math.py 217.1 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36
from ..framework import (
    LayerHelper,
37
    _dygraph_tracer,
38 39
    convert_np_dtype_to_dtype_,
    core,
40
    in_dynamic_mode,
41 42 43 44
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45
from .ops import abs  # noqa: F401
G
GGBond8488 已提交
46
from .ops import abs_  # noqa: F401
47
from .ops import acos  # noqa: F401
G
GGBond8488 已提交
48
from .ops import acos_  # noqa: F401
49
from .ops import acosh  # noqa: F401
G
GGBond8488 已提交
50
from .ops import acosh_  # noqa: F401
51
from .ops import asin  # noqa: F401
G
GGBond8488 已提交
52
from .ops import asin_  # noqa: F401
53
from .ops import asinh  # noqa: F401
G
GGBond8488 已提交
54
from .ops import asinh_  # noqa: F401
55
from .ops import atan  # noqa: F401
G
GGBond8488 已提交
56
from .ops import atan_  # noqa: F401
57
from .ops import atanh  # noqa: F401
G
GGBond8488 已提交
58
from .ops import atanh_  # noqa: F401
59 60 61
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
G
GGBond8488 已提交
62
from .ops import cos_  # noqa: F401
63
from .ops import cosh  # noqa: F401
G
GGBond8488 已提交
64
from .ops import cosh_  # noqa: F401
65
from .ops import erf  # noqa: F401
G
GGBond8488 已提交
66
from .ops import erf_  # noqa: F401
67 68 69
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
G
GGBond8488 已提交
70
from .ops import expm1_  # noqa: F401
71 72 73 74 75 76 77 78
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
79 80
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
81
from .ops import sin  # noqa: F401
G
GGBond8488 已提交
82
from .ops import sin_  # noqa: F401
83
from .ops import sinh  # noqa: F401
G
GGBond8488 已提交
84
from .ops import sinh_  # noqa: F401
85 86
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
87
from .ops import square  # noqa: F401
G
GGBond8488 已提交
88
from .ops import square_  # noqa: F401
89
from .ops import tan  # noqa: F401
G
GGBond8488 已提交
90
from .ops import tan_  # noqa: F401
91

92 93
__all__ = []

94 95 96 97 98 99 100 101 102 103 104 105 106
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
141 142
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
143 144 145
    return reduce_all, axis


146 147
def log(x, name=None):
    r"""
C
Chen Long 已提交
148
    Calculates the natural log of the given input Tensor, element-wise.
149 150 151

    .. math::

152
        Out = \ln(x)
153 154

    Args:
155
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
173
    if in_dynamic_mode():
174
        return _C_ops.log(x)
175
    else:
176
        check_variable_and_dtype(
177 178 179 180
            x,
            'x',
            ['int32', 'int64', 'uint16', 'float16', 'float32', 'float64'],
            "log",
181
        )
182 183 184 185 186 187
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
207
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
208
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
209 210 211 212
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
213 214

    Returns:
C
Chen Long 已提交
215
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
216 217 218

    Examples:
        .. code-block:: python
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

237
    if in_dynamic_mode():
W
Weilong Wu 已提交
238 239
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
240 241
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
242 243
    else:
        check_variable_and_dtype(
244
            x,
245 246 247 248 249 250 251 252 253 254 255 256 257
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
258
        )
259 260 261 262 263 264 265 266 267 268 269
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
270

271 272 273 274
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
275 276 277


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
278 279
    r"""

280 281 282 283
    stanh activation.

    .. math::

284
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
285 286 287 288 289

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
290
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
291 292 293 294 295 296 297 298 299 300 301 302 303 304

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

305
    if in_dynamic_mode():
Z
zyfncg 已提交
306
        return _C_ops.stanh(x, scale_a, scale_b)
307 308
    else:
        check_variable_and_dtype(
309
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
310
        )
311

312 313 314 315 316 317 318 319 320
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
321

322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
354
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
355

356 357 358 359 360 361 362 363
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
364

365 366 367 368
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
369
            res = paddle.multiplex(inputs, index)
370
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
371 372

    """
373
    if in_dynamic_mode():
374
        return _C_ops.multiplex(inputs, index)
375 376
    else:
        helper = LayerHelper('multiplex', **locals())
377

378 379 380 381 382 383 384 385 386 387 388 389
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
390
        check_variable_and_dtype(
391
            index, "index", ['int32', 'int64'], 'multiplex'
392
        )
393

394 395 396 397 398 399 400
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
401

402

403 404 405 406 407 408
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
409
    if in_dynamic_mode():
410
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
411 412


413
def pow(x, y, name=None):
414
    """
C
Chen Long 已提交
415
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
416

417
    .. math::
418
        out = x^{y}
419

420
    Note:
I
Infinity_lee 已提交
421 422 423
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
424 425


426
    Args:
427
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
428
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
429
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
430

431
    Returns:
432
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
433 434 435

    Examples:

436
        ..  code-block:: python
437 438 439

            import paddle

440 441 442 443 444 445 446 447 448 449 450 451
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

452
            # example 2: y is a Tensor
453
            y = paddle.to_tensor([2], dtype='float32')
454
            res = paddle.pow(x, y)
455 456 457
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
458 459

    """
460
    # in dynamic graph mode
461
    if in_dynamic_mode():
462
        if isinstance(y, (int, float)):
463
            return _C_ops.pow(x, y)
464
        elif isinstance(y, (paddle.Tensor, Variable)):
465
            return _C_ops.elementwise_pow(x, y)
466
        else:
467
            raise TypeError(
468 469
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
470 471
    else:
        # in static graph mode
472
        if isinstance(y, (int, float)):
473 474 475 476 477 478
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
479
            )
480 481 482 483 484 485
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
486
        else:
487
            raise TypeError(
488
                'y must be scalar or tensor type, but received: %s ' % (type(y))
489
            )
490 491


492 493 494 495
@inplace_apis_in_dygraph_only
def pow_(x, y, name=None):
    """
    Inplace version of ``pow`` API, the output Tensor will be inplaced with input ``x``.
496
    Please refer to :ref:`api_paddle_pow`.
497 498 499 500
    """
    if isinstance(y, (int, float)):
        return _C_ops.pow_(x, y)
    else:
G
GGBond8488 已提交
501
        raise TypeError('y must be scalar type, but received: %s ' % (type(y)))
502 503


504
OP_NAMEMAPPING = {
505 506 507 508 509 510 511 512
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
513
    'elementwise_mod': 'remainder',
514
}
515

516

517 518 519 520 521 522
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

523 524
    out = helper.kwargs.get('out', None)

525 526
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
527 528 529 530 531
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
532
        "elementwise_max",
533 534 535 536 537 538 539 540 541 542 543 544 545 546
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
547 548 549 550 551 552 553 554 555
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
556
    check_variable_and_dtype(
557 558
        x,
        'x',
559
        data_type,
560 561
        original_op_type,
    )
562
    check_variable_and_dtype(
563 564
        y,
        'y',
565
        data_type,
566 567
        original_op_type,
    )
568 569 570 571

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
572 573 574 575 576

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
577 578 579 580 581 582 583 584 585 586
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
587 588 589
    return helper.append_activation(out)


Y
Yang Zhang 已提交
590
def add(x, y, name=None):
591
    """
592 593 594 595 596 597 598 599
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

600 601
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
602 603

    There are two cases for this operator:
604 605 606 607

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

608
    For case 2:
609 610

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
611
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
612
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
613 614 615 616

        For example:

        ..  code-block:: python
617

618 619 620 621 622 623
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
624

625
    Args:
626 627 628
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
629 630

    Returns:
H
HongyuJia 已提交
631
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
632 633 634 635

    Examples:

        ..  code-block:: python
636

637
            import paddle
638

639 640 641 642
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
643
    """
644

645
    if in_dynamic_mode():
646
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
647
    else:
648
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
649 650


651 652 653 654 655 656 657 658 659
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
660
        raise ValueError(
661 662 663 664
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
665

666
    return _C_ops.add_(x, y)
667 668


Z
zhiboniu 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

        ..  code-block:: python

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
H
Hui Zhang 已提交
705 706
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
Z
zhiboniu 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

