paddle.rad2deg(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            90.)
5390

5391 5392 5393 5394 5395
            >>> x3 = paddle.to_tensor(1)
            >>> result3 = paddle.rad2deg(x3)
            >>> result3
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            57.29578018)
5396 5397
    """
    rad2deg_scale = 180 / np.pi
5398
    if in_dynamic_mode():
5399 5400
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5401
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
5402
    else:
5403 5404 5405
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
5406 5407 5408
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5409
            out_cast = helper.create_variable_for_type_inference(
5410 5411 5412 5413 5414 5415 5416 5417
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5418
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5419 5420 5421 5422 5423 5424
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
5425 5426
        return out

5427

5428
def deg2rad(x, name=None):
5429
    r"""
5430
    Convert each of the elements of input x from degrees to angles in radians.
5431

5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5446
            >>> import paddle
5447

5448 5449 5450 5451 5452 5453
            >>> x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            >>> result1 = paddle.deg2rad(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            -1.57079637])
5454

5455 5456 5457 5458 5459
            >>> x2 = paddle.to_tensor(180)
            >>> result2 = paddle.deg2rad(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.14159274)
5460 5461
    """
    deg2rad_scale = np.pi / 180.0
5462
    if in_dynamic_mode():
5463 5464
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5465
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
5466
    else:
5467 5468 5469
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
5470 5471 5472
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5473
            out_cast = helper.create_variable_for_type_inference(
5474 5475 5476 5477 5478 5479 5480 5481
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5482
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5483 5484 5485 5486 5487 5488
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
5489
        return out
A
andyjpaddle 已提交
5490

5491

T
Tao Luo 已提交
5492 5493 5494 5495
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
5496

T
Tao Luo 已提交
5497 5498 5499
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
5500 5501
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5502
    Args:
C
cyberslack_lee 已提交
5503 5504
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5505 5506 5507 5508 5509 5510 5511 5512
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5513
            >>> import paddle
5514

5515 5516 5517 5518 5519
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.gcd(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5520

5521 5522 5523 5524
            >>> x3 = paddle.arange(6)
            >>> paddle.gcd(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [20, 1 , 2 , 1 , 4 , 5])
T
Tao Luo 已提交
5525

5526 5527 5528 5529
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.gcd(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            20)
T
Tao Luo 已提交
5530

5531 5532 5533
            >>> paddle.gcd(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5534

5535 5536 5537 5538
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.gcd(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5539 5540 5541 5542 5543 5544 5545 5546
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
5547
        return paddle.any(y != 0)
T
Tao Luo 已提交
5548 5549 5550 5551 5552

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
5553
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
5554
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
5555 5556 5557 5558 5559 5560 5561 5562
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
5563 5564
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

5565
    if in_dynamic_mode():
T
Tao Luo 已提交
5566 5567 5568 5569 5570
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
5571 5572
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
5573 5574 5575
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

5576

5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
def gcd_(x, y, name=None):
    r"""
    Inplace version of ``gcd`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_gcd`.
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    if shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                shape, x.shape
            )
        )
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs_(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_equal_0 = y == 0
        y_safe = paddle.where(y_equal_0, paddle.ones(y.shape, y.dtype), y)
        y, x = (
            paddle.where(
                y_equal_0,
                paddle.zeros(y.shape, y.dtype),
                paddle.mod(x, y_safe),
            ),
            paddle.where_(y_equal_0, x, y),
        )
        return (
            paddle.where(x < y, x, y),
            paddle.where_(x >= y, x, y),
        )

    if in_dynamic_mode():
        while _gcd_cond_fn(x, y):
            y, x = _gcd_body_fn(x, y)

        return x


T
Tao Luo 已提交
5622 5623 5624 5625
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
5626

T
Tao Luo 已提交
5627 5628 5629
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
5630 5631
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5632
    Args:
C
cyberslack_lee 已提交
5633 5634
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5635 5636 5637 5638 5639 5640 5641 5642
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5643
            >>> import paddle
5644

5645 5646 5647 5648 5649
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.lcm(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5650

5651 5652 5653 5654
            >>> x3 = paddle.arange(6)
            >>> paddle.lcm(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 20, 20, 60, 20, 20])
T
Tao Luo 已提交
5655

