math.py 196.2 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36
from ..framework import (
    LayerHelper,
37
    _dygraph_tracer,
38 39 40 41 42 43 44
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45 46
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
47
from .ops import acosh  # noqa: F401
48
from .ops import asin  # noqa: F401
49 50 51
from .ops import asinh  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import atanh  # noqa: F401
52 53 54 55
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import cosh  # noqa: F401
56
from .ops import erf  # noqa: F401
57 58 59 60 61 62 63 64 65 66 67
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
68 69
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
70 71
from .ops import sin  # noqa: F401
from .ops import sinh  # noqa: F401
72 73
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
74 75
from .ops import square  # noqa: F401
from .ops import tan  # noqa: F401
76

77 78
__all__ = []

79 80 81 82 83 84 85 86 87 88 89 90 91
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
126 127
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
128 129 130
    return reduce_all, axis


131 132
def log(x, name=None):
    r"""
C
Chen Long 已提交
133
    Calculates the natural log of the given input Tensor, element-wise.
134 135 136

    .. math::

137
        Out = \ln(x)
138 139

    Args:
140
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
160
    else:
161
        check_variable_and_dtype(
162
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], "log"
163
        )
164 165 166 167 168 169
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
189 190 191 192 193 194
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
195 196

    Returns:
C
Chen Long 已提交
197
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
198 199 200

    Examples:
        .. code-block:: python
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
Weilong Wu 已提交
220 221
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
222 223
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
224 225
    else:
        check_variable_and_dtype(
226
            x,
227 228 229 230 231 232 233 234 235 236 237 238 239
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
240
        )
241 242 243 244 245 246 247 248 249 250 251
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
252

253 254 255 256
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
257 258 259


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
260 261
    r"""

262 263 264 265
    stanh activation.

    .. math::

266
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
267 268 269 270 271

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
272
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
273 274 275 276 277 278 279 280 281 282 283 284 285 286

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

287
    if in_dygraph_mode():
Z
zyfncg 已提交
288
        return _C_ops.stanh(x, scale_a, scale_b)
289 290
    else:
        check_variable_and_dtype(
291
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
292
        )
293

294 295 296 297 298 299 300 301 302
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
303

304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
336
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
337

338 339 340 341 342 343 344 345
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
346

347 348 349 350
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
351
            res = paddle.multiplex(inputs, index)
352
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
353 354

    """
355 356
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
357 358
    else:
        helper = LayerHelper('multiplex', **locals())
359

360 361 362 363 364 365 366 367 368 369 370 371
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
372
        check_variable_and_dtype(
373
            index, "index", ['int32', 'int64'], 'multiplex'
374
        )
375

376 377 378 379 380 381 382
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
383

384

385 386 387 388 389 390
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
391
    if in_dygraph_mode():
392
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
393 394


395
def pow(x, y, name=None):
396
    """
C
Chen Long 已提交
397
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
398

399
    .. math::
400
        out = x^{y}
401

402
    Note:
I
Infinity_lee 已提交
403 404 405
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
406 407


408
    Args:
409
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
410
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
411
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
412

413
    Returns:
414
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
415 416 417

    Examples:

418
        ..  code-block:: python
419 420 421

            import paddle

422 423 424 425 426 427 428 429 430 431 432 433
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

434
            # example 2: y is a Tensor
435
            y = paddle.to_tensor([2], dtype='float32')
436
            res = paddle.pow(x, y)
437 438 439
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
440 441

    """
442
    # in dynamic graph mode
443
    if in_dygraph_mode():
444
        if isinstance(y, (int, float)):
445
            return _C_ops.pow(x, y)
446
        elif isinstance(y, (paddle.Tensor, Variable)):
447
            return _C_ops.elementwise_pow(x, y)
448
        else:
449
            raise TypeError(
450 451
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
452 453
    else:
        # in static graph mode
454
        if isinstance(y, (int, float)):
455 456 457 458 459 460
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
461
            )
462 463 464 465 466 467
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
468
        else:
469
            raise TypeError(
470
                'y must be scalar or tensor type, but received: %s ' % (type(y))
471
            )
472 473


474
OP_NAMEMAPPING = {
475 476 477 478 479 480 481 482
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
483
    'elementwise_mod': 'remainder',
484
}
485

486

487 488 489 490 491 492
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

493 494
    out = helper.kwargs.get('out', None)

495 496
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
516 517 518 519 520 521 522 523 524
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
525
    check_variable_and_dtype(
526 527
        x,
        'x',
528
        data_type,
529 530
        original_op_type,
    )
531
    check_variable_and_dtype(
532 533
        y,
        'y',
534
        data_type,
535 536
        original_op_type,
    )
537 538 539 540

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
541 542 543 544 545

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
546 547 548 549 550 551 552 553 554 555
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
556 557 558
    return helper.append_activation(out)


Y
Yang Zhang 已提交
559
def add(x, y, name=None):
560
    """
561 562 563 564 565 566 567 568
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

569 570
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
571 572

    There are two cases for this operator:
573 574 575 576

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

577
    For case 2:
578 579

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
580
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
581
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
582 583 584 585

        For example:

        ..  code-block:: python
586

587 588 589 590 591 592
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
593

594
    Args:
595 596 597
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
598 599

    Returns:
H
HongyuJia 已提交
600
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
601 602 603 604

    Examples:

        ..  code-block:: python
605

606
            import paddle
607

608 609 610 611
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
612
    """
613

J
Jiabin Yang 已提交
614
    if in_dygraph_mode():
615
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
616
    else:
617
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
618 619


620 621 622 623 624 625 626 627 628
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
629
        raise ValueError(
630 631 632 633
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
634

635
    return _C_ops.add_(x, y)
636 637


638 639
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
640
    Substract two tensors element-wise. The equation is:
641 642 643 644

    .. math::
        out = x - y

645
    Note:
I
Infinity_lee 已提交
646 647 648
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
649 650 651 652 653 654 655 656 657 658 659 660

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
661

662 663 664 665 666 667
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
668 669 670
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
671 672 673 674 675

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
676 677 678
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
679

680 681
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
682 683
            res = paddle.subtract(x, y)
            print(res)
684 685
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
686

687
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
688 689 690
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
691 692
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
693
    """
J
Jiabin Yang 已提交
694
    if in_dygraph_mode():
695
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
696
    else:
697
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
698 699


700 701 702 703 704 705 706 707 708
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
709
        raise ValueError(
710 711 712 713
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
714

715
    return _C_ops.subtract_(x, y)
716 717


718
def divide(x, y, name=None):
719
    """
720
    Divide two tensors element-wise. The equation is:
721

722 723
    .. math::
        out = x / y
724

725
    Note:
I
Infinity_lee 已提交
726 727 728
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
729

730 731 732 733
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
734

735
    Returns:
736
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
737

738
    Examples:
739

740
        ..  code-block:: python
741

742
            import paddle
743

744 745
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
746
            z = paddle.divide(x, y)
747
            print(z)  # [2., 0.6, 2.]
748

749
    """
J
Jiabin Yang 已提交
750
    if in_dygraph_mode():
751
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
752
    else:
753
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
754 755