        ..  code-block:: python

            import paddle

            x = paddle.to_tensor([-1, -2, -3], 'float64')
            y = paddle.to_tensor([-1], 'float64')
            z = paddle.logaddexp(x, y)
            print(z)  # [-0.30685282, -0.68673831, -0.87307199]
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


727 728
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
729
    Substract two tensors element-wise. The equation is:
730 731 732 733

    .. math::
        out = x - y

734
    Note:
I
Infinity_lee 已提交
735 736 737
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
738 739 740 741 742 743 744 745 746 747 748 749

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
750

751 752 753 754 755 756
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
757 758 759
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
760 761 762 763 764

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
765 766 767
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
768

769 770
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
771 772
            res = paddle.subtract(x, y)
            print(res)
773 774
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
775

776
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
777 778 779
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
780 781
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
782
    """
783
    if in_dynamic_mode():
784
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
785
    else:
786
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
787 788


789 790 791 792 793 794 795 796 797
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
798
        raise ValueError(
799 800 801 802
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
803

804
    return _C_ops.subtract_(x, y)
805 806


807
def divide(x, y, name=None):
808
    """
809
    Divide two tensors element-wise. The equation is:
810

811 812
    .. math::
        out = x / y
813

814
    Note:
I
Infinity_lee 已提交
815 816 817
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
818

819 820 821 822
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
823

824
    Returns:
825
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
826

827
    Examples:
828

829
        ..  code-block:: python
830

831
            import paddle
832

833 834
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
835
            z = paddle.divide(x, y)
836
            print(z)  # [2., 0.6, 2.]
837

838
    """
839
    if in_dynamic_mode():
840
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
841
    else:
842
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
843 844


845 846
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
847
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
848

849
    .. math::
L
Lin Manhui 已提交
850
        out = trunc(x / y)
851

H
hg-1099255210 已提交
852 853 854
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

855
    Note:
I
Infinity_lee 已提交
856 857 858 859
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
860
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
861

862
    Args:
863 864
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
865
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
866

867 868
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
869

870
    Examples:
871

872
        ..  code-block:: python
873

874
            import paddle
875

876 877
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
878
            z = paddle.floor_divide(x, y)
879
            print(z)  # [2, 0, 2, 2]
880

881
    """
882
    if in_dynamic_mode():
883
        return _C_ops.floor_divide(x, y)
884
    else:
885
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
886 887


888
def remainder(x, y, name=None):
889
    r"""
890 891 892
    Mod two tensors element-wise. The equation is:

    .. math::
893

894 895
        out = x \% y

896
    Note:
I
Infinity_lee 已提交
897 898 899
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
900 901

    Args:
902 903
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
904 905 906
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
907
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
908 909 910 911 912 913 914

    Examples:

        ..  code-block:: python

            import paddle

915 916
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
917
            z = paddle.remainder(x, y)
W
WangXi 已提交
918
            print(z)  # [0, 3, 2, 1]
919 920

    """
921
    if in_dynamic_mode():
922
        return _C_ops.remainder(x, y)
923
    else:
924
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
925 926


927 928 929 930 931 932 933 934 935
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
936 937 938 939
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
940
    return _C_ops.remainder_(x, y)
941 942


943 944
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
945 946


947
def multiply(x, y, name=None):
948
    """
949
    multiply two tensors element-wise. The equation is:
950

951 952
    .. math::
        out = x * y
953

954
    Note:
I
Infinity_lee 已提交
955 956 957
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
958

959
    Args:
W
will-jl944 已提交
960 961
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
962
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
963

964
    Returns:
965
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
966

967 968 969 970 971 972
    Examples:

        ..  code-block:: python

            import paddle

973 974
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
975
            res = paddle.multiply(x, y)
976
            print(res) # [[5, 12], [21, 32]]
977

978
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
979 980 981
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
982 983

    """
984
    if in_dynamic_mode():
985
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
986
    else:
987 988
        if x.dtype != y.dtype:
            raise TypeError(
989
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
990
            )
991

992
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
993

994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


1017 1018 1019 1020 1021
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
1022 1023
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1044
    if in_dynamic_mode():
1045 1046 1047
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1048
        return _elementwise_op(LayerHelper(op_type, **locals()))
1049 1050 1051 1052


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1053
    if in_dynamic_mode():
1054 1055 1056 1057 1058
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1059
        return _elementwise_op(LayerHelper(op_type, **locals()))
1060 1061 1062 1063


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1064
    if in_dynamic_mode():
1065 1066 1067 1068 1069
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1070
        return _elementwise_op(LayerHelper(op_type, **locals()))
1071 1072 1073 1074


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1075
    if in_dynamic_mode():
1076 1077 1078
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1079
        return _elementwise_op(LayerHelper(op_type, **locals()))
1080 1081


1082
def maximum(x, y, name=None):
1083
    """
W
Wei Shengyu 已提交
1084
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1085

1086 1087
    .. math::
        out = max(x, y)
1088

1089
    Note:
I
Infinity_lee 已提交
1090 1091 1092
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1112 1113 1114
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1115 1116 1117 1118 1119

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1120 1121 1122
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1123 1124

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1125
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1126 1127
            res = paddle.maximum(x, y)
            print(res)
1128 1129
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1130

1131 1132
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1133 1134
            res = paddle.maximum(x, y)
            print(res)
1135 1136
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1137
    """
1138
    if in_dynamic_mode():
1139
        return _C_ops.maximum(x, y)
1140
    else:
1141
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1142

1143

1144
def minimum(x, y, name=None):
1145
    """
C
Chen Long 已提交
1146
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1147

1148 1149
    .. math::
        out = min(x, y)
1150

1151
    Note:
I
Infinity_lee 已提交
1152 1153 1154
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1155 1156 1157 1158 1159 1160 1161

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1162
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1174 1175 1176
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1177 1178 1179 1180 1181

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1182 1183 1184
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1185 1186

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1187
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1188 1189
            res = paddle.minimum(x, y)
            print(res)
1190 1191
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1192

1193 1194
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1195 1196
            res = paddle.minimum(x, y)
            print(res)
1197 1198
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1199
    """
1200
    if in_dynamic_mode():
1201
        return _C_ops.minimum(x, y)
1202
    else:
1203
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1204

1205

L
LJQ❤️ 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1215
    Note:
I
Infinity_lee 已提交
1216 1217 1218
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1219 1220

    Args:
1221 1222
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1238 1239 1240
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1241 1242 1243 1244 1245

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1246 1247 1248
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1249 1250

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1251
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1252 1253
            res = paddle.fmax(x, y)
            print(res)
1254 1255
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1256

1257 1258
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1259 1260
            res = paddle.fmax(x, y)
            print(res)
1261 1262
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1263
    """
1264
    if in_dynamic_mode():
1265
        return _C_ops.fmax(x, y)
1266
    else:
1267
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1268

1269

L
LJQ❤️ 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1279
    Note:
I
Infinity_lee 已提交
1280 1281 1282
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1283 1284

    Args:
1285 1286
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1302 1303 1304
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1305 1306 1307 1308 1309

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1310 1311 1312
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1313 1314

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1315
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1316 1317
            res = paddle.fmin(x, y)
            print(res)
1318 1319
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1320

1321 1322
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1323 1324
            res = paddle.fmin(x, y)
            print(res)
1325 1326
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1327
    """
1328
    if in_dynamic_mode():
1329
        return _C_ops.fmin(x, y)
1330
    else:
1331
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1332

Y
Yang Zhang 已提交
1333

1334
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1335 1336 1337 1338
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1339
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1340 1341
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1342
            Tensor with a single element, otherwise must be in the
1343 1344 1345 1346 1347 1348 1349
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1350
            value is False.
1351
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1352 1353

    Returns:
1354
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1355
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1356
        otherwise it's data type is the same as `x`.
1357 1358 1359 1360 1361

    Examples:
        .. code-block:: python

            import paddle
1362

1363
            # x is a Tensor with following elements:
1364 1365 1366
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1367 1368
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1369
            out1 = paddle.sum(x)          # 3.5
1370
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
1371
            out3 = paddle.sum(x, axis=-1) # [1.9, 1.6]
1372
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1373

1374
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1375 1376 1377
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1378
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1379
                                  [[5, 6], [7, 8]]])
1380 1381
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1382

1383 1384 1385 1386 1387 1388
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
1389
            out7 = paddle.sum(x)          # 4
1390 1391
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1392
    """
1393