5656 5657 5658 5659
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.lcm(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
T
Tao Luo 已提交
5660

5661 5662 5663
            >>> paddle.lcm(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5664

5665 5666 5667 5668
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.lcm(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5669 5670 5671 5672 5673 5674 5675
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
5676 5677 5678
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
5679 5680
    return out

5681

5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
def lcm_(x, y, name=None):
    r"""
    Inplace version of ``lcm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_lcm`.
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_not_equal_0 = d != 0
    d_safe = paddle.where(d_not_equal_0, d, paddle.ones(d.shape, d.dtype))
    out = paddle.where_(
        d_not_equal_0,
        paddle.abs_(x.multiply_(y)).floor_divide_(d_safe),
        paddle.zeros(d.shape, d.dtype),
    )
    return out


A
andyjpaddle 已提交
5701 5702 5703
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
5704
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
5705 5706 5707 5708

    .. math::

        out[i] = x[i+1] - x[i]
5709 5710

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
5711 5712 5713
    Only n=1 is currently supported.

    Args:
5714
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
5715
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
5716
                          Only support n=1. Default:1
5717 5718
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
5719
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5720
                                   and its shapes must match x's shape except on axis.
5721 5722
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5723
                                   and its shapes must match x's shape except on axis.
5724
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5725

A
andyjpaddle 已提交
5726 5727 5728 5729 5730 5731
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

5732
            >>> import paddle
5733

5734 5735 5736 5737 5738
            >>> x = paddle.to_tensor([1, 4, 5, 2])
            >>> out = paddle.diff(x)
            >>> out
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3])
A
andyjpaddle 已提交
5739

5740 5741 5742 5743 5744
            >>> y = paddle.to_tensor([7, 9])
            >>> out = paddle.diff(x, append=y)
            >>> out
            Tensor(shape=[5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3,  5,  2])
A
andyjpaddle 已提交
5745

5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
            >>> z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            >>> out = paddle.diff(z, axis=0)
            >>> out
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 3, 3]])
            >>> out = paddle.diff(z, axis=1)
            >>> out
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 1],
             [1, 1]])
A
andyjpaddle 已提交
5756
    """
5757 5758 5759 5760 5761
    if n < 1:
        raise ValueError(
            "Diff expects input to be at least one-dimensional but got {}".format(
                n
            )
5762
        )
5763

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
    def _diff_handler(x, n=1, axis=-1, prepend=None, append=None, name=None):
        if axis < 0:
            axis = axis + len(x.shape)
        if axis > len(x.shape):
            axis = len(x.shape)
        if axis < 0:
            axis = 0
        dtype = x.dtype
        axes = [axis]
        infer_flags = [1 for i in range(len(axes))]
        if in_dynamic_mode():
            has_pend = False
            input_list = []
            if prepend is not None and append is not None:
                input_list = [prepend, x, append]
                has_pend = True
            elif prepend is not None:
                input_list = [prepend, x]
                has_pend = True
            elif append is not None:
                input_list = [x, append]
                has_pend = True
            if has_pend:
                new_input = _C_ops.concat(input_list, axis)
            else:
                new_input = x

            attrs_1 = ()
            attrs_2 = ()

            dim_len = new_input.shape[axis]

            starts_1 = [0]
            attrs_1 += ('starts', starts_1)
            ends_1 = [dim_len - 1]
            attrs_1 += ('ends', ends_1)
            input_front = _C_ops.slice(
                new_input, axes, starts_1, ends_1, infer_flags, []
            )
            starts_2 = [1]
            attrs_2 += ('starts', starts_2)
            ends_2 = [dim_len]
            attrs_2 += ('ends', ends_2)
            input_back = _C_ops.slice(
                new_input, axes, starts_2, ends_2, infer_flags, []
            )

            if x.dtype == paddle.bool:
                return _C_ops.logical_xor(input_back, input_front)
            else:
                return _C_ops.subtract(input_back, input_front)
5815
        else:
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
            check_variable_and_dtype(
                x,
                'x',
                ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
                'diff',
            )
            check_type(axis, 'axis', (int), 'diff')
            helper = LayerHelper('diff', **locals())
            has_pend = False
            input_list = []
            if prepend is not None and append is not None:
                input_list = [prepend, x, append]
                has_pend = True
            elif prepend is not None:
                input_list = [prepend, x]
                has_pend = True
            elif append is not None:
                input_list = [x, append]
                has_pend = True

