Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9b14117c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9b14117c
编写于
8月 23, 2020
作者:
Z
zhupengyang
提交者:
GitHub
8月 23, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
logsumexp: impl kernel, refine docs (#26307)
上级
5c2b9258
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
310 addition
and
93 deletion
+310
-93
paddle/fluid/operators/reduce_ops/logsumexp_op.cc
paddle/fluid/operators/reduce_ops/logsumexp_op.cc
+63
-0
paddle/fluid/operators/reduce_ops/logsumexp_op.cu
paddle/fluid/operators/reduce_ops/logsumexp_op.cu
+27
-0
paddle/fluid/operators/reduce_ops/logsumexp_op.h
paddle/fluid/operators/reduce_ops/logsumexp_op.h
+58
-0
python/paddle/fluid/tests/unittests/test_logsumexp.py
python/paddle/fluid/tests/unittests/test_logsumexp.py
+115
-51
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+47
-42
未找到文件。
paddle/fluid/operators/reduce_ops/logsumexp_op.cc
0 → 100644
浏览文件 @
9b14117c
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/logsumexp_op.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace
paddle
{
namespace
operators
{
class
LogsumexpOpMaker
:
public
ops
::
ReduceOpMaker
{
protected:
virtual
std
::
string
GetName
()
const
{
return
"logsumexp"
;
}
virtual
std
::
string
GetOpType
()
const
{
return
"Reduce logsumexp"
;
}
};
template
<
typename
T
>
class
LogsumexpGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"logsumexp_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"Out"
,
this
->
Output
(
"Out"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetAttrMap
(
this
->
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OPERATOR
(
logsumexp
,
ops
::
ReduceOp
,
ops
::
LogsumexpOpMaker
,
ops
::
LogsumexpGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
LogsumexpGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
logsumexp_grad
,
ops
::
ReduceGradOp
);
REGISTER_OP_CPU_KERNEL
(
logsumexp
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
ops
::
LogsumexpFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
LogsumexpFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
logsumexp_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
,
ops
::
LogsumexpGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
,
ops
::
LogsumexpGradFunctor
>
);
paddle/fluid/operators/reduce_ops/logsumexp_op.cu
0 → 100644
浏览文件 @
9b14117c
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#include "paddle/fluid/operators/reduce_ops/logsumexp_op.h"
REGISTER_OP_CUDA_KERNEL
(
logsumexp
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
LogsumexpFunctor
>
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
LogsumexpFunctor
>
);
REGISTER_OP_CUDA_KERNEL
(
logsumexp_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
,
ops
::
LogsumexpGradFunctor
>
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
,
ops
::
LogsumexpGradFunctor
>
);
paddle/fluid/operators/reduce_ops/logsumexp_op.h
0 → 100644
浏览文件 @
9b14117c
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
namespace
paddle
{
namespace
operators
{
struct
LogsumexpFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
const
Dim
&
dim
)
{
auto
x_dim
=
x
->
dimensions
();
auto
t_dim
=
x_dim
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
dim
.
size
());
i
++
)
{
t_dim
[
dim
[
i
]]
=
1
;
}
auto
r_dim
=
x_dim
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
r_dim
.
size
());
i
++
)
{
r_dim
[
i
]
=
1
;
}
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
dim
.
size
());
i
++
)
{
r_dim
[
dim
[
i
]]
=
x_dim
[
dim
[
i
]];
}
auto
y_dim
=
y
->
dimensions
();
auto
x_max
=
x
->
maximum
(
dim
);
y
->
device
(
place
)
=
(
x_max
+
(
*
x
-
x_max
.
reshape
(
t_dim
).
broadcast
(
r_dim
)).
exp
().
sum
(
dim
).
log
())
.
reshape
(
y_dim
);
}
};
struct
LogsumexpGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
(
*
x
-
y
->
broadcast
(
dim
)).
exp
();
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_logsumexp.py
浏览文件 @
9b14117c
...
...
@@ -12,64 +12,128 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
Program
,
program_guard
from
paddle.fluid.layer_helper
import
LayerHelper
class
TestLogSumOpError
(
unittest
.