1394 1395 1396 1397
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1398

1399
    if in_dynamic_mode():
1400
        return _C_ops.sum(x, axis, dtype, keepdim)
1401 1402 1403
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1404

1405
        if dtype_flag:
1406
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1407

1408 1409 1410 1411 1412
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1413
                'uint16',
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1425

1426 1427 1428
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1442

1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1492 1493 1494 1495 1496
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1497
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1509
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1523 1524
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
1525
            out1 = paddle.nansum(x)          # 2.7
W
wangguanqun 已提交
1526
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
1527
            out3 = paddle.nansum(x, axis=-1) # [1.7, 1.0]
W
wangguanqun 已提交
1528 1529 1530 1531 1532 1533
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1534
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1535 1536 1537 1538
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1539
    check_variable_and_dtype(
1540
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1541
    )
W
wangguanqun 已提交
1542 1543 1544 1545 1546 1547 1548
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
1585
            # 0.44999996
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1606 1607 1608
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1609 1610 1611
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1612 1613 1614
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1615 1616
        cnt.astype(x.dtype),
    )
1617 1618


1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
1647
            # 3
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

1668 1669
    if isinstance(axis, int):
        axis = [axis]
1670 1671 1672 1673 1674 1675

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1676
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1677
def add_n(inputs, name=None):
1678
    """
1679
    Sum one or more Tensor of the input.
1680

S
Steffy-zxf 已提交
1681 1682 1683
    For example:

    .. code-block:: text
1684

S
Steffy-zxf 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1698

S
Steffy-zxf 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1714 1715

    Args:
1716
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1717
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1718
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1719 1720

    Returns:
S
Steffy-zxf 已提交
1721
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1722 1723 1724

    Examples:
        .. code-block:: python
1725

1726 1727
            import paddle

S
Steffy-zxf 已提交
1728 1729 1730
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1731
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1732
            #  [14., 16., 18.]]
1733
    """
1734
    if in_dynamic_mode():
1735 1736
        if isinstance(inputs, Variable):
            inputs = [inputs]
1737
        return _C_ops.add_n(inputs)
1738
    else:
1739 1740
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1741
        if isinstance(inputs, (list, tuple)):
1742 1743 1744 1745 1746
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1747 1748 1749 1750 1751 1752 1753 1754
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1755 1756 1757 1758 1759 1760
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1761
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1762 1763
                'add_n',
            )
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1774

1775
        return out
1776 1777


1778 1779 1780
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1781

1782 1783 1784
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1785

1786 1787
    Returns:
        Tensor: The output Tensor of trunc.
1788

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
1806
    if in_dynamic_mode():
1807
        return _C_ops.trunc(input)
1808
    else:
1809 1810
        inputs = {"X": input}
        attrs = {}
1811

1812 1813 1814 1815 1816
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1817

1818 1819 1820 1821
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1822 1823


W
WuHaobo 已提交
1824
def mm(input, mat2, name=None):
1825
    """
S
swtkiwi 已提交
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1838
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1839
        mat2 (Tensor): The input tensor which is a Tensor.
1840
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1841 1842

    Returns:
N
Noel 已提交
1843
        Tensor: The product Tensor.
1844

W
wawltor 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1877 1878 1879 1880
    Examples:
        .. code-block:: python

            import paddle
1881 1882 1883 1884 1885 1886 1887 1888
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1889

1890
    """
1891
    if in_dynamic_mode():
1892
        return _C_ops.matmul(input, mat2, False, False)
1893
    else:
1894

1895 1896 1897 1898 1899
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1900
                )
1901 1902 1903 1904 1905 1906
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1907

1908 1909 1910
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1911
                    raise ValueError(
1912 1913
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
1914 1915 1916
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
1917
                    )
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1942

1943

Y
yaoxuefeng 已提交
1944
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1945 1946 1947
    """
    **addmm**

1948
    Perform matrix multiplication for input $x$ and $y$.
1949 1950 1951 1952 1953 1954 1955 1956 1957
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1958 1959 1960
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1961 1962
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1963
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1964 1965

    Returns:
1966
        Tensor: The output Tensor of addmm.
1967 1968 1969

    Examples:
        ..  code-block:: python
1970

1971 1972
            import paddle

Y
yaoxuefeng 已提交
1973 1974 1975
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1976

Y
yaoxuefeng 已提交
1977
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1978

N
Noel 已提交
1979
            print(out)
1980 1981 1982
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1983 1984 1985
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1986
    if not len(x_shape) == len(y_shape) == 2:
1987
        raise ValueError(
1988 1989 1990 1991
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1992
    if x_shape[1] != y_shape[0]:
1993
        raise ValueError(
1994 1995 1996 1997
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1998 1999 2000
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
2001
                raise ValueError(
2002 2003 2004 2005
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
2006
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
2007
                raise ValueError(
2008 2009 2010 2011
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2012 2013
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
2014
                raise ValueError(
2015 2016 2017 2018
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2019 2020
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2021
            raise ValueError(
2022 2023 2024 2025
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2026
    else:
2027
        raise ValueError(
2028 2029 2030 2031
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2032

2033
    if in_dynamic_mode():
2034
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2035
    else:
2036 2037
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2038

2039 2040
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2041 2042 2043 2044 2045 2046 2047
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2048 2049
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2050

2051 2052 2053 2054
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2055

2056

G
GGBond8488 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
@inplace_apis_in_dygraph_only
def addmm_(input, x, y, beta=1.0, alpha=1.0, name=None):
    """
    Inplace version of ``addmm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_label_addmm`.
    """
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
    if x_shape[1] != y_shape[0]:
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
    else:
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )

    if in_dynamic_mode():
        return _C_ops.addmm_(input, x, y, beta, alpha)


S
seemingwang 已提交
2117 2118 2119 2120 2121 2122 2123
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2124
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
2139

S
seemingwang 已提交
2140 2141 2142 2143
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
2144
            print(y)
S
seemingwang 已提交
2145 2146 2147 2148
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
2149

S
seemingwang 已提交
2150 2151 2152
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2153 2154
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2155 2156 2157
                axis, len(input_shape), input_shape
            )
        )
2158
    if not axis >= 0:
S
seemingwang 已提交
2159
        if not axis >= -1 * len(input_shape):
2160
            raise ValueError(
2161 2162 2163 2164
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2165
        axis = axis + len(input_shape)
2166
    if in_dynamic_mode():
2167
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2168
        return out
2169
    else:
2170
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2171 2172
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2173

2174 2175
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2176

2177 2178 2179 2180
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2181

2182

Z
zhiboniu 已提交
2183 2184 2185 2186
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2187

Z
zhiboniu 已提交
2188 2189 2190 2191 2192
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2193
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2216
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2217

Z
zhiboniu 已提交
2218 2219 2220
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2221
        if in_dynamic_mode():
2222
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2223
        else:
Z
zhiboniu 已提交
2224

2225 2226 2227 2228 2229
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2230
                    )
2231 2232 2233 2234 2235 2236 2237 2238 2239
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2240 2241 2242
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2265 2266
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2267
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2289
    if in_dynamic_mode():
2290
        return _C_ops.matmul(nx, ny, False, False)
2291
    else:
Z
zhiboniu 已提交
2292

2293 2294 2295 2296 2297 2298
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2299

2300
        __check_input(nx, ny)
Z
zhiboniu 已提交
2301

2302 2303 2304 2305 2306 2307
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2308 2309


2310
def logsumexp(x, axis=None, keepdim=False, name=None):
2311
    r"""
2312
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2313

2314
    .. math::
2315
       logsumexp(x) = \log\sum exp(x)
2316

2317
    Args:
2318
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2319
            have no more than 4 dimensions.
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2336

2337
    Returns:
2338 2339
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2340

2341
    Examples:
2342

2343
    .. code-block:: python
2344

2345 2346
        import paddle

2347
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2348
        out1 = paddle.logsumexp(x)    # 3.4691226
2349
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2350 2351

    """
2352
    reduce_all, axis = _get_reduce_axis(axis, x)
2353

2354
    if in_dynamic_mode():
2355
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2356
    else:
2357
        check_variable_and_dtype(
2358
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2359
        )
2360 2361 2362 2363 2364 2365

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2366
        )
2367
        return out
2368

S
swtkiwi 已提交
2369

2370 2371
def inverse(x, name=None):
    """
2372 2373 2374 2375 2376
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2377
        x (Tensor): The input tensor. The last two
2378 2379 2380
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2381
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2382 2383

    Returns:
2384
        Tensor: A Tensor holds the inverse of x. The shape and data type
2385
                        is the same as x.
2386 2387 2388 2389 2390

    Examples:
        .. code-block:: python

            import paddle
2391 2392

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2393 2394
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2395 2396

    """
2397
    if in_dynamic_mode():
W
wanghuancoder 已提交
2398
        return _C_ops.inverse(x)
2399
    else:
2400

2401 2402 2403 2404 2405 2406 2407 2408
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2409

2410 2411 2412 2413 2414 2415 2416
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2417

2418

2419
def max(x, axis=None, keepdim=False, name=None):
2420
    """
S
swtkiwi 已提交
2421

2422
    Computes the maximum of tensor elements over the given axis.
2423

T
Tao Luo 已提交
2424 2425
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2426
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2427 2428 2429
        while max propagates gradient to all of them.