            if has_pend:
                new_input = helper.create_variable_for_type_inference(dtype)
                helper.append_op(
                    type='concat',
                    inputs={'X': input_list},
                    outputs={'Out': [new_input]},
                    attrs={'axis': axis},
                )
            else:
                new_input = x

            dim_len = new_input.shape[axis]
            attrs_1 = {'axes': axes}
            starts_1 = [0]
            ends_1 = [dim_len - 1]
            attrs_1['starts'] = starts_1
            attrs_1['ends'] = ends_1
            input_front = helper.create_variable_for_type_inference(dtype)
5854
            helper.append_op(
5855 5856 5857 5858
                type='slice',
                inputs={'Input': new_input},
                attrs=attrs_1,
                outputs={'Out': input_front},
5859
            )
5860 5861 5862 5863 5864 5865
            attrs_2 = {'axes': axes}
            starts_2 = [1]
            ends_2 = [dim_len]
            attrs_2['starts'] = starts_2
            attrs_2['ends'] = ends_2
            input_back = helper.create_variable_for_type_inference(dtype)
5866
            helper.append_op(
5867 5868 5869 5870
                type='slice',
                inputs={'Input': new_input},
                attrs=attrs_2,
                outputs={'Out': input_back},
5871
            )
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892

            if dtype == paddle.bool:
                out = helper.create_variable_for_type_inference(dtype)
                helper.append_op(
                    type='logical_xor',
                    inputs={"X": input_back, "Y": input_front},
                    outputs={"Out": out},
                )
            else:
                out = paddle.tensor.math.subtract(input_back, input_front)
            return out

    out = _diff_handler(
        x, n=1, axis=axis, prepend=prepend, append=append, name=name
    )
    if n > 1:
        for _ in range(n - 1):
            out = _diff_handler(
                out, n=1, axis=axis, prepend=prepend, append=append, name=name
            )
    return out
F
Feiyu Chan 已提交
5893

5894

F
Feiyu Chan 已提交
5895 5896
def angle(x, name=None):
    r"""
5897
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5910
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5911 5912 5913 5914

    Examples:
        .. code-block:: python

5915
            >>> import paddle
F
Feiyu Chan 已提交
5916

5917 5918 5919 5920 5921 5922 5923 5924 5925
            >>> x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            >>> y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            >>> z = x + 1j * y
            >>> z
            Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
             [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
             [-2j    , -1j    ,  0j    ,  1j    ],
             [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5926

5927 5928 5929 5930 5931 5932 5933
            >>> theta = paddle.angle(z)
            >>> theta
            Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
             [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
             [-1.57079637, -1.57079637,  0.        ,  1.57079637],
             [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5934 5935
    """

5936
    if in_dynamic_mode():
F
Feiyu Chan 已提交
5937
        return _C_ops.angle(x)
5938 5939
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
5961

5962

5963
def heaviside(x, y, name=None):
5964
    r"""
5965 5966 5967 5968 5969
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5970 5971 5972 5973
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5974
                \end{array}
5975
            \right.
5976

5977
    Note:
I
Infinity_lee 已提交
5978 5979 5980
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
5981 5982

    Args:
5983 5984
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5985 5986 5987 5988 5989 5990 5991 5992
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
            >>> import paddle
            >>> x = paddle.to_tensor([-0.5, 0, 0.5])
            >>> y = paddle.to_tensor([0.1])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.10000000, 1.        ])
            >>> x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            >>> y = paddle.to_tensor([0.1, 0.2, 0.3])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        , 0.20000000, 1.        ],
             [0.        , 1.        , 0.30000001]])
6005
    """
6006
    if in_dynamic_mode():
6007
        return _C_ops.heaviside(x, y)
6008
    else:
W
Weilong Wu 已提交
6009
        op_type = 'elementwise_heaviside'
6010
        return _elementwise_op(LayerHelper(op_type, **locals()))
6011

6012

6013 6014 6015 6016 6017 6018
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
6019
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
6020 6021 6022 6023 6024

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
6025
        .. code-block:: python
6026