756 757
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
758
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
759

760
    .. math::
L
Lin Manhui 已提交
761
        out = trunc(x / y)
762

H
hg-1099255210 已提交
763 764 765
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

766
    Note:
I
Infinity_lee 已提交
767 768 769 770
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
771
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
772

773 774 775 776
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
777

778 779
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
780

781
    Examples:
782

783
        ..  code-block:: python
784

785
            import paddle
786

787 788
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
789
            z = paddle.floor_divide(x, y)
790
            print(z)  # [2, 0, 2, 2]
791

792
    """
793 794
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
795
    else:
796
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
797 798


799
def remainder(x, y, name=None):
800
    r"""
801 802 803
    Mod two tensors element-wise. The equation is:

    .. math::
804

805 806
        out = x \% y

807
    Note:
I
Infinity_lee 已提交
808 809 810
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
811 812

    Args:
813 814
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
815 816 817
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
818
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
819 820 821 822 823 824 825

    Examples:

        ..  code-block:: python

            import paddle

826 827
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
828
            z = paddle.remainder(x, y)
W
WangXi 已提交
829
            print(z)  # [0, 3, 2, 1]
830 831

    """
832 833
    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
834
    else:
835
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
836 837


838 839 840 841 842 843 844 845 846
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
847 848 849 850
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
851
    return _C_ops.remainder_(x, y)
852 853


854 855
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
856 857


858
def multiply(x, y, name=None):
859
    """
860
    multiply two tensors element-wise. The equation is:
861

862 863
    .. math::
        out = x * y
864

865
    Note:
I
Infinity_lee 已提交
866 867 868
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
869

870
    Args:
W
will-jl944 已提交
871 872
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
873
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
874

875
    Returns:
876
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
877

878 879 880 881 882 883
    Examples:

        ..  code-block:: python

            import paddle

884 885
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
886
            res = paddle.multiply(x, y)
887
            print(res) # [[5, 12], [21, 32]]
888

889
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
890 891 892
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
893 894

    """
J
Jiabin Yang 已提交
895
    if in_dygraph_mode():
896
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
897
    else:
898 899 900 901
        if x.dtype != y.dtype:
            raise TypeError(
                'Input tensors must be same type, but received type of x: %s, type of y: %s '
                % (x.dtype, y.dtype)
902
            )
903

904
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
905

906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
        in_dygraph_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dygraph_mode"
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
960
        return _elementwise_op(LayerHelper(op_type, **locals()))
961 962 963 964 965 966 967 968 969 970


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
971
        return _elementwise_op(LayerHelper(op_type, **locals()))
972 973 974 975 976 977 978 979 980 981


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
982
        return _elementwise_op(LayerHelper(op_type, **locals()))
983 984 985 986 987 988 989 990


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
991
        return _elementwise_op(LayerHelper(op_type, **locals()))
992 993


994
def maximum(x, y, name=None):
995
    """
W
Wei Shengyu 已提交
996
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
997

998 999
    .. math::
        out = max(x, y)
1000

1001
    Note:
I
Infinity_lee 已提交
1002 1003 1004
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1024 1025 1026
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1027 1028 1029 1030 1031

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1032 1033 1034
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1035 1036

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1037
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1038 1039
            res = paddle.maximum(x, y)
            print(res)
1040 1041
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1042

1043 1044
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1045 1046
            res = paddle.maximum(x, y)
            print(res)
1047 1048
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1049
    """
1050 1051
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
1052
    else:
1053
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1054

1055

1056
def minimum(x, y, name=None):
1057
    """
C
Chen Long 已提交
1058
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1059

1060 1061
    .. math::
        out = min(x, y)
1062

1063
    Note:
I
Infinity_lee 已提交
1064 1065 1066
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1067 1068 1069 1070 1071 1072 1073

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1074
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1086 1087 1088
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1089 1090 1091 1092 1093

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1094 1095 1096
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1097 1098

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1099
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1100 1101
            res = paddle.minimum(x, y)
            print(res)
1102 1103
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1104

1105 1106
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1107 1108
            res = paddle.minimum(x, y)
            print(res)
1109 1110
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1111
    """
1112 1113
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
1114
    else:
1115
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1116

1117

L
LJQ❤️ 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1127
    Note:
I
Infinity_lee 已提交
1128 1129 1130
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1131 1132

    Args:
1133 1134
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1150 1151 1152
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1153 1154 1155 1156 1157

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1158 1159 1160
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1161 1162

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1163
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1164 1165
            res = paddle.fmax(x, y)
            print(res)
1166 1167
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1168

1169 1170
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1171 1172
            res = paddle.fmax(x, y)
            print(res)
1173 1174
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1175
    """
1176
    if in_dygraph_mode():
1177
        return _C_ops.fmax(x, y)
1178
    else:
1179
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1180

1181

L
LJQ❤️ 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1191
    Note:
I
Infinity_lee 已提交
1192 1193 1194
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1195 1196

    Args:
1197 1198
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1214 1215 1216
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1217 1218 1219 1220 1221

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1222 1223 1224
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1225 1226

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1227
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1228 1229
            res = paddle.fmin(x, y)
            print(res)
1230 1231
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1232

1233 1234
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1235 1236
            res = paddle.fmin(x, y)
            print(res)
1237 1238
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1239
    """
1240
    if in_dygraph_mode():
1241
        return _C_ops.fmin(x, y)
1242
    else:
1243
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1244

Y
Yang Zhang 已提交
1245

1246
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1247 1248 1249 1250
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1251
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1252 1253
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1254
            Tensor with a single element, otherwise must be in the
1255 1256 1257 1258 1259 1260 1261
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1262
            value is False.
1263
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1264 1265

    Returns:
1266
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1267
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1268
        otherwise it's data type is the same as `x`.
1269 1270 1271 1272 1273

    Examples:
        .. code-block:: python

            import paddle
1274

1275
            # x is a Tensor with following elements:
1276 1277 1278
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1279 1280
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1281
            out1 = paddle.sum(x)  # [3.5]
1282 1283 1284
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1285

1286
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1287 1288 1289
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1290
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1291
                                  [[5, 6], [7, 8]]])
1292 1293
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1304
    """
1305

1306 1307 1308 1309
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1310 1311

    if in_dygraph_mode():
1312
        return _C_ops.sum(x, axis, dtype, keepdim)
1313 1314 1315
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1316

1317
        if dtype_flag:
1318
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1319

1320 1321 1322 1323 1324
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1325
                'uint16',
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1337

1338 1339 1340
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1354

1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1404 1405 1406 1407 1408
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1409
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1421
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1435 1436
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
W
wangguanqun 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1446
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1447 1448 1449 1450
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1451
    check_variable_and_dtype(
1452
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1453
    )
W
wangguanqun 已提交
1454 1455 1456 1457 1458 1459 1460
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1518 1519 1520
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1521 1522 1523
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1524 1525 1526
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1527 1528
        cnt.astype(x.dtype),
    )
1529 1530