2430
    Args:
2431 2432
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2433
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2434
            `x` and return a Tensor with a single element,
2435 2436
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2437
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2438
            output Tensor. The result tensor will have one fewer dimension
2439
            than the `x` unless :attr:`keepdim` is true, default
2440
            value is False.
2441
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2442 2443

    Returns:
2444
        Tensor, results of maximum on the specified axis of input tensor,
2445
        it's data type is the same as `x`.
2446 2447 2448

    Examples:
        .. code-block:: python
2449

2450
            import paddle
2451

N
Noel 已提交
2452
            # data_x is a Tensor with shape [2, 4]
2453
            # the axis is a int element
2454
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2455
                                  [0.1, 0.2, 0.6, 0.7]],
2456
                                 dtype='float64', stop_gradient=False)
2457
            result1 = paddle.max(x)
2458
            result1.backward()
2459
            print(result1, x.grad)
2460
            # 0.9, [[0., 0., 0., 1.], [0., 0., 0., 0.]]
2461 2462

            x.clear_grad()
2463
            result2 = paddle.max(x, axis=0)
2464
            result2.backward()
2465
            print(result2, x.grad)
2466 2467 2468
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2469
            result3 = paddle.max(x, axis=-1)
2470
            result3.backward()
2471
            print(result3, x.grad)
2472 2473 2474
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2475
            result4 = paddle.max(x, axis=1, keepdim=True)
2476
            result4.backward()
2477
            print(result4, x.grad)
2478
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2479

N
Noel 已提交
2480
            # data_y is a Tensor with shape [2, 2, 2]
2481
            # the axis is list
2482
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2483 2484
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2485
            result5 = paddle.max(y, axis=[1, 2])
2486
            result5.backward()
2487
            print(result5, y.grad)
2488 2489 2490
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2491
            result6 = paddle.max(y, axis=[0, 1])
2492
            result6.backward()
2493
            print(result6, y.grad)
2494
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2495 2496
    """

2497
    if in_dynamic_mode():
2498
        return _C_ops.max(x, axis, keepdim)
2499 2500 2501 2502
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2503 2504 2505 2506
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2507
        )
2508 2509
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2510

2511 2512 2513 2514 2515 2516 2517 2518
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2519

2520

2521
def min(x, axis=None, keepdim=False, name=None):
2522
    """
S
swtkiwi 已提交
2523

2524
    Computes the minimum of tensor elements over the given axis
2525

T
Tao Luo 已提交
2526 2527
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2528
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2529 2530
        while min propagates gradient to all of them.

2531
    Args:
2532 2533
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2534
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2535
            `x` and return a Tensor with a single element,
2536 2537
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2538
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2539
            output Tensor. The result tensor will have one fewer dimension
2540
            than the `x` unless :attr:`keepdim` is true, default
2541
            value is False.
2542
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2543

2544
    Returns:
2545
        Tensor, results of minimum on the specified axis of input tensor,
2546
        it's data type is the same as input's Tensor.
2547

2548 2549 2550
    Examples:
        .. code-block:: python

2551
            import paddle
2552

2553
            # data_x is a Tensor with shape [2, 4]
2554
            # the axis is a int element
2555
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2556
                                  [0.1, 0.2, 0.6, 0.7]],
2557
                                 dtype='float64', stop_gradient=False)
2558
            result1 = paddle.min(x)
2559
            result1.backward()
2560
            print(result1, x.grad)
2561
            # 0.1, [[0., 0., 0., 0.], [1., 0., 0., 0.]]
2562 2563

            x.clear_grad()
2564
            result2 = paddle.min(x, axis=0)
2565
            result2.backward()
2566
            print(result2, x.grad)
2567 2568 2569
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2570
            result3 = paddle.min(x, axis=-1)
2571
            result3.backward()
2572
            print(result3, x.grad)
2573 2574 2575
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2576
            result4 = paddle.min(x, axis=1, keepdim=True)
2577
            result4.backward()
2578
            print(result4, x.grad)
2579
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2580

2581
            # data_y is a Tensor with shape [2, 2, 2]
2582
            # the axis is list
2583
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2584 2585
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2586
            result5 = paddle.min(y, axis=[1, 2])
2587
            result5.backward()
2588
            print(result5, y.grad)
2589 2590 2591
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2592
            result6 = paddle.min(y, axis=[0, 1])
2593
            result6.backward()
2594
            print(result6, y.grad)
2595
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2596
    """
2597

2598
    if in_dynamic_mode():
2599
        return _C_ops.min(x, axis, keepdim)
2600 2601 2602 2603
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2604 2605 2606 2607
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2608
        )
2609

2610 2611 2612 2613 2614 2615 2616 2617
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2618

2619

T
Tao Luo 已提交
2620 2621 2622 2623 2624 2625
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2626
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2627 2628 2629
        while max propagates gradient to all of them.

    Args:
2630
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2631
            the dimension is no more than 4.
2632
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2633 2634 2635 2636
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2637
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2638 2639 2640
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2641
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2655
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2656
                                 dtype='float64', stop_gradient=False)
2657 2658
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2659
            #    thus the corresponding gradients are 1/5=0.2;
2660
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2661
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2662 2663
            result1 = paddle.amax(x)
            result1.backward()
2664
            print(result1, x.grad)
2665
            # 0.9, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
T
Tao Luo 已提交
2666

T
Tao Luo 已提交
2667 2668 2669
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2670
            print(result1_max, x.grad)
2671
            # 0.9, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]
T
Tao Luo 已提交
2672 2673 2674

            ###############################

T
Tao Luo 已提交
2675 2676 2677
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2678
            print(result2, x.grad)
T
Tao Luo 已提交
2679 2680 2681 2682 2683
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2684
            print(result3, x.grad)
T
Tao Luo 已提交
2685 2686 2687 2688 2689
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2690
            print(result4, x.grad)
T
Tao Luo 已提交
2691 2692 2693
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2694
            # the axis is list
T
Tao Luo 已提交
2695 2696 2697 2698 2699
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2700
            print(result5, y.grad)
T
Tao Luo 已提交
2701 2702 2703 2704 2705
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2706
            print(result6, y.grad)
T
Tao Luo 已提交
2707 2708
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2709
    if in_dynamic_mode():
2710
        return _C_ops.amax(x, axis, keepdim)
2711

2712 2713 2714 2715 2716
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2717
        )
T
Tao Luo 已提交
2718

2719 2720 2721 2722 2723 2724 2725 2726
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2727

2728

T
Tao Luo 已提交
2729 2730 2731 2732 2733 2734 2735
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2736
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2737 2738 2739
        while min propagates gradient to all of them.