6027
            >>> import paddle
6028

6029 6030 6031 6032 6033 6034 6035
            >>> input = paddle.to_tensor([[12.22000003, -1.02999997],
            ...                           [-0.54999995, 0.66000003]])
            >>> output = paddle.frac(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.22000003, -0.02999997],
             [-0.54999995,  0.66000003]])
6036
    """
6037
    if x.dtype not in [
6038 6039 6040 6041
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
6042
    ]:
6043
        raise TypeError(
6044 6045 6046 6047
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
6048
    if in_dynamic_mode():
6049 6050
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
6051
    else:
6052 6053
        inputs = {"X": x}
        attrs = {}
6054

6055 6056 6057 6058 6059 6060 6061 6062
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
6063
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
6064

6065

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
@inplace_apis_in_dygraph_only
def frac_(x, name=None):
    r"""
    Inplace version of ``frac`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_frac`.
    """

    if x.dtype not in [
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
    ]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
    if in_dynamic_mode():
        y = _C_ops.trunc(x)
        return _C_ops.subtract_(x, y)


6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
6104
        .. code-block:: python
6105

6106
            >>> import paddle
6107

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
            >>> x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            >>> paddle.sgn(x)
            Tensor(shape=[2, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[ (0.6000000238418579+0.800000011920929j),
              (0.2800000011920929-0.9599999785423279j),
               0j                                     ,
              (0.4472135901451111+0.8944271802902222j)],
             [ (0.6000000238418579+0.800000011920929j),
               (1+0j)                                 ,
               0j                                     ,
              (-1+0j)                                 ]])
6119 6120

    """
6121
    if x.dtype not in [
6122 6123 6124 6125 6126
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
6127
    ]:
6128
        raise TypeError(
6129 6130 6131 6132
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
6144

6145

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

6169
            >>> import paddle
6170

6171 6172
            >>> x_int = paddle.arange(0, 12).reshape([3, 4])
            >>> x_float = x_int.astype(paddle.float64)
6173

6174 6175 6176
            >>> idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            >>> idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            >>> idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range
6177

6178 6179 6180 6181
            >>> paddle.take(x_int, idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
6182

6183 6184 6185 6186
            >>> paddle.take(x_int, idx_neg)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 ],
             [1 , 2 , 3 ]])
6187

6188 6189 6190 6191
            >>> paddle.take(x_float, idx_pos)
            Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[4., 5., 6.],
             [7., 8., 9.]])
6192

6193 6194 6195 6196
            >>> x_int.take(idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
6197

6198 6199 6200 6201 6202
            >>> paddle.take(x_int, idx_err, mode='wrap')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 0 ]])
6203

6204 6205 6206 6207 6208
            >>> paddle.take(x_int, idx_err, mode='clip')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 0 , 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 11]])
6209 6210 6211 6212

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
6213 6214 6215 6216
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
6217

6218
    if in_dynamic_mode():
6219 6220
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
6221
                "The type of 'index' must be Tensor, but got {}".format(
6222 6223 6224
                    type(index)
                )
            )
6225 6226
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
6227 6228 6229 6230
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
6244
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
6245 6246 6247
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
6248 6249 6250 6251 6252 6253 6254
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
6255 6256 6257 6258 6259 6260 6261 6262 6263


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
6264

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

6276
            >>> import paddle
6277

6278 6279 6280 6281 6282 6283 6284 6285
            >>> x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            >>> mantissa, exponent = paddle.tensor.math.frexp(x)
            >>> mantissa
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.50000000, 0.75000000, 0.50000000]])
            >>> exponent
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 2., 2., 3.]])
6286
    """
6287 6288
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
6289 6290 6291 6292
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
6293 6294
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
6295 6296 6297
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
6298 6299 6300 6301

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
6312 6313 6314

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
6357
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

6403
            >>> import paddle
6404

6405
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6406

6407 6408 6409
            >>> paddle.trapezoid(y)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6410

6411 6412 6413
            >>> paddle.trapezoid(y, dx=2.)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            20.)
6414

6415 6416
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6417

6418 6419 6420
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6421

6422 6423
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6424

6425 6426 6427 6428
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            -8.)
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6429

6430 6431 6432 6433 6434 6435
            >>> paddle.trapezoid(y, axis=0)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.50000000, 2.50000000, 3.50000000])
            >>> paddle.trapezoid(y, axis=1)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 8.])
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