1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1585 1586 1587
            if not isinstance(axis[i], int) or not (
                axis[i] < dims and axis[i] >= -dims
            ):
1588 1589 1590 1591 1592 1593 1594 1595 1596
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1597
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1598
def add_n(inputs, name=None):
1599
    """
1600
    Sum one or more Tensor of the input.
1601

S
Steffy-zxf 已提交
1602 1603 1604
    For example:

    .. code-block:: text
1605

S
Steffy-zxf 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1619

S
Steffy-zxf 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1635 1636

    Args:
1637
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1638
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1639
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1640 1641

    Returns:
S
Steffy-zxf 已提交
1642
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1643 1644 1645

    Examples:
        .. code-block:: python
1646

1647 1648
            import paddle

S
Steffy-zxf 已提交
1649 1650 1651
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1652
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1653
            #  [14., 16., 18.]]
1654
    """
1655 1656 1657
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1658
        return _C_ops.add_n(inputs)
1659
    else:
1660 1661
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1662
        if isinstance(inputs, (list, tuple)):
1663 1664 1665 1666 1667
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1668 1669 1670 1671 1672 1673 1674 1675
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1676 1677 1678 1679 1680 1681
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1682
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1683 1684
                'add_n',
            )
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1695

1696
        return out
1697 1698


1699 1700 1701
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1702

1703 1704 1705
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1706

1707 1708
    Returns:
        Tensor: The output Tensor of trunc.
1709

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1727
    if in_dygraph_mode():
1728
        return _C_ops.trunc(input)
1729
    else:
1730 1731
        inputs = {"X": input}
        attrs = {}
1732

1733 1734 1735 1736 1737
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1738

1739 1740 1741 1742
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1743 1744


W
WuHaobo 已提交
1745
def mm(input, mat2, name=None):
1746
    """
S
swtkiwi 已提交
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1759
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1760
        mat2 (Tensor): The input tensor which is a Tensor.
1761
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1762 1763

    Returns:
N
Noel 已提交
1764
        Tensor: The product Tensor.
1765

W
wawltor 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1798 1799 1800 1801
    Examples:
        .. code-block:: python

            import paddle
1802 1803 1804 1805 1806 1807 1808 1809
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1810

1811
    """
1812
    if in_dygraph_mode():
1813
        return _C_ops.matmul(input, mat2, False, False)
1814
    else:
1815

1816 1817 1818 1819 1820
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1821
                )
1822 1823 1824 1825 1826 1827
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1828

1829 1830 1831
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1832
                    raise ValueError(
1833 1834 1835 1836
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape)
1837
                    )
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1862

1863

Y
yaoxuefeng 已提交
1864
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1865 1866 1867
    """
    **addmm**

1868
    Perform matrix multiplication for input $x$ and $y$.
1869 1870 1871 1872 1873 1874 1875 1876 1877
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1878 1879 1880
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1881 1882
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1883
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1884 1885

    Returns:
1886
        Tensor: The output Tensor of addmm.
1887 1888 1889

    Examples:
        ..  code-block:: python
1890

1891 1892
            import paddle

Y
yaoxuefeng 已提交
1893 1894 1895
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1896

Y
yaoxuefeng 已提交
1897
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1898

N
Noel 已提交
1899
            print(out)
1900 1901 1902
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1903 1904 1905
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1906
    if not len(x_shape) == len(y_shape) == 2:
1907
        raise ValueError(
1908 1909 1910 1911
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1912
    if x_shape[1] != y_shape[0]:
1913
        raise ValueError(
1914 1915 1916 1917
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1918 1919 1920
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1921
                raise ValueError(
1922 1923 1924 1925
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1926
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1927
                raise ValueError(
1928 1929 1930 1931
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1932 1933
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1934
                raise ValueError(
1935 1936 1937 1938
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1939 1940
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1941
            raise ValueError(
1942 1943 1944 1945
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
1946
    else:
1947
        raise ValueError(
1948 1949 1950 1951
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
1952

J
Jiabin Yang 已提交
1953
    if in_dygraph_mode():
1954
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
1955
    else:
1956 1957
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
1958

1959 1960 1961 1962 1963 1964 1965
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
            input, 'Input', ['float32', 'float64'], 'addmm'
        )
        check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
        check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1966

1967 1968 1969 1970
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1971

1972

S
seemingwang 已提交
1973 1974 1975 1976 1977 1978 1979
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1980
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1995

S
seemingwang 已提交
1996 1997 1998 1999
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
2000
            print(y)
S
seemingwang 已提交
2001 2002 2003 2004
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
2005

S
seemingwang 已提交
2006 2007 2008
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2009 2010
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2011 2012 2013
                axis, len(input_shape), input_shape
            )
        )
2014
    if not axis >= 0:
S
seemingwang 已提交
2015
        if not axis >= -1 * len(input_shape):
2016
            raise ValueError(
2017 2018 2019 2020
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2021
        axis = axis + len(input_shape)
S
seemingwang 已提交
2022
    if in_dygraph_mode():
2023
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2024
        return out
2025
    else:
2026
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2027 2028
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2029

2030 2031
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2032

2033 2034 2035 2036
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2037

2038

Z
zhiboniu 已提交
2039 2040 2041 2042
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2043

Z
zhiboniu 已提交
2044 2045 2046 2047 2048
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2049
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2072
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2073

Z
zhiboniu 已提交
2074 2075 2076
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2077
        if in_dygraph_mode():
2078
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2079
        else:
Z
zhiboniu 已提交
2080

2081 2082 2083 2084 2085
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2086
                    )
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
                            "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                            % (x_shape, y_shape)
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2120 2121
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2122
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2144
    if in_dygraph_mode():
2145
        return _C_ops.matmul(nx, ny, False, False)
2146
    else:
Z
zhiboniu 已提交
2147

2148 2149 2150 2151 2152 2153
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2154

2155
        __check_input(nx, ny)
Z
zhiboniu 已提交
2156

2157 2158 2159 2160 2161 2162
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2163 2164


2165
def logsumexp(x, axis=None, keepdim=False, name=None):
2166
    r"""
2167
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2168

2169
    .. math::
2170
       logsumexp(x) = \log\sum exp(x)
2171

2172
    Args:
2173
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2174
            have no more than 4 dimensions.
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2191

2192
    Returns:
2193 2194
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2195

2196
    Examples:
2197

2198
    .. code-block:: python
2199

2200 2201
        import paddle

2202
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2203 2204
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2205 2206

    """
2207
    reduce_all, axis = _get_reduce_axis(axis, x)
2208

2209
    if in_dygraph_mode():
2210
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2211
    else:
2212
        check_variable_and_dtype(
2213
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2214
        )
2215 2216 2217 2218 2219 2220

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2221
        )
2222
        return out
2223

S
swtkiwi 已提交
2224

2225 2226
def inverse(x, name=None):
    """
2227 2228 2229 2230 2231
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2232
        x (Tensor): The input tensor. The last two
2233 2234 2235
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2236
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2237 2238

    Returns:
2239
        Tensor: A Tensor holds the inverse of x. The shape and data type
2240
                        is the same as x.
2241 2242 2243 2244 2245

    Examples:
        .. code-block:: python

            import paddle
2246 2247

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2248 2249
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2250 2251

    """
2252
    if in_dygraph_mode():
W
wanghuancoder 已提交
2253
        return _C_ops.inverse(x)
2254
    else:
2255

2256 2257 2258 2259 2260 2261 2262 2263
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2264

2265 2266 2267 2268 2269 2270 2271
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2272

2273

2274
def max(x, axis=None, keepdim=False, name=None):
2275
    """
S
swtkiwi 已提交
2276

2277
    Computes the maximum of tensor elements over the given axis.
2278

T
Tao Luo 已提交
2279 2280
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2281
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2282 2283 2284
        while max propagates gradient to all of them.