    Args:
2740
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2741
            the dimension is no more than 4.
2742
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2743 2744 2745 2746
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2747
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2748 2749 2750
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2751
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2765
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2766
                                 dtype='float64', stop_gradient=False)
2767 2768
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2769
            #    thus the corresponding gradients are 1/5=0.2;
2770
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2771
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2772 2773
            result1 = paddle.amin(x)
            result1.backward()
2774
            print(result1, x.grad)
2775
            # 0.1, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
T
Tao Luo 已提交
2776

T
Tao Luo 已提交
2777 2778 2779
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2780
            print(result1_min, x.grad)
2781
            # 0.1, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]
T
Tao Luo 已提交
2782 2783 2784

            ###############################

T
Tao Luo 已提交
2785 2786 2787
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2788
            print(result2, x.grad)
T
Tao Luo 已提交
2789 2790 2791 2792 2793
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2794
            print(result3, x.grad)
T
Tao Luo 已提交
2795 2796 2797 2798 2799
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2800
            print(result4, x.grad)
T
Tao Luo 已提交
2801 2802 2803
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2804
            # the axis is list
T
Tao Luo 已提交
2805 2806 2807 2808 2809
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2810
            print(result5, y.grad)
T
Tao Luo 已提交
2811 2812 2813 2814 2815
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2816
            print(result6, y.grad)
T
Tao Luo 已提交
2817 2818
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2819
    if in_dynamic_mode():
2820
        return _C_ops.amin(x, axis, keepdim)
2821

2822 2823 2824 2825 2826
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2827
        )
T
Tao Luo 已提交
2828

2829 2830 2831 2832 2833 2834 2835 2836
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2837

2838

W
WuHaobo 已提交
2839
def log1p(x, name=None):
2840
    r"""
2841
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2842

2843
    .. math::
2844
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2845

2846
    Args:
2847
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2848
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2849

2850
    Returns:
S
Steffy-zxf 已提交
2851
        Tensor, the natural log of the input Tensor computed element-wise.
2852

2853 2854
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2855

2856
            import paddle
S
Steffy-zxf 已提交
2857 2858 2859 2860

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2861 2862
    """

2863
    if in_dynamic_mode():
W
wanghuancoder 已提交
2864
        return _C_ops.log1p(x)
2865
    else:
2866
        check_variable_and_dtype(
2867 2868 2869 2870
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log1p",
2871
        )
2872 2873 2874 2875 2876 2877
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2878

2879

J
joejiong 已提交
2880
def log2(x, name=None):
2881
    r"""
J
joejiong 已提交
2882 2883 2884 2885
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2886
        Out = \log_2x
J
joejiong 已提交
2887 2888

    Args:
2889
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2890
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2891 2892 2893 2894 2895 2896 2897 2898


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2899

J
joejiong 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2918
    if in_dynamic_mode():
W
wanghuancoder 已提交
2919
        return _C_ops.log2(x)
2920 2921
    else:
        check_variable_and_dtype(
2922 2923 2924 2925
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log2",
2926 2927 2928 2929 2930 2931 2932
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2933

J
joejiong 已提交
2934 2935

def log10(x, name=None):
2936
    r"""
J
joejiong 已提交
2937 2938 2939 2940
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2941
        Out = \log_10_x
J
joejiong 已提交
2942 2943

    Args:
2944
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2945
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2946 2947 2948 2949 2950 2951 2952 2953


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2954

J
joejiong 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2973
    if in_dynamic_mode():
W
wanghuancoder 已提交
2974
        return _C_ops.log10(x)
2975 2976
    else:
        check_variable_and_dtype(
2977 2978 2979 2980
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log10",
2981 2982 2983 2984 2985 2986 2987
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2988 2989


Y
Yang Zhang 已提交
2990
def clip(x, min=None, max=None, name=None):
2991
    """
Y
Yang Zhang 已提交
2992
    This operator clip all elements in input into the range [ min, max ] and return
2993 2994 2995 2996
    a resulting tensor as the following equation:

    .. math::

2997
        Out = MIN(MAX(x, min), max)
2998 2999

    Args:
3000
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
3001 3002 3003 3004
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
3005
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3006 3007

    Returns:
Y
Yang Zhang 已提交
3008
        Tensor: A Tensor with the same data type and data shape as input.
3009 3010 3011 3012 3013

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3014

3015
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
3016 3017
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
3018
            print(out1)
Y
Yang Zhang 已提交
3019 3020
            # [[3.5, 3.5]
            # [4.5, 5.0]]
3021
            print(out2)
Y
Yang Zhang 已提交
3022 3023
            # [[2.5, 3.5]
            # [[4.5, 6.4]
3024 3025
    """

3026 3027 3028 3029 3030 3031 3032
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
3033 3034 3035
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
3036 3037 3038
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
3039

3040
    if in_dynamic_mode():
C
chentianyu03 已提交
3041
        if isinstance(min, Variable):
3042
            min = min.item(0)
C
chentianyu03 已提交
3043
        if isinstance(max, Variable):
3044
            max = max.item(0)
C
chentianyu03 已提交
3045 3046
        min = min_ if min is None else min
        max = max_ if max is None else max
3047
        return _C_ops.clip(x, min, max)
3048 3049 3050 3051 3052 3053 3054
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
3055
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3056 3057 3058 3059 3060 3061 3062 3063 3064
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
3065
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3066 3067 3068
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
3069

3070
        check_variable_and_dtype(
3071 3072 3073 3074
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
3075
        )
Y
Yang Zhang 已提交
3076

3077 3078
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
3079

3080 3081 3082 3083 3084
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
3085

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3099

3100
        return output
F
Feiyu Chan 已提交
3101

W
WuHaobo 已提交
3102

3103 3104 3105 3106 3107 3108 3109 3110 3111
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3112
        min = min.item(0)
3113
    if isinstance(max, Variable):
3114
        max = max.item(0)
3115 3116
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3117

3118
    if in_dynamic_mode():
3119
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3120

3121

3122
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3123
    """
S
swtkiwi 已提交
3124

3125
    Computes the sum along diagonals of the input tensor x.
3126 3127

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3128

3129
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3130
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3131
    of the input tensor x.
L
Li Fuchen 已提交
3132

3133
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3134 3135 3136 3137

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3138
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3139

L
Li Fuchen 已提交
3140
    Args:
3141 3142 3143 3144 3145
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3146 3147

    Returns:
3148
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3149 3150 3151 3152 3153

    Examples:
        .. code-block:: python

            import paddle
3154

3155 3156 3157
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
3158
            data1 = paddle.trace(case1) # data1.shape = []
3159 3160
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
3161
    """
3162

Z
zyfncg 已提交
3163
    def __check_input(x, offset, axis1, axis2):
3164 3165 3166 3167 3168 3169
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3170

3171
        input_shape = list(x.shape)
3172 3173 3174 3175
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3176

3177 3178
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3179

3180 3181
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3182
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3183
        )
L
Li Fuchen 已提交
3184

3185 3186
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3187
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3188
        )
L
Li Fuchen 已提交
3189

3190 3191 3192 3193
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3194

3195
    if in_dynamic_mode():
3196
        return _C_ops.trace(x, offset, axis1, axis2)
3197 3198
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3199

3200 3201
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3202

3203 3204 3205 3206 3207 3208 3209
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3210

3211

3212 3213
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3214
    Computes the diagonals of the input tensor x.
3215 3216

    If ``x`` is 2D, returns the diagonal.
3217
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3218 3219 3220 3221 3222 3223 3224
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3225

3226
    Args:
3227 3228 3229 3230 3231
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3275

3276
    """
3277
    if in_dynamic_mode():
3278
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3279
    else:
W
wanghuancoder 已提交
3280

3281 3282 3283 3284
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3285 3286 3287 3288 3289 3290 3291 3292 3293
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3294 3295
                'diagonal',
            )
3296

3297 3298 3299 3300 3301
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3302

3303 3304
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3305

3306 3307 3308 3309
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3310

3311 3312 3313 3314
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3315

3316 3317 3318 3319
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3320

3321 3322 3323
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3324

3325 3326 3327 3328 3329 3330 3331
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3332 3333


W
WuHaobo 已提交
3334
def kron(x, y, name=None):
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3354 3355

    Args:
3356 3357
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3358
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3359 3360

    Returns:
3361
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3362 3363 3364

    Examples:
        .. code-block:: python
3365

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3377
    """
3378
    if in_dynamic_mode():
3379 3380 3381 3382 3383 3384 3385 3386 3387
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3388

3389 3390 3391 3392 3393
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3394 3395 3396 3397


def cumsum(x, axis=None, dtype=None, name=None):
    """
3398 3399
    The cumulative sum of the elements along a given axis.