TestCase
):
def
ref_logsumexp
(
x
,
axis
=
None
,
keepdim
=
False
,
reduce_all
=
False
):
if
isinstance
(
axis
,
int
):
axis
=
(
axis
,
)
elif
isinstance
(
axis
,
list
):
axis
=
tuple
(
axis
)
if
reduce_all
:
axis
=
None
out
=
np
.
log
(
np
.
exp
(
x
).
sum
(
axis
=
axis
,
keepdims
=
keepdim
))
return
out
class
TestLogsumexp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'logsumexp'
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
dtype
=
'float64'
self
.
axis
=
[
-
1
]
self
.
keepdim
=
False
self
.
reduce_all
=
False
self
.
set_attrs
()
np
.
random
.
seed
(
10
)
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
out
=
ref_logsumexp
(
x
,
self
.
axis
,
self
.
keepdim
,
self
.
reduce_all
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'dim'
:
self
.
axis
,
'keep_dim'
:
self
.
keepdim
,
'reduce_all'
:
self
.
reduce_all
}
def
set_attrs
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
[
'Out'
])
class
TestLogsumexp_shape
(
TestLogsumexp
):
def
set_attrs
(
self
):
self
.
shape
=
[
4
,
5
,
6
]
class
TestLogsumexp_axis
(
TestLogsumexp
):
def
set_attrs
(
self
):
self
.
axis
=
[
0
,
-
1
]
class
TestLogsumexp_axis_all
(
TestLogsumexp
):
def
set_attrs
(
self
):
self
.
axis
=
[
0
,
1
,
2
,
3
]
class
TestLogsumexp_keepdim
(
TestLogsumexp
):
def
set_attrs
(
self
):
self
.
keepdim
=
True
class
TestLogsumexp_reduce_all
(
TestLogsumexp
):
def
set_attrs
(
self
):
self
.
reduce_all
=
True
class
TestLogsumexpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
p
rogram_guard
(
Program
(),
Program
()):
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
120
],
dtype
=
"uint8
"
)
self
.
assertRaises
(
Exception
,
paddle
.
logsumexp
,
x1
)
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
2
,
3
],
dtype
=
"int"
)
self
.
assertRaises
(
Exception
,
paddle
.
logsumexp
,
x2
)
x3
=
fluid
.
layers
.
data
(
name
=
'x3'
,
shape
=
[
3
],
dtype
=
"float16"
)
self
.
assertRaises
(
Exception
,
paddle
.
logsumexp
,
x3
)
self
.
assertRaises
(
AssertionError
,
paddle
.
logsumexp
,
None
)
class
TestLogSumExpOp
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
with
fluid
.
dygraph
.
guard
():
np_x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
123
]).
astype
(
np
.
float32
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
self
.
assertTrue
(
np
.
allclose
(
paddle
.
logsumexp
(
x
).
numpy
(),
np
.
log
(
np
.
sum
(
np
.
exp
(
np_x
)))))
np_x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
]).
astype
(
np
.
float32
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
self
.
assertTrue
(
np
.
allclose
(
paddle
.
logsumexp
(
x
,
dim
=
[
1
,
2
]).
numpy
(),
np
.
log
(
np
.
sum
(
np
.
exp
(
np_x
),
axis
=
(
1
,
2
))))
)
np_x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
]).
astype
(
np
.
float32
)
x
=
fluid
.
dygraph
.
to_variable
(
np_x
)
self
.
assertTrue
(
np
.
allclose
(
paddle
.
logsumexp
(
x
,
dim
=
[
2
]).
numpy
(),
np
.
log
(
np
.
sum
(
np
.
exp
(
np_x
),
axis
=
(
2
))))
)
np_x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
]).
astype
(
np
.
float32
)
x
=
fluid
.
dygraph
.
to_variable
(
np_
x
)
self
.
assertTrue
(
np
.
allclose
(
paddle
.
logsumexp
(
x
,
keepdim
=
True
).
numpy
(),
np
.
log
(
np
.
sum
(
np
.
exp
(
np_x
),
keepdims
=
True
)))
)
with
p
addle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
self
.
assertRaises
(
TypeError
,
paddle
.
logsumexp
,
1
)
x1
=
paddle
.
data
(
name
=
'x1'
,
shape
=
[
120
],
dtype
=
"int32
"
)
self
.
assertRaises
(
TypeError
,
paddle
.
logsumexp
,
x1
)
class
TestLogsumexpAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
np
.
float32
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
(
)
def
api_case
(
self
,
axis
=
None
,
keepdim
=
False
):
out_ref
=
ref_logsumexp
(
self
.
x
,
axis
,
keepdim
)
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()
):
x
=
paddle
.
data
(
'X'
,
self
.
shape
)
out
=
paddle
.
logsumexp
(
x
,
axis
,
keepdim
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x
},
fetch_list
=
[
out
])
self
.
assertTrue
(
np
.