6460
            >>> import paddle
6461

6462
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6463

6464 6465 6466
            >>> paddle.cumulative_trapezoid(y)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6467

6468 6469 6470
            >>> paddle.cumulative_trapezoid(y, dx=2.)
            >>> # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            >>> #        [9. , 20.])
6471

6472 6473
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6474

6475 6476 6477
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6478

6479 6480
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6481

6482 6483 6484
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-3., -8.])
6485

6486
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6487

6488 6489 6490 6491 6492 6493 6494
            >>> paddle.cumulative_trapezoid(y, axis=0)
            Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.50000000, 2.50000000, 3.50000000]])
            >>> paddle.cumulative_trapezoid(y, axis=1)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 2.        ],
             [3.50000000, 8.        ]])
6495 6496
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
            >>> import paddle
            >>> x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            >>> out = paddle.vander(x)
            >>> out
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [4., 2., 1.],
             [9., 3., 1.]])
            >>> out1 = paddle.vander(x,2)
            >>> out1
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1.],
             [2., 1.],
             [3., 1.]])
            >>> out2 = paddle.vander(x, increasing = True)
            >>> out2
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [1., 2., 4.],
             [1., 3., 9.]])
            >>> real = paddle.to_tensor([2., 4.])
            >>> imag = paddle.to_tensor([1., 3.])
            >>> complex = paddle.complex(real, imag)
            >>> out3 = paddle.vander(complex)
            >>> out3
            Tensor(shape=[2, 2], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(2+1j), (1+0j)],
             [(4+3j), (1+0j)]])
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
    if paddle.in_dynamic_mode():
        if n > 0:
            res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
        if n > 1:
            res[:, 1:] = x[:, None]
            res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    else:
        if n > 0:
            res = paddle.static.setitem(
                res, (slice(None), 0), paddle.to_tensor([1], dtype=x.dtype)
            )
        if n > 1:
            res = paddle.static.setitem(
                res, (slice(None), slice(1, None)), x[:, None]
            )
            res = paddle.static.setitem(
                res,
                (slice(None), slice(1, None)),
                paddle.cumprod(res[:, 1:], dim=-1),
            )
6590 6591
    res = res[:, ::-1] if not increasing else res
    return res
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6610 6611 6612 6613 6614
            >>> import paddle
            >>> out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            >>> out
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00000012, 1.99999988])
6615
    """
6616
    if in_dynamic_mode():
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6649
            >>> import paddle
6650

6651 6652 6653 6654
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> paddle.i0(x)
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089])
6655
    """
6656
    if in_dynamic_mode():
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
@inplace_apis_in_dygraph_only
def i0_(x, name=None):
    r"""
    Inplace version of ``i0`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_i0`.
    """

    if in_dynamic_mode():
        return _C_ops.i0_(x)


6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6698
            >>> import paddle
6699

6700 6701 6702 6703
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i0e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994, 0.46575963, 0.30850831, 0.24300036, 0.20700191])
6704
    """
6705
    if in_dynamic_mode():
6706 6707 6708 6709 6710 6711 6712 6713
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6730
            >>> import paddle
6731

6732 6733 6734 6735
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.56515908, 1.59063685, 3.95337057, 9.75946712])
6736
    """
6737
    if in_dynamic_mode():
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6765
            >>> import paddle
6766

6767 6768 6769 6770
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.20791042, 0.21526928, 0.19682673, 0.17875087])
6771
    """
6772
    if in_dynamic_mode():
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6805
            >>> import paddle
6806

6807 6808 6809 6810 6811
            >>> data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            >>> res = paddle.polygamma(data, 1)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.64493412,  0.39493406,  0.03999467])
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
6841 6842


6843
@inplace_apis_in_dygraph_only
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
def polygamma_(x, n, name=None):
    r"""
    Inplace version of ``polygamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_polygamma`.
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma_(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma_(x, n)


6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
        .. code-block:: python

            >>> import paddle

            >>> # example1
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2, 3, 4], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 16., 48.])

            >>> # example2
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 8. , 12.])
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933


def ldexp_(x, y, name=None):
    r"""
    Inplace version of ``polygamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_polygamma`.
    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast_(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply_(x, paddle.pow(two, y))