3400
    Note:
3401
        The first element of the result is the same as the first element of the input.
3402 3403

    Args:
3404
        x (Tensor): The input tensor needed to be cumsumed.
3405
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3406
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3407 3408 3409
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3410
        Tensor, the result of cumsum operator.
3411 3412 3413

    Examples:
        .. code-block:: python
3414

3415
            import paddle
3416

3417 3418
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3419 3420 3421 3422 3423 3424 3425 3426

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3427

3428 3429 3430 3431 3432 3433 3434
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3435
            # paddle.float64
3436 3437 3438 3439 3440 3441
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3442
        x = cast(x, dtype)
3443

3444
    if in_dynamic_mode():
3445 3446
        if axis is None:
            axis = -1
3447
        return _C_ops.cumsum(x, axis, flatten, False, False)
3448
    else:
3449 3450 3451
        check_variable_and_dtype(
            x,
            'x',
3452
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3453 3454
            'cumsum',
        )
3455 3456
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3457
        kwargs = {}
3458 3459 3460 3461 3462
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3463

3464

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
def cummax(x, axis=None, dtype='int64', name=None):
    """
    The cumulative max of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummaxed.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.

        indices (Tensor), The corresponding index results of cummax operation.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            data = paddle.reshape(data, (2, 3))

            y = paddle.cummax(data)
            # value: [-1, 5, 5, 5, 5, 5]
            # indcies: [0, 1, 1, 1, 1, 1]

            y = paddle.cummax(data, axis=0)
            # value: [[-1, 5, 0]
            #         [-1, 5, 2]]
            # indcies: [[0, 0, 0]
            #           [0, 0, 1]]

            y = paddle.cummax(data, axis=-1)
            # value: [[-1, 5, 5]
            #         [-2, -2, 2]]
            # indcies: [[0, 1, 1]
            #           [0, 0, 2]]

            y = paddle.cummax(data, dtype='int64')
            print(y[1].dtype)
            # indcies type: paddle.int64
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummax')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummax(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummax',
        )
        check_type(x, 'x', (Variable), 'cummax')
        helper = LayerHelper('cummax', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummax',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


def cummin(x, axis=None, dtype='int64', name=None):
    """
    The cumulative min of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummined.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.

        indices (Tensor), The corresponding index results of cummin operation.

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            data = paddle.reshape(data, (2, 3))

            y = paddle.cummin(data)
            # value: [-1, -1, -1, -2, -3, -3]
            # indcies: [0, 0, 0, 3, 4, 4]

            y = paddle.cummin(data, axis=0)
            # value: [[-1, 5, 0]
            #         [-2, -3, 0]]
            # indcies: [[0, 0, 0]
            #           [1, 1, 0]]

            y = paddle.cummin(data, axis=-1)
            # value: [[-1, -1, -1]
            #         [-2, -3, -3]]
            # indcies: [[0, 0, 0]
            #           [0, 1, 1]]

            y = paddle.cummin(data, dtype='int64')
            print(y[1].dtype)
            # indcies type: paddle.int64
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummin')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummin(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummin',
        )
        check_type(x, 'x', (Variable), 'cummin')
        helper = LayerHelper('cummin', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummin',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


3614 3615
def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3616
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3617 3618 3619 3620 3621 3622

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3623

3624 3625 3626 3627 3628 3629
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3630
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3631 3632 3633
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3634
        Tensor, the result of logcumsumexp operator.
3635 3636 3637

    Examples:
        .. code-block:: python
3638

3639
            import paddle
3640

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3652

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

3669
    if in_dynamic_mode():
3670 3671
        if axis is None:
            axis = -1
3672
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3673 3674
    else:
        check_variable_and_dtype(
3675
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
3676
        )
3677

3678 3679 3680 3681 3682 3683 3684 3685 3686
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3687 3688


H
hlygit66666 已提交
3689 3690 3691 3692
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3693 3694
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3695 3696 3697

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3698 3699 3700 3701 3702 3703 3704
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3741
        x = cast(x, dtype)
H
hlygit66666 已提交
3742

3743
    if in_dynamic_mode():
3744
        return _C_ops.cumprod(x, dim)
3745 3746 3747 3748
    else:
        check_variable_and_dtype(
            x,
            "x",
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3759 3760 3761
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3772

3773

J
Jack Zhou 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3790

3791
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3792
            out = paddle.isfinite(x)
N
Noel 已提交
3793
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3794
    """
3795
    if in_dynamic_mode():
3796
        return _C_ops.isfinite(x)
3797 3798 3799 3800 3801
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
3802 3803 3804 3805 3806 3807 3808 3809
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3810 3811 3812 3813 3814 3815 3816
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3817

3818

J
Jack Zhou 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3835

3836
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3837
            out = paddle.isinf(x)
N
Noel 已提交
3838
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3839
    """
3840
    if in_dynamic_mode():
3841
        return _C_ops.isinf(x)
3842 3843 3844
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
3856 3857 3858 3859
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3860

3861

J
Jack Zhou 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3878

3879
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3880
            out = paddle.isnan(x)
N
Noel 已提交
3881
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3882
    """
3883
    if in_dynamic_mode():
3884
        return _C_ops.isnan(x)
3885 3886 3887
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
3899 3900 3901 3902
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3903 3904


G
guofei 已提交
3905 3906 3907 3908 3909
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3910
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3911 3912 3913
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3914
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3915
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3916
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3917 3918 3919
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3920
            of output is the same as input Tensor `x`.
3921
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3922 3923 3924

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3925

G
guofei 已提交
3926 3927 3928 3929 3930 3931
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3932 3933
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3934
            out1 = paddle.prod(x)
3935
            # 0.0002268
G
guofei 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3950 3951
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3952 3953 3954 3955 3956 3957 3958 3959
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3960
        check_dtype(
3961 3962 3963 3964
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
3965
        )
G
guofei 已提交
3966
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3967
            x = cast(x, dtype)
G
guofei 已提交
3968

3969
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3970
    if in_dynamic_mode():
3971
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3972 3973 3974 3975 3976
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
3977
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
3978
            'reduce_prod',
3979
        )
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3990 3991 3992 3993


def sign(x, name=None):
    """
3994
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3995 3996

    Args:
3997 3998
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

4008
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
4009 4010 4011
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
4012
    if in_dynamic_mode():
4013
        return _C_ops.sign(x)
4014 4015
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4016
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
4017 4018 4019
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
4020

4021
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
4022

4023
        return out
W
WangXi 已提交
4024 4025 4026


def tanh(x, name=None):
4027
    r"""
W
WangXi 已提交
4028 4029 4030
    Tanh Activation Operator.

    .. math::
4031
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
4032 4033

    Args:
4034
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

4046
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
4047
            out = paddle.tanh(x)
N
Noel 已提交
4048
            print(out)
W
WangXi 已提交
4049 4050
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
4051
    if in_dynamic_mode():
4052
        return _C_ops.tanh(x)
4053 4054
    else:
        check_variable_and_dtype(
4055
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
4056 4057 4058 4059 4060 4061
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
4062

4063

4064
@inplace_apis_in_dygraph_only
4065 4066 4067 4068 4069
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
4070
    return _C_ops.tanh_(x)
4071 4072


S
Steffy-zxf 已提交
4073 4074
def increment(x, value=1.0, name=None):
    """
4075
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
4076 4077 4078 4079
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
4080
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
4096
    if in_dynamic_mode():
4097
        return _C_ops.increment_(x, value)
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
4110 4111 4112 4113


def all(x, axis=None, keepdim=False, name=None):
    """
4114
    Computes the ``logical and`` of tensor elements over the given dimension.
4115 4116 4117 4118 4119

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4120
            Tensor with a single element, otherwise must be in the
4121 4122 4123 4124 4125 4126
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4127
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4128 4129 4130 4131 4132 4133 4134 4135

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
4136

N
Noel 已提交
4137
            # x is a bool Tensor with following elements:
4138 4139
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
4140
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
4141
            print(x)
S
syyxsxx 已提交
4142
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
4143

4144 4145
            # out1 should be False
            out1 = paddle.all(x)          # False
4146
            print(out1)
C
Chen Long 已提交
4147

4148 4149 4150
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
4151 4152

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
4153
            out3 = paddle.all(x, axis=-1) # [False, True]
4154
            print(out3)
C
Chen Long 已提交
4155 4156 4157