allclose
(
res
[
0
],
out_ref
))
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_variable
(
self
.
x
)
out
=
paddle
.
logsumexp
(
x
,
axis
,
keepdim
)
self
.
assertTrue
(
np
.
allclose
(
out
.
numpy
(),
out_ref
))
paddle
.
enable_static
()
def
test_api
(
self
):
self
.
api_case
(
)
self
.
api_case
(
2
)
self
.
api_case
([
-
1
]
)
self
.
api_case
([
2
,
-
3
]
)
self
.
api_case
((
0
,
1
,
-
1
))
self
.
api_case
(
keepdim
=
True
)
def
test_alias
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_variable
(
self
.
x
)
out1
=
paddle
.
logsumexp
(
x
)
out2
=
paddle
.
tensor
.
logsumexp
(
x
)
out3
=
paddle
.
tensor
.
math
.
logsumexp
(
x
)
out_ref
=
ref_logsumexp
(
self
.
x
)
for
out
in
[
out1
,
out2
,
out3
]:
self
.
assertTrue
(
np
.
allclose
(
out
.
numpy
(),
out_ref
))
paddle
.
enable_static
(
)
if
__name__
==
'__main__'
:
...
...
python/paddle/tensor/math.py
浏览文件 @
9b14117c
...
...
@@ -82,6 +82,7 @@ __all__ = [
'floor'
,
'increment'
,
'log'
,
'logsumexp'
,
'mul'
,
'multiplex'
,
'prod'
,
...
...
@@ -964,69 +965,73 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
return
out
def
logsumexp
(
x
,
dim
=
None
,
keepdim
=
False
,
name
=
None
):
def
logsumexp
(
x
,
axis
=
None
,
keepdim
=
False
,
name
=
None
):
"""
:alias_main: paddle.logsumexp
:alias: paddle.logsumexp,paddle.tensor.logsumexp,paddle.tensor.math.logsumexp
This operator calculates the log of the sum of exponentials of the input Tensor.
This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
.. math::
logsumexp(x) = \log\sum exp(x)
Parameters:
x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
dim (list|int, optional): The dimensions along which the sum is performed. If :attr:`None`,
sum all elements of :attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor.
The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim`
is true, default value is False.
name (str, optional): The default value is None. Normally there is no need for user to
set this property. For more information, please refer to :ref:`api_guide_Name`
Args:
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
logsumexp calculations. ``axis`` should be int, list(int) or
tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
is calculated along all element(s) of ``axis`` . ``axis`` or
element(s) of ``axis`` should be in range [-D, D), where D is the
dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
less than 0, it works the same way as :math:`axis + D` . If
``axis`` is None, logsumexp is calculated along all elements of
``x``. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keep_dim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: The calcuated result Tensor/LoDTensor.
Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
type as ``x``.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
with fluid.dygraph.guard():
np_x = np.random.uniform(0.1, 1, [10]).astype(np.float32)
x = fluid.dygraph.to_variable(np_x)
print(paddle.logsumexp(x).numpy())
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
paddle.disable_static()
with fluid.dygraph.guard():
np_x = np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float32)
x = fluid.dygraph.to_variable(np_x)
print(paddle.logsumexp(x, dim=1).numpy())
print(paddle.logsumexp(x, dim=[0, 2]).numpy())
x = np.array([[-1.5, 0., 2.], [3., 1.2, -2.4]])
x = paddle.to_tensor(x)
out1 = paddle.logsumexp(x) # [3.4691226]
out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
"""
op_type
=
'logsumexp'
assert
x
is
not
None
,
'x cannot be None in {}'
.
format
(
op_type
)
# reduce_sum does not support float16
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
op_type
)
if
isinstance
(
axis
,
int
):
axis
=
[
axis
]
reduce_all
=
True
if
axis
is
None
\
or
len
(
axis
)
==
0
\
or
len
(
axis
)
==
len
(
x
.
shape
)
else
False
if
axis
is
None
or
len
(
axis
)
==
0
:
axis
=
[
0
]
exp_out
=
layers
.
exp
(
x
)
sum_out
=
layers
.
reduce_sum
(
exp_out
,
dim
,
keepdim
)
if
in_dygraph_mode
():
return
core
.
ops
.
logsumexp
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
return
layers
.
log
(
sum_out
,
name
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'logsumexp'
)
helper
=
LayerHelper
(
'logsumexp'
,
**
locals
())
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
}
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'logsumexp'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
attrs
)
return
out
def
inverse
(
x
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录