2285
    Args:
2286 2287
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2288
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2289
            `x` and return a Tensor with a single element,
2290 2291
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2292
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2293
            output Tensor. The result tensor will have one fewer dimension
2294
            than the `x` unless :attr:`keepdim` is true, default
2295
            value is False.
2296
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2297 2298

    Returns:
2299
        Tensor, results of maximum on the specified axis of input tensor,
2300
        it's data type is the same as `x`.
2301 2302 2303

    Examples:
        .. code-block:: python
2304

2305
            import paddle
2306

N
Noel 已提交
2307
            # data_x is a Tensor with shape [2, 4]
2308
            # the axis is a int element
2309
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2310
                                  [0.1, 0.2, 0.6, 0.7]],
2311
                                 dtype='float64', stop_gradient=False)
2312
            result1 = paddle.max(x)
2313
            result1.backward()
2314
            print(result1, x.grad)
2315 2316 2317
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2318
            result2 = paddle.max(x, axis=0)
2319
            result2.backward()
2320
            print(result2, x.grad)
2321 2322 2323
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2324
            result3 = paddle.max(x, axis=-1)
2325
            result3.backward()
2326
            print(result3, x.grad)
2327 2328 2329
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2330
            result4 = paddle.max(x, axis=1, keepdim=True)
2331
            result4.backward()
2332
            print(result4, x.grad)
2333
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2334

N
Noel 已提交
2335
            # data_y is a Tensor with shape [2, 2, 2]
2336
            # the axis is list
2337
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2338 2339
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2340
            result5 = paddle.max(y, axis=[1, 2])
2341
            result5.backward()
2342
            print(result5, y.grad)
2343 2344 2345
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2346
            result6 = paddle.max(y, axis=[0, 1])
2347
            result6.backward()
2348
            print(result6, y.grad)
2349
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2350 2351
    """

2352
    if in_dygraph_mode():
2353
        return _C_ops.max(x, axis, keepdim)
2354 2355 2356 2357
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2358 2359 2360 2361
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2362
        )
2363 2364
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2365

2366 2367 2368 2369 2370 2371 2372 2373
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2374

2375

2376
def min(x, axis=None, keepdim=False, name=None):
2377
    """
S
swtkiwi 已提交
2378

2379
    Computes the minimum of tensor elements over the given axis
2380

T
Tao Luo 已提交
2381 2382
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2383
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2384 2385
        while min propagates gradient to all of them.

2386
    Args:
2387 2388
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2389
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2390
            `x` and return a Tensor with a single element,
2391 2392
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2393
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2394
            output Tensor. The result tensor will have one fewer dimension
2395
            than the `x` unless :attr:`keepdim` is true, default
2396
            value is False.
2397
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2398

2399
    Returns:
2400
        Tensor, results of minimum on the specified axis of input tensor,
2401
        it's data type is the same as input's Tensor.
2402

2403 2404 2405
    Examples:
        .. code-block:: python

2406
            import paddle
2407

2408
            # data_x is a Tensor with shape [2, 4]
2409
            # the axis is a int element
2410
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2411
                                  [0.1, 0.2, 0.6, 0.7]],
2412
                                 dtype='float64', stop_gradient=False)
2413
            result1 = paddle.min(x)
2414
            result1.backward()
2415
            print(result1, x.grad)
2416 2417 2418
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2419
            result2 = paddle.min(x, axis=0)
2420
            result2.backward()
2421
            print(result2, x.grad)
2422 2423 2424
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2425
            result3 = paddle.min(x, axis=-1)
2426
            result3.backward()
2427
            print(result3, x.grad)
2428 2429 2430
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2431
            result4 = paddle.min(x, axis=1, keepdim=True)
2432
            result4.backward()
2433
            print(result4, x.grad)
2434
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2435

2436
            # data_y is a Tensor with shape [2, 2, 2]
2437
            # the axis is list
2438
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2439 2440
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2441
            result5 = paddle.min(y, axis=[1, 2])
2442
            result5.backward()
2443
            print(result5, y.grad)
2444 2445 2446
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2447
            result6 = paddle.min(y, axis=[0, 1])
2448
            result6.backward()
2449
            print(result6, y.grad)
2450
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2451
    """
2452

2453
    if in_dygraph_mode():
2454
        return _C_ops.min(x, axis, keepdim)
2455 2456 2457 2458
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2459 2460 2461 2462
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2463
        )
2464

2465 2466 2467 2468 2469 2470 2471 2472
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2473

2474

T
Tao Luo 已提交
2475 2476 2477 2478 2479 2480
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2481
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2482 2483 2484
        while max propagates gradient to all of them.

    Args:
2485
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2486
            the dimension is no more than 4.
2487
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2488 2489 2490 2491
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2492
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2493 2494 2495
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2496
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2510
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2511
                                 dtype='float64', stop_gradient=False)
2512 2513
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2514
            #    thus the corresponding gradients are 1/5=0.2;
2515
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2516
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2517 2518
            result1 = paddle.amax(x)
            result1.backward()
2519
            print(result1, x.grad)
T
Tao Luo 已提交
2520 2521
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2522 2523 2524
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2525
            print(result1_max, x.grad)
T
Tao Luo 已提交
2526 2527 2528 2529
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2530 2531 2532
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2533
            print(result2, x.grad)
T
Tao Luo 已提交
2534 2535 2536 2537 2538
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2539
            print(result3, x.grad)
T
Tao Luo 已提交
2540 2541 2542 2543 2544
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2545
            print(result4, x.grad)
T
Tao Luo 已提交
2546 2547 2548
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2549
            # the axis is list
T
Tao Luo 已提交
2550 2551 2552 2553 2554
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2555
            print(result5, y.grad)
T
Tao Luo 已提交
2556 2557 2558 2559 2560
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2561
            print(result6, y.grad)
T
Tao Luo 已提交
2562 2563
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2564
    if in_dygraph_mode():
2565
        return _C_ops.amax(x, axis, keepdim)
2566

2567 2568 2569 2570 2571
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2572
        )
T
Tao Luo 已提交
2573

2574 2575 2576 2577 2578 2579 2580 2581
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2582

2583

T
Tao Luo 已提交
2584 2585 2586 2587 2588 2589 2590
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2591
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2592 2593 2594
        while min propagates gradient to all of them.