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
4158
            print(out4)
4159

4160
    """
4161
    if in_dynamic_mode():
4162
        return _C_ops.all(x, axis, keepdim)
4163 4164 4165 4166 4167 4168 4169
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4170 4171 4172
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'all'
        )
4173
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
4174

4175
        helper = LayerHelper('all', **locals())
4176
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4177 4178 4179 4180 4181 4182 4183
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
4184 4185 4186 4187


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
4188
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
4189 4190 4191 4192 4193

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4194
            Tensor with a single element, otherwise must be in the
4195 4196 4197 4198 4199 4200
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4201
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4202 4203 4204 4205 4206 4207 4208 4209

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
4210 4211 4212

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
4213
            print(x)
S
syyxsxx 已提交
4214
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
4215 4216 4217 4218
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

4219 4220
            # out1 should be True
            out1 = paddle.any(x)           # True
4221
            print(out1)
C
Chen Long 已提交
4222

4223
            # out2 should be [True, True]
4224
            out2 = paddle.any(x, axis=0)   # [True, True]
4225
            print(out2)
C
Chen Long 已提交
4226 4227

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
4228
            out3 = paddle.any(x, axis=-1)  # [True, True]
4229
            print(out3)
C
Chen Long 已提交
4230 4231 4232

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
4233 4234
            print(out4)

4235
    """
4236
    if in_dynamic_mode():
4237
        return _C_ops.any(x, axis, keepdim)
4238 4239 4240 4241 4242 4243 4244
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4245 4246 4247
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'any'
        )
4248
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4249

4250
        helper = LayerHelper('any', **locals())
4251
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4252 4253 4254 4255 4256 4257 4258
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4259

4260

L
Leo Chen 已提交
4261 4262
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4263 4264 4265 4266 4267 4268
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4269 4270 4271 4272

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4273

L
Leo Chen 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
4285

L
Leo Chen 已提交
4286 4287 4288 4289 4290 4291
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
4292

4293

4294 4295 4296 4297 4298
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4299
        x (Tensor): The input Tensor which hold the complex numbers.
4300
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4301
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4302 4303

    Returns:
C
Chen Long 已提交
4304
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4305 4306 4307 4308 4309

    Examples:
        .. code-block:: python

          import paddle
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
4322
    if in_dynamic_mode():
4323
        return _C_ops.conj(x)
4324 4325 4326 4327
    else:
        check_variable_and_dtype(
            x,
            "x",
4328 4329 4330 4331
            [
                'complex64',
                'complex128',
                'float16',
4332
                'uint16',
4333 4334 4335 4336 4337
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4338 4339
            'conj',
        )
H
hong 已提交
4340

4341 4342 4343 4344
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4345

4346 4347
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4348

4349

Z
zyfncg 已提交
4350 4351 4352 4353 4354 4355 4356 4357 4358
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4359
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

4376
    if in_dynamic_mode():
4377
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4378
    else:
4379 4380 4381
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4382 4383 4384 4385
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4386

4387

4388 4389 4390 4391 4392 4393 4394 4395 4396
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4397
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
4413
    if in_dynamic_mode():
4414
        return _C_ops.lgamma(x)
4415
    else:
4416 4417 4418
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4419 4420 4421 4422
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4423 4424


4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4447 4448 4449
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4450

R
ronnywang 已提交
4451

4452
def atan2(x, y, name=None):
R
ronnywang 已提交
4453
    r"""
4454
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4455 4456 4457 4458

    Equation:
        .. math::

4459 4460 4461 4462 4463 4464 4465 4466
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4467 4468

    Args:
4469 4470
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4471 4472 4473 4474 4475 4476 4477 4478
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4479
            import paddle
R
ronnywang 已提交
4480

4481 4482 4483
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4484

4485 4486 4487
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4488

4489 4490 4491
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4492 4493 4494

    """

4495
    if in_dynamic_mode():
4496
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4497
    else:
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4510

4511 4512 4513 4514 4515
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4516

4517

W
wangzhen38 已提交
4518 4519 4520 4521 4522
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4523

W
wangzhen38 已提交
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
4539
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
W
wangzhen38 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4555
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4556 4557

    """
4558
    if eps is None:
W
wangzhen38 已提交
4559
        eps = 0.0
4560
    if in_dynamic_mode():
4561
        return _C_ops.logit(x, eps)
4562 4563
    else:
        check_variable_and_dtype(
4564
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4575

4576

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4587 4588 4589
        x (Tensor): An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
4590 4591 4592 4593 4594 4595 4596 4597 4598
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4599

4600 4601 4602
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4603
            out = paddle.lerp(x, y, 0.5)
4604
            # out: [5.5, 6., 6.5, 7.]
4605 4606

    """
4607 4608
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4609

4610
    if in_dynamic_mode():
4611
        return _C_ops.lerp(x, y, weight)
4612 4613
    else:
        check_variable_and_dtype(
4614
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
4615 4616
        )
        check_variable_and_dtype(
4617
            y, 'y', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
4618 4619
        )
        check_variable_and_dtype(
4620 4621 4622 4623
            weight,
            'weight',
            ['uint16', 'float16', 'float32', 'float64'],
            'lerp',
4624
        )
4625

4626 4627 4628 4629 4630
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4631

4632

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4646
        raise ValueError(
4647 4648 4649 4650
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4651
    return _C_ops.lerp_(x, y, weight)
4652

4653

W
wuhuanzhou 已提交
4654 4655
def erfinv(x, name=None):
    r"""
4656
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4667
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4668 4669 4670 4671 4672

    Example:
        .. code-block:: python

            import paddle
4673

W
wuhuanzhou 已提交
4674 4675 4676 4677 4678
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
4679
    if in_dynamic_mode():
4680
        return _C_ops.erfinv(x)
4681 4682 4683 4684 4685 4686
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4687

4688

W
wuhuanzhou 已提交
4689 4690 4691 4692 4693 4694 4695
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4696
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4697

4698

4699
def rad2deg(x, name=None):
4700
    r"""
4701
    Convert each of the elements of input x from angles in radians to degrees.
4702

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4719
            import math
4720

4721 4722 4723 4724 4725 4726 4727
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4728
            x2 = paddle.to_tensor(math.pi/2)
4729 4730
            result2 = paddle.rad2deg(x2)
            print(result2)
4731 4732
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         90.)
4733

4734 4735 4736
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
4737 4738
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        57.29578018)
4739 4740
    """
    rad2deg_scale = 180 / np.pi
4741
    if in_dynamic_mode():
4742 4743
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4744
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4745
    else:
4746 4747 4748
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4749 4750 4751
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4752
            out_cast = helper.create_variable_for_type_inference(
4753 4754 4755 4756 4757 4758 4759 4760
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4761
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4762 4763 4764 4765 4766 4767
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4768 4769
        return out

4770

4771
def deg2rad(x, name=None):
4772
    r"""
4773
    Convert each of the elements of input x from degrees to angles in radians.
4774

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4790

4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
4801 4802
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        3.14159274)
4803 4804
    """
    deg2rad_scale = np.pi / 180.0
4805
    if in_dynamic_mode():
4806 4807
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4808
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4809
    else:
4810 4811 4812
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4813 4814 4815
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4816
            out_cast = helper.create_variable_for_type_inference(
4817 4818 4819 4820 4821 4822 4823 4824
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4825
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4826 4827 4828 4829 4830 4831
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4832
        return out
A
andyjpaddle 已提交
4833

4834

T
Tao Luo 已提交
4835 4836 4837 4838
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4839

T
Tao Luo 已提交
4840 4841 4842
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4843 4844
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4845
    Args:
C
cyberslack_lee 已提交
4846 4847
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4857

T
Tao Luo 已提交
4858 4859 4860
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
4861 4862
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4863

T
Tao Luo 已提交
4864
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4865 4866 4867 4868 4869 4870
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
4871 4872
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        20)
T
Tao Luo 已提交
4873 4874

            paddle.gcd(x4, x4)
4875 4876
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4877

T
Tao Luo 已提交
4878 4879
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
4880 4881
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4882 4883 4884 4885 4886 4887 4888 4889
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4890
        return paddle.any(y != 0)
T
Tao Luo 已提交
4891 4892 4893 4894 4895