    Args:
2595
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2596
            the dimension is no more than 4.
2597
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2598 2599 2600 2601
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2602
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2603 2604 2605
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2606
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2620
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2621
                                 dtype='float64', stop_gradient=False)
2622 2623
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2624
            #    thus the corresponding gradients are 1/5=0.2;
2625
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2626
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2627 2628
            result1 = paddle.amin(x)
            result1.backward()
2629
            print(result1, x.grad)
T
Tao Luo 已提交
2630 2631
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2632 2633 2634
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2635
            print(result1_min, x.grad)
T
Tao Luo 已提交
2636 2637 2638 2639
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2640 2641 2642
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2643
            print(result2, x.grad)
T
Tao Luo 已提交
2644 2645 2646 2647 2648
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2649
            print(result3, x.grad)
T
Tao Luo 已提交
2650 2651 2652 2653 2654
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2655
            print(result4, x.grad)
T
Tao Luo 已提交
2656 2657 2658
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2659
            # the axis is list
T
Tao Luo 已提交
2660 2661 2662 2663 2664
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2665
            print(result5, y.grad)
T
Tao Luo 已提交
2666 2667 2668 2669 2670
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2671
            print(result6, y.grad)
T
Tao Luo 已提交
2672 2673
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2674
    if in_dygraph_mode():
2675
        return _C_ops.amin(x, axis, keepdim)
2676

2677 2678 2679 2680 2681
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2682
        )
T
Tao Luo 已提交
2683

2684 2685 2686 2687 2688 2689 2690 2691
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2692

2693

W
WuHaobo 已提交
2694
def log1p(x, name=None):
2695
    r"""
2696
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2697

2698
    .. math::
2699
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2700

2701
    Args:
2702
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
2703
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2704

2705
    Returns:
S
Steffy-zxf 已提交
2706
        Tensor, the natural log of the input Tensor computed element-wise.
2707

2708 2709
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2710

2711
            import paddle
S
Steffy-zxf 已提交
2712 2713 2714 2715

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2716 2717
    """

2718
    if in_dygraph_mode():
W
wanghuancoder 已提交
2719
        return _C_ops.log1p(x)
2720
    else:
2721
        check_variable_and_dtype(
2722
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log1p"
2723
        )
2724 2725 2726 2727 2728 2729
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2730

2731

J
joejiong 已提交
2732
def log2(x, name=None):
2733
    r"""
J
joejiong 已提交
2734 2735 2736 2737
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2738
        Out = \log_2x
J
joejiong 已提交
2739 2740 2741

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2742
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2743 2744 2745 2746 2747 2748 2749 2750


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2751

J
joejiong 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2770
    if in_dygraph_mode():
W
wanghuancoder 已提交
2771
        return _C_ops.log2(x)
2772 2773
    else:
        check_variable_and_dtype(
2774
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log2"
2775 2776 2777 2778 2779 2780 2781
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2782

J
joejiong 已提交
2783 2784

def log10(x, name=None):
2785
    r"""
J
joejiong 已提交
2786 2787 2788 2789
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2790
        Out = \log_10_x
J
joejiong 已提交
2791 2792 2793

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2794
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2795 2796 2797 2798 2799 2800 2801 2802


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2803

J
joejiong 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2822
    if in_dygraph_mode():
W
wanghuancoder 已提交
2823
        return _C_ops.log10(x)
2824 2825
    else:
        check_variable_and_dtype(
2826
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log10"
2827 2828 2829 2830 2831 2832 2833
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2834 2835


Y
Yang Zhang 已提交
2836
def clip(x, min=None, max=None, name=None):
2837
    """
Y
Yang Zhang 已提交
2838
    This operator clip all elements in input into the range [ min, max ] and return
2839 2840 2841 2842
    a resulting tensor as the following equation:

    .. math::

2843
        Out = MIN(MAX(x, min), max)
2844 2845

    Args:
2846
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
2847
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2848
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2849
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2850
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2851
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2852 2853

    Returns:
Y
Yang Zhang 已提交
2854
        Tensor: A Tensor with the same data type and data shape as input.
2855 2856 2857 2858 2859

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2860

2861
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2862 2863
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2864
            print(out1)
Y
Yang Zhang 已提交
2865 2866
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2867
            print(out2)
Y
Yang Zhang 已提交
2868 2869
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2870 2871
    """

2872 2873 2874 2875 2876 2877 2878
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
2879 2880 2881
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
2882 2883 2884
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2885

C
chentianyu03 已提交
2886 2887
    if in_dygraph_mode():
        if isinstance(min, Variable):
2888
            min = min.item(0)
C
chentianyu03 已提交
2889
        if isinstance(max, Variable):
2890
            max = max.item(0)
C
chentianyu03 已提交
2891 2892
        min = min_ if min is None else min
        max = max_ if max is None else max
2893
        return _C_ops.clip(x, min, max)
2894 2895 2896 2897 2898 2899 2900
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
2901
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2902 2903 2904 2905 2906 2907 2908 2909 2910
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
2911
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2912 2913 2914
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
2915

2916
        check_variable_and_dtype(
2917 2918 2919 2920
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
2921
        )
Y
Yang Zhang 已提交
2922

2923 2924
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
2925

2926 2927 2928 2929 2930
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
2931

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
2945

2946
        return output
F
Feiyu Chan 已提交
2947

W
WuHaobo 已提交
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
2958
        min = min.item(0)
2959
    if isinstance(max, Variable):
2960
        max = max.item(0)
2961 2962
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2963 2964

    if in_dygraph_mode():
2965
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2966

2967

2968
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2969
    """
S
swtkiwi 已提交
2970

2971
    Computes the sum along diagonals of the input tensor x.
2972 2973

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2974

2975
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2976
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2977
    of the input tensor x.
L
Li Fuchen 已提交
2978

2979
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2980 2981 2982 2983

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2984
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2985

L
Li Fuchen 已提交
2986
    Args:
2987 2988 2989 2990 2991
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2992 2993

    Returns:
2994
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2995 2996 2997 2998 2999

    Examples:
        .. code-block:: python

            import paddle
3000

3001 3002 3003
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
3004 3005 3006
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
3007
    """
3008

Z
zyfncg 已提交
3009
    def __check_input(x, offset, axis1, axis2):
3010 3011 3012 3013 3014 3015
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3016

3017
        input_shape = list(x.shape)
3018 3019 3020 3021
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3022

3023 3024
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3025

3026 3027
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3028
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3029
        )
L
Li Fuchen 已提交
3030

3031 3032
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3033
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3034
        )
L
Li Fuchen 已提交
3035

3036 3037 3038 3039
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3040

H
hong 已提交
3041
    if in_dygraph_mode():
3042
        return _C_ops.trace(x, offset, axis1, axis2)
3043 3044
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3045

3046 3047
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3048

3049 3050 3051 3052 3053 3054 3055
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3056

3057

3058 3059 3060 3061 3062
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
3063
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3064 3065 3066 3067 3068 3069 3070
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3071

3072
    Args:
3073 3074 3075 3076 3077
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3121

3122
    """
J
Jiabin Yang 已提交
3123
    if in_dygraph_mode():
3124
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3125
    else:
W
wanghuancoder 已提交
3126

3127 3128 3129 3130
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3131 3132 3133 3134 3135 3136 3137 3138 3139
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3140 3141
                'diagonal',
            )
3142

3143 3144 3145 3146 3147
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3148

3149 3150
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3151

3152 3153 3154 3155
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3156

3157 3158 3159 3160
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3161

3162 3163 3164 3165
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3166

3167 3168 3169
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3170

3171 3172 3173 3174 3175 3176 3177
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3178 3179


W
WuHaobo 已提交
3180
def kron(x, y, name=None):
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3200 3201

    Args:
3202 3203
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3204
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3205 3206

    Returns:
3207
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3208 3209 3210

    Examples:
        .. code-block:: python
3211

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3223
    """
3224
    if in_dygraph_mode():
3225 3226 3227 3228 3229 3230 3231 3232 3233
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3234

3235 3236 3237 3238 3239
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3240 3241 3242 3243


def cumsum(x, axis=None, dtype=None, name=None):
    """
3244 3245
    The cumulative sum of the elements along a given axis.

3246
    Note:
3247
        The first element of the result is the same as the first element of the input.
3248 3249

    Args:
3250
        x (Tensor): The input tensor needed to be cumsumed.
3251
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3252
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3253 3254 3255
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3256
        Tensor, the result of cumsum operator.
3257 3258 3259

    Examples:
        .. code-block:: python
3260

3261
            import paddle
3262

3263 3264
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3265 3266 3267 3268 3269 3270 3271 3272

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3273

3274 3275 3276 3277 3278 3279 3280
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3281
            # paddle.float64
3282 3283 3284 3285 3286 3287
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3288
        x = cast(x, dtype)
3289

H
hong 已提交
3290
    if in_dygraph_mode():
3291 3292
        if axis is None:
            axis = -1
3293
        return _C_ops.cumsum(x, axis, flatten, False, False)
3294
    else:
3295 3296 3297
        check_variable_and_dtype(
            x,
            'x',
3298
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3299 3300
            'cumsum',
        )
3301 3302
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3303
        kwargs = {}
3304 3305 3306 3307 3308
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3309

3310 3311 3312

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3313
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3314 3315 3316 3317 3318 3319

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3320

3321 3322 3323 3324 3325 3326
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3327
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3328 3329 3330
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3331
        Tensor, the result of logcumsumexp operator.
3332 3333 3334

    Examples:
        .. code-block:: python
3335

3336
            import paddle
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3349

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
3367 3368
        if axis is None:
            axis = -1
3369
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3370 3371
    else:
        check_variable_and_dtype(
3372
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
3373
        )
3374

3375 3376 3377 3378 3379 3380 3381 3382 3383
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3384 3385


H
hlygit66666 已提交
3386 3387 3388 3389
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3390 3391
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3392 3393 3394

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3395 3396 3397 3398 3399 3400 3401
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3438
        x = cast(x, dtype)
H
hlygit66666 已提交
3439

3440
    if in_dygraph_mode():
3441
        return _C_ops.cumprod(x, dim)
3442 3443 3444 3445
    else:
        check_variable_and_dtype(
            x,
            "x",
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3456 3457 3458
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3469

3470

J
Jack Zhou 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3487

3488
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3489
            out = paddle.isfinite(x)
N
Noel 已提交
3490
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3491
    """
H
hong 已提交
3492
    if in_dygraph_mode():
3493
        return _C_ops.isfinite(x)
3494 3495 3496 3497 3498
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
3499 3500 3501 3502 3503 3504 3505 3506
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3507 3508 3509 3510 3511 3512 3513
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3514

3515

J
Jack Zhou 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3532

3533
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3534
            out = paddle.isinf(x)
N
Noel 已提交
3535
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3536
    """
H
hong 已提交
3537
    if in_dygraph_mode():
3538
        return _C_ops.isinf(x)
3539 3540 3541
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
3553 3554 3555 3556
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3557

3558

J
Jack Zhou 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3575

3576
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3577
            out = paddle.isnan(x)
N
Noel 已提交
3578
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3579
    """
H
hong 已提交
3580
    if in_dygraph_mode():
3581
        return _C_ops.isnan(x)
3582 3583 3584
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
3596 3597 3598 3599
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3600 3601


G
guofei 已提交
3602 3603 3604 3605 3606
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3607
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3608 3609 3610
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3611
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3612
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3613
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3614 3615 3616
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3617
            of output is the same as input Tensor `x`.
3618
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3619 3620 3621

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3622

G
guofei 已提交
3623 3624 3625 3626 3627 3628
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3629 3630
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3647 3648
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3649 3650 3651 3652 3653 3654 3655 3656
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3657 3658 3659
        check_dtype(
            dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod'
        )
G
guofei 已提交
3660
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3661
            x = cast(x, dtype)
G
guofei 已提交
3662

3663
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3664
    if in_dygraph_mode():
3665
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3666 3667 3668 3669 3670 3671 3672
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
            ['float32', 'float64', 'int32', 'int64'],
            'reduce_prod',
3673
        )
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3684 3685 3686 3687


def sign(x, name=None):
    """
3688
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3689 3690

    Args:
3691 3692
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3702
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3703 3704 3705
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3706
    if in_dygraph_mode():
3707
        return _C_ops.sign(x)
3708 3709
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
3710
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
3711 3712 3713
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3714

3715
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
3716

3717
        return out
W
WangXi 已提交
3718 3719 3720


def tanh(x, name=None):
3721
    r"""
W
WangXi 已提交
3722 3723 3724
    Tanh Activation Operator.

    .. math::
3725
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3726 3727

    Args:
3728
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3740
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3741
            out = paddle.tanh(x)
N
Noel 已提交
3742
            print(out)
W
WangXi 已提交
3743 3744
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3745
    if in_dygraph_mode():
3746
        return _C_ops.tanh(x)
3747 3748
    else:
        check_variable_and_dtype(
3749
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
3750 3751 3752 3753 3754 3755
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
3756

3757

3758
@inplace_apis_in_dygraph_only
3759 3760 3761 3762 3763
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3764
    return _C_ops.tanh_(x)
3765 3766


S
Steffy-zxf 已提交
3767 3768
def increment(x, value=1.0, name=None):
    """
3769
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3770 3771 3772 3773
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3774
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3790
    if in_dygraph_mode():
3791
        return _C_ops.increment_(x, value)
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
3804 3805 3806 3807


def all(x, axis=None, keepdim=False, name=None):
    """
3808
    Computes the ``logical and`` of tensor elements over the given dimension.
3809 3810 3811 3812 3813

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3814
            Tensor with a single element, otherwise must be in the
3815 3816 3817 3818 3819 3820
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3821
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3822 3823 3824 3825 3826 3827 3828 3829

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3830

N
Noel 已提交
3831
            # x is a bool Tensor with following elements:
3832 3833
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3834
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3835
            print(x)
S
syyxsxx 已提交
3836
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3837

3838 3839 3840
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3841

3842 3843 3844
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3845 3846

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3847 3848
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3849 3850 3851

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3852
            print(out4)
3853