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4896
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4897
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4898 4899 4900 4901 4902 4903 4904 4905
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4906 4907
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4908
    if in_dynamic_mode():
T
Tao Luo 已提交
4909 4910 4911 4912 4913
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4914 4915
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4916 4917 4918
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4919

T
Tao Luo 已提交
4920 4921 4922 4923
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4924

T
Tao Luo 已提交
4925 4926 4927
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4928 4929
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4930
    Args:
C
cyberslack_lee 已提交
4931 4932
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
4933 4934 4935 4936 4937 4938 4939 4940 4941
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4942

T
Tao Luo 已提交
4943 4944 4945
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
4946 4947
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4948

T
Tao Luo 已提交
4949
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4950 4951 4952 4953 4954 4955
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
4956 4957
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
T
Tao Luo 已提交
4958 4959

            paddle.lcm(x4, x4)
4960 4961
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4962

T
Tao Luo 已提交
4963 4964
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
4965 4966
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4967 4968 4969 4970 4971 4972 4973
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4974 4975 4976
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4977 4978
    return out

4979

A
andyjpaddle 已提交
4980 4981 4982
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4983
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4984 4985 4986 4987

    .. math::

        out[i] = x[i+1] - x[i]
4988 4989

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4990 4991 4992
    Only n=1 is currently supported.

    Args:
4993
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
4994
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4995
                          Only support n=1. Default:1
4996 4997
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4998
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4999
                                   and its shapes must match x's shape except on axis.
5000 5001
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5002
                                   and its shapes must match x's shape except on axis.
5003
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5004

A
andyjpaddle 已提交
5005 5006 5007 5008 5009 5010 5011
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
5012

A
andyjpaddle 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
5022
            # out:
A
andyjpaddle 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
5044
    infer_flags = [1 for i in range(len(axes))]
5045
    if in_dynamic_mode():
A
andyjpaddle 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
5058
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
5071 5072 5073
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
5074 5075 5076 5077
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
5078 5079 5080
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
5081 5082

        if x.dtype == paddle.bool:
5083
            return _C_ops.logical_xor(input_back, input_front)
5084
        else:
5085
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
5086
    else:
5087
        check_variable_and_dtype(
5088 5089 5090 5091
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
5092
        )
A
andyjpaddle 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
5109 5110 5111 5112 5113 5114
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
5125 5126 5127 5128 5129 5130
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
5131 5132 5133 5134 5135 5136
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
5137 5138 5139 5140 5141 5142
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
5143 5144 5145

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
5146 5147 5148 5149 5150
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
5151
        else:
Z
zyfncg 已提交
5152
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
5153
        return out
F
Feiyu Chan 已提交
5154

5155

F
Feiyu Chan 已提交
5156 5157
def angle(x, name=None):
    r"""
5158
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5171
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
5181 5182 5183 5184 5185 5186
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5187 5188

            theta = paddle.angle(z)
5189 5190 5191 5192 5193 5194
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5195 5196
    """

5197
    if in_dynamic_mode():
F
Feiyu Chan 已提交
5198
        return _C_ops.angle(x)
5199 5200
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
5222

5223

5224
def heaviside(x, y, name=None):
5225
    r"""
5226 5227 5228 5229 5230
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5231 5232 5233 5234
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5235
                \end{array}
5236
            \right.
5237

5238
    Note:
I
Infinity_lee 已提交
5239 5240 5241
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
5242 5243

    Args:
5244 5245
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
5264
    """
5265
    if in_dynamic_mode():
5266
        return _C_ops.heaviside(x, y)
5267
    else:
W
Weilong Wu 已提交
5268
        op_type = 'elementwise_heaviside'
5269
        return _elementwise_op(LayerHelper(op_type, **locals()))
5270

5271

5272 5273 5274 5275 5276 5277
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
5278
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5279 5280 5281 5282 5283

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
5284
        .. code-block:: python
5285 5286 5287

            import paddle

5288 5289
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
5290
            output = paddle.frac(input)
5291 5292 5293 5294
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
5295
    """
5296
    if x.dtype not in [
5297 5298 5299 5300
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
5301
    ]:
5302
        raise TypeError(
5303 5304 5305 5306
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5307
    if in_dynamic_mode():
5308 5309
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5310
    else:
5311 5312
        inputs = {"X": x}
        attrs = {}
5313

5314 5315 5316 5317 5318 5319 5320 5321
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5322
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5323

5324

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
5350
    if x.dtype not in [
5351 5352 5353 5354 5355
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5356
    ]:
5357
        raise TypeError(
5358 5359 5360 5361
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5373

5374

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5442 5443 5444 5445
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5446

5447
    if in_dynamic_mode():
5448 5449
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5450
                "The type of 'index' must be Tensor, but got {}".format(
5451 5452 5453
                    type(index)
                )
            )
5454 5455
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5456 5457 5458 5459
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5473
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5474 5475 5476
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5477 5478 5479 5480 5481 5482 5483
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5510
    """
5511 5512
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5513 5514 5515 5516
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5517 5518
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5519 5520 5521
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5522 5523 5524 5525

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5536 5537 5538

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
5581
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.trapezoid(y))
5632 5633
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        10.)
5634 5635

            print(paddle.trapezoid(y, dx=2.))
5636 5637
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        20.)
5638 5639 5640 5641 5642

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.trapezoid(y, x))
5643 5644
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        10.)
5645 5646 5647 5648 5649 5650


            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.trapezoid(y, x))
5651 5652
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        -8.)
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.trapezoid(y, axis=0))
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 2.50000000, 3.50000000])
            print(paddle.trapezoid(y, axis=1))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 8.])
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.cumulative_trapezoid(y))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            print(paddle.cumulative_trapezoid(y, dx=2.))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [9. , 20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-3., -8.])

            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.cumulative_trapezoid(y, axis=0))
            # Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1.50000000, 2.50000000, 3.50000000]])
            print(paddle.cumulative_trapezoid(y, axis=1))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.50000000, 2.        ],
            #         [3.50000000, 8.        ]])
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            out = paddle.vander(x)
            print(out.numpy())
            # [[1., 1., 1.],
            #  [4., 2., 1.],
            #  [9., 3., 1.]]
            out1 = paddle.vander(x,2)
            print(out1.numpy())
            # [[1., 1.],
            #  [2., 1.],
            #  [3., 1.]]
            out2 = paddle.vander(x, increasing = True)
            print(out2.numpy())
            # [[1., 1., 1.],
            #  [1., 2., 4.],
            #  [1., 3., 9.]]
            real = paddle.to_tensor([2., 4.])
            imag = paddle.to_tensor([1., 3.])
            complex = paddle.complex(real, imag)
            out3 = paddle.vander(complex)
            print(out3.numpy())
            # [[2.+1.j, 1.+0.j],
            #  [4.+3.j, 1.+0.j]]
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

    if n > 0:
        res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
    if n > 1:
        res[:, 1:] = x[:, None]
        res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    res = res[:, ::-1] if not increasing else res
    return res
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            print(out)
            #Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #       [1.00000012, 1.99999988])
    """
5822
    if in_dynamic_mode():
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i0(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089]),
    """
5861
    if in_dynamic_mode():
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i0e(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 0.46575961, 0.30850832, 0.24300035, 0.20700192]),
    """
5898
    if in_dynamic_mode():
5899 5900 5901 5902 5903 5904 5905 5906
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i1(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0., 0.5651591 , 1.59063685 , 3.95337022 , 9.75946515]),
    """
5929
    if in_dynamic_mode():
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i1e(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0., 0.20791042, 0.21526929, 0.24300035, 0.17875084]),
    """
5963
    if in_dynamic_mode():
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            res = paddle.polygamma(data, 1)
            print(res)
            # Tensor(shape=[2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [0.64493407,  0.39493407,  0.03999467])
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083


def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

        ..  code-block:: python

            import paddle

            #example1
            x = paddle.to_tensor([1, 2, 3], dtype='float32')
            y = paddle.to_tensor([2, 3, 4], dtype='int32')
            res = paddle.ldexp(x, y)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [4., 16., 48.])

            #example2
            x = paddle.to_tensor([1, 2, 3], dtype='float32')
            y = paddle.to_tensor([2], dtype='int32')
            res = paddle.ldexp(x, y)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [4., 8., 12.])

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))