3854
    """
3855
    if in_dygraph_mode():
3856
        return _C_ops.all(x, axis, keepdim)
3857 3858 3859 3860 3861 3862 3863 3864
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
        check_variable_and_dtype(x, 'x', ['bool'], 'all')
3865

3866
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876
        helper = LayerHelper('all', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
3877 3878 3879 3880


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3881
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3882 3883 3884 3885 3886

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3887
            Tensor with a single element, otherwise must be in the
3888 3889 3890 3891 3892 3893
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3894
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3895 3896 3897 3898 3899 3900 3901 3902

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3903 3904 3905

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3906
            print(x)
S
syyxsxx 已提交
3907
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3908 3909 3910 3911
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3912 3913 3914
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3915

3916 3917
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3918
            print(out2)
C
Chen Long 已提交
3919 3920

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3921
            out3 = paddle.any(x, axis=-1)  # [True, True]
3922
            print(out3)
C
Chen Long 已提交
3923 3924 3925

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3926 3927
            print(out4)

3928
    """
3929
    if in_dygraph_mode():
3930
        return _C_ops.any(x, axis, keepdim)
3931 3932 3933 3934 3935 3936 3937
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
3938

3939
        check_variable_and_dtype(x, 'x', ['bool'], 'any')
3940

3941
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
3942

3943 3944 3945 3946 3947 3948 3949 3950 3951
        helper = LayerHelper('any', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
3952

3953

L
Leo Chen 已提交
3954 3955
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
3956 3957 3958 3959 3960 3961
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
3962 3963 3964 3965

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3966

L
Leo Chen 已提交
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3978

L
Leo Chen 已提交
3979 3980 3981 3982 3983 3984
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3985

3986

3987 3988 3989 3990 3991
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3992
        x (Tensor): The input Tensor which hold the complex numbers.
3993
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
3994
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3995 3996

    Returns:
C
Chen Long 已提交
3997
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3998 3999 4000 4001 4002

    Examples:
        .. code-block:: python

          import paddle
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
4015
    if in_dygraph_mode():
4016
        return _C_ops.conj(x)
4017 4018 4019 4020
    else:
        check_variable_and_dtype(
            x,
            "x",
4021 4022 4023 4024
            [
                'complex64',
                'complex128',
                'float16',
4025
                'uint16',
4026 4027 4028 4029 4030
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4031 4032
            'conj',
        )
H
hong 已提交
4033

4034 4035 4036 4037
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4038

4039 4040
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4041

4042

Z
zyfncg 已提交
4043 4044 4045 4046 4047 4048 4049 4050 4051
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4052
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
4069
    if in_dygraph_mode():
4070
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4071
    else:
4072 4073 4074
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4075 4076 4077 4078
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4079

4080

4081 4082 4083 4084 4085 4086 4087 4088 4089
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4090
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4108
    else:
4109 4110 4111
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4112 4113 4114 4115
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4116 4117


4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4140 4141 4142
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4143

R
ronnywang 已提交
4144

4145
def atan2(x, y, name=None):
R
ronnywang 已提交
4146
    r"""
4147
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4148 4149 4150 4151

    Equation:
        .. math::

4152 4153 4154 4155 4156 4157 4158 4159
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4160 4161

    Args:
4162 4163
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4164 4165 4166 4167 4168 4169 4170 4171
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4172
            import paddle
R
ronnywang 已提交
4173

4174 4175 4176
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4177

4178 4179 4180
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4181

4182 4183 4184
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4185 4186 4187

    """

J
Jiabin Yang 已提交
4188
    if in_dygraph_mode():
4189
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4190
    else:
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4203

4204 4205 4206 4207 4208
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4209

4210

W
wangzhen38 已提交
4211 4212 4213 4214 4215
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4216

W
wangzhen38 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4248
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4249 4250

    """
4251
    if eps is None:
W
wangzhen38 已提交
4252
        eps = 0.0
4253
    if in_dygraph_mode():
4254
        return _C_ops.logit(x, eps)
4255 4256
    else:
        check_variable_and_dtype(
4257
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4268

4269

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4280 4281 4282
        x (Tensor): An N-D Tensor with starting points, the data type is float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float16, float32, float64.
4283 4284 4285 4286 4287 4288 4289 4290 4291
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4292

4293 4294 4295
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4296
            out = paddle.lerp(x, y, 0.5)
4297
            # out: [5.5, 6., 6.5, 7.]
4298 4299

    """
4300 4301
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4302

4303
    if in_dygraph_mode():
4304
        return _C_ops.lerp(x, y, weight)
4305 4306
    else:
        check_variable_and_dtype(
4307 4308 4309 4310 4311 4312 4313
            x, 'x', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            weight, 'weight', ['float16', 'float32', 'float64'], 'lerp'
4314
        )
4315

4316 4317 4318 4319 4320
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4321

4322

4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4336
        raise ValueError(
4337 4338 4339 4340
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4341
    return _C_ops.lerp_(x, y, weight)
4342

4343

W
wuhuanzhou 已提交
4344 4345
def erfinv(x, name=None):
    r"""
4346
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4357
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4358 4359 4360 4361 4362

    Example:
        .. code-block:: python

            import paddle
4363

W
wuhuanzhou 已提交
4364 4365 4366 4367 4368
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4369
    if in_dygraph_mode():
4370
        return _C_ops.erfinv(x)
4371 4372 4373 4374 4375 4376
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4377

4378

W
wuhuanzhou 已提交
4379 4380 4381 4382 4383 4384 4385
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4386
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4387

4388

4389
def rad2deg(x, name=None):
4390
    r"""
4391
    Convert each of the elements of input x from angles in radians to degrees.
4392

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4409
            import math
4410

4411 4412 4413 4414 4415 4416 4417
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4418
            x2 = paddle.to_tensor(math.pi/2)
4419 4420 4421 4422
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4423

4424 4425 4426
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
4427 4428
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        57.29578018)
4429 4430
    """
    rad2deg_scale = 180 / np.pi
4431 4432 4433
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4434
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4435
    else:
4436 4437 4438
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4439 4440 4441
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4442
            out_cast = helper.create_variable_for_type_inference(
4443 4444 4445 4446 4447 4448 4449 4450
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4451
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4452 4453 4454 4455 4456 4457
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4458 4459
        return out

4460

4461
def deg2rad(x, name=None):
4462
    r"""
4463
    Convert each of the elements of input x from degrees to angles in radians.
4464

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
4491 4492
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        3.14159274)
4493 4494
    """
    deg2rad_scale = np.pi / 180.0
4495 4496 4497
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4498
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4499
    else:
4500 4501 4502
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4503 4504 4505
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4506
            out_cast = helper.create_variable_for_type_inference(
4507 4508 4509 4510 4511 4512 4513 4514
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4515
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4516 4517 4518 4519 4520 4521
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4522
        return out
A
andyjpaddle 已提交
4523

4524

T
Tao Luo 已提交
4525 4526 4527 4528
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4529

T
Tao Luo 已提交
4530 4531 4532
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4533 4534
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4535
    Args:
4536 4537
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4547

T
Tao Luo 已提交
4548 4549 4550
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
4551 4552
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4553

T
Tao Luo 已提交
4554
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4555 4556 4557 4558 4559 4560
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
4561 4562
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        20)
T
Tao Luo 已提交
4563 4564

            paddle.gcd(x4, x4)
4565 4566
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4567

T
Tao Luo 已提交
4568 4569
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
4570 4571
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4572 4573 4574 4575 4576 4577 4578 4579
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4580
        return paddle.any(y != 0)
T
Tao Luo 已提交
4581 4582 4583 4584 4585

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4586
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4587
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4588 4589 4590 4591 4592 4593 4594 4595
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4596 4597
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4598
    if in_dygraph_mode():
T
Tao Luo 已提交
4599 4600 4601 4602 4603
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4604 4605
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4606 4607 4608
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4609

T
Tao Luo 已提交
4610 4611 4612 4613
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4614

T
Tao Luo 已提交
4615 4616 4617
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4618 4619
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4620
    Args:
4621 4622
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4632

T
Tao Luo 已提交
4633 4634 4635
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
4636 4637
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4638

T
Tao Luo 已提交
4639
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4640 4641 4642 4643 4644 4645
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
4646 4647
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
T
Tao Luo 已提交
4648 4649

            paddle.lcm(x4, x4)
4650 4651
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4652

T
Tao Luo 已提交
4653 4654
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
4655 4656
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4657 4658 4659 4660 4661 4662 4663
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4664 4665 4666
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4667 4668
    return out

4669

A
andyjpaddle 已提交
4670 4671 4672
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4673
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4674 4675 4676 4677

    .. math::

        out[i] = x[i+1] - x[i]
4678 4679

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4680 4681 4682
    Only n=1 is currently supported.

    Args:
4683
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
4684
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4685
                          Only support n=1. Default:1
4686 4687
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4688
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4689
                                   and its shapes must match x's shape except on axis.
4690 4691
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4692
                                   and its shapes must match x's shape except on axis.
4693
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4694

A
andyjpaddle 已提交
4695 4696 4697 4698 4699 4700 4701
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4702

A
andyjpaddle 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4712
            # out:
A
andyjpaddle 已提交
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
4734
    infer_flags = [1 for i in range(len(axes))]
4735
    if in_dygraph_mode():
A
andyjpaddle 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4748
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4761 4762 4763
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
4764 4765 4766 4767
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4768 4769 4770
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
4771 4772

        if x.dtype == paddle.bool:
4773
            return _C_ops.logical_xor(input_back, input_front)
4774
        else:
4775
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
4776
    else:
4777
        check_variable_and_dtype(
4778 4779 4780 4781
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
4782
        )
A
andyjpaddle 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4799 4800 4801 4802 4803 4804
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4815 4816 4817 4818 4819 4820
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
4821 4822 4823 4824 4825 4826
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4827 4828 4829 4830 4831 4832
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
4833 4834 4835

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4836 4837 4838 4839 4840
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
4841
        else:
Z
zyfncg 已提交
4842
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
4843
        return out
F
Feiyu Chan 已提交
4844

4845

F
Feiyu Chan 已提交
4846 4847
def angle(x, name=None):
    r"""
4848
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4861
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
4871 4872 4873 4874 4875 4876
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
4877 4878

            theta = paddle.angle(z)
4879 4880 4881 4882 4883 4884
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
4885 4886
    """

W
WangZhen 已提交
4887
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4888
        return _C_ops.angle(x)
4889 4890
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4912

4913

4914
def heaviside(x, y, name=None):
4915
    r"""
4916 4917 4918 4919 4920
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4921 4922 4923 4924
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4925
                \end{array}
4926
            \right.
4927

4928
    Note:
I
Infinity_lee 已提交
4929 4930 4931
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
4932 4933

    Args:
4934 4935
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4954
    """
4955
    if in_dygraph_mode():
4956
        return _C_ops.heaviside(x, y)
4957
    else:
W
Weilong Wu 已提交
4958
        op_type = 'elementwise_heaviside'
4959
        return _elementwise_op(LayerHelper(op_type, **locals()))
4960

4961

4962 4963 4964 4965 4966 4967
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4968
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4969 4970 4971 4972 4973

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4974
        .. code-block:: python
4975 4976 4977

            import paddle

4978 4979
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
4980
            output = paddle.frac(input)
4981 4982 4983 4984
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
4985
    """
4986
    if x.dtype not in [
4987 4988 4989 4990
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
4991
    ]:
4992
        raise TypeError(
4993 4994 4995 4996
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
4997
    if in_dygraph_mode():
4998 4999
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5000
    else:
5001 5002
        inputs = {"X": x}
        attrs = {}
5003

5004 5005 5006 5007 5008 5009 5010 5011
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5012
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5013

5014

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
5040
    if x.dtype not in [
5041 5042 5043 5044 5045
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5046
    ]:
5047
        raise TypeError(
5048 5049 5050 5051
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5063

5064

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5132 5133 5134 5135
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5136

5137
    if in_dygraph_mode():
5138 5139
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5140
                "The type of 'index' must be Tensor, but got {}".format(
5141 5142 5143
                    type(index)
                )
            )
5144 5145
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5146 5147 5148 5149
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5163
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5164 5165 5166
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5167 5168 5169 5170 5171 5172 5173
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5200
    """
5201 5202
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5203 5204 5205 5206
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5207 5208
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5209 5210 5211
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5212 5213 5214 5215

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5226 5227 5228

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
5271
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.trapezoid(y))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [10.])

            print(paddle.trapezoid(y, dx=2.))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.trapezoid(y, x))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [10.])


            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.trapezoid(y, x))
            # Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-8.])
            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.trapezoid(y, axis=0))
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 2.50000000, 3.50000000])
            print(paddle.trapezoid(y, axis=1))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 8.])
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.cumulative_trapezoid(y))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            print(paddle.cumulative_trapezoid(y, dx=2.))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [9. , 20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-3., -8.])

            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.cumulative_trapezoid(y, axis=0))
            # Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1.50000000, 2.50000000, 3.50000000]])
            print(paddle.cumulative_trapezoid(y, axis=1))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.50000000, 2.        ],
            #         [3.50000000, 8.        ]])
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            out = paddle.vander(x)
            print(out.numpy())
            # [[1., 1., 1.],
            #  [4., 2., 1.],
            #  [9., 3., 1.]]
            out1 = paddle.vander(x,2)
            print(out1.numpy())
            # [[1., 1.],
            #  [2., 1.],
            #  [3., 1.]]
            out2 = paddle.vander(x, increasing = True)
            print(out2.numpy())
            # [[1., 1., 1.],
            #  [1., 2., 4.],
            #  [1., 3., 9.]]
            real = paddle.to_tensor([2., 4.])
            imag = paddle.to_tensor([1., 3.])
            complex = paddle.complex(real, imag)
            out3 = paddle.vander(complex)
            print(out3.numpy())
            # [[2.+1.j, 1.+0.j],
            #  [4.+3.j, 1.+0.j]]
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

    if n > 0:
        res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
    if n > 1:
        res[:, 1:] = x[:, None]
        res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    res = res[:, ::-1] if not increasing else res
    return res