math.py 243.9 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17

18
import numpy as np
19

20
import paddle
21 22
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils
23 24
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

25
from ..common_ops_import import Variable
26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31
    convert_dtype,
)
32 33
from ..framework import (
    LayerHelper,
34
    _dygraph_tracer,
35 36
    convert_np_dtype_to_dtype_,
    core,
37
    in_dynamic_mode,
38 39 40 41
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
42
from .ops import abs  # noqa: F401
G
GGBond8488 已提交
43
from .ops import abs_  # noqa: F401
44
from .ops import acos  # noqa: F401
G
GGBond8488 已提交
45
from .ops import acos_  # noqa: F401
46
from .ops import acosh  # noqa: F401
G
GGBond8488 已提交
47
from .ops import acosh_  # noqa: F401
48
from .ops import asin  # noqa: F401
G
GGBond8488 已提交
49
from .ops import asin_  # noqa: F401
50
from .ops import asinh  # noqa: F401
G
GGBond8488 已提交
51
from .ops import asinh_  # noqa: F401
52
from .ops import atan  # noqa: F401
G
GGBond8488 已提交
53
from .ops import atan_  # noqa: F401
54
from .ops import atanh  # noqa: F401
G
GGBond8488 已提交
55
from .ops import atanh_  # noqa: F401
56 57 58
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
G
GGBond8488 已提交
59
from .ops import cos_  # noqa: F401
60
from .ops import cosh  # noqa: F401
G
GGBond8488 已提交
61
from .ops import cosh_  # noqa: F401
62
from .ops import erf  # noqa: F401
G
GGBond8488 已提交
63
from .ops import erf_  # noqa: F401
64 65 66
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
G
GGBond8488 已提交
67
from .ops import expm1_  # noqa: F401
68 69 70 71 72 73 74 75
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
76 77
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
78
from .ops import sin  # noqa: F401
G
GGBond8488 已提交
79
from .ops import sin_  # noqa: F401
80
from .ops import sinh  # noqa: F401
G
GGBond8488 已提交
81
from .ops import sinh_  # noqa: F401
82 83
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
84
from .ops import square  # noqa: F401
G
GGBond8488 已提交
85
from .ops import square_  # noqa: F401
86
from .ops import tan  # noqa: F401
G
GGBond8488 已提交
87
from .ops import tan_  # noqa: F401
88

89 90
__all__ = []

91 92 93 94 95 96 97 98 99 100 101 102 103
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
138 139
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
140 141 142
    return reduce_all, axis


143 144
def log(x, name=None):
    r"""
C
Chen Long 已提交
145
    Calculates the natural log of the given input Tensor, element-wise.
146 147 148

    .. math::

149
        Out = \ln(x)
150 151

    Args:
152
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
153 154 155 156 157 158 159 160 161 162
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

163
            >>> import paddle
164

165 166 167 168 169 170
            >>> x = [[2, 3, 4], [7, 8, 9]]
            >>> x = paddle.to_tensor(x, dtype='float32')
            >>> print(paddle.log(x))
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.69314718, 1.09861231, 1.38629436],
             [1.94591010, 2.07944155, 2.19722462]])
171
    """
172
    if in_dynamic_mode():
173
        return _C_ops.log(x)
174
    else:
175
        check_variable_and_dtype(
176 177 178 179
            x,
            'x',
            ['int32', 'int64', 'uint16', 'float16', 'float32', 'float64'],
            "log",
180
        )
181 182 183 184 185 186
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
187 188


189 190 191 192 193 194 195 196 197 198 199
@inplace_apis_in_dygraph_only
def log_(x, name=None):
    r"""
    Inplace version of ``log`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log`.
    """

    if in_dynamic_mode():
        return _C_ops.log_(x)


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
217
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
218
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
219 220 221 222
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
223 224

    Returns:
C
Chen Long 已提交
225
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
226 227 228

    Examples:
        .. code-block:: python
229

230 231
            >>> # scale as a float32 number
            >>> import paddle
232

233 234 235 236 237 238 239 240 241 242
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> res = paddle.scale(data, scale=2.0, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
243 244 245

        .. code-block:: python

246 247
            >>> # scale with parameter scale as a Tensor
            >>> import paddle
248

249 250 251 252 253 254 255 256 257 258 259
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> factor = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.scale(data, scale=factor, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
260 261 262

    """

263
    if in_dynamic_mode():
W
Weilong Wu 已提交
264 265
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
266 267
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
268 269
    else:
        check_variable_and_dtype(
270
            x,
271 272 273 274 275 276 277 278 279 280 281 282 283
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
284
        )
285 286 287 288 289 290 291 292 293 294 295
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
296

297 298 299 300
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
301 302 303


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
304 305
    r"""

306 307 308 309
    stanh activation.

    .. math::

310
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
311 312 313 314 315

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
316
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
317 318 319 320 321 322 323

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

324
            >>> import paddle
325

326 327 328 329 330
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = paddle.stanh(x, scale_a=0.67, scale_b=1.72)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00616539, 1.49927628, 1.65933096, 1.70390463])
331 332 333

    """

334
    if in_dynamic_mode():
Z
zyfncg 已提交
335
        return _C_ops.stanh(x, scale_a, scale_b)
336 337
    else:
        check_variable_and_dtype(
338
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
339
        )
340

341 342 343 344 345 346 347 348 349
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
350

351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
383
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
384

385 386 387 388 389 390 391
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

392
            >>> import paddle
393

394 395 396 397 398 399 400 401 402
            >>> img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            >>> img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            >>> inputs = [img1, img2]
            >>> index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
            >>> res = paddle.multiplex(inputs, index)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[5., 6.],
             [3., 4.]])
403 404

    """
405
    if in_dynamic_mode():
406
        return _C_ops.multiplex(inputs, index)
407 408
    else:
        helper = LayerHelper('multiplex', **locals())
409

410 411 412 413 414 415 416 417 418 419 420 421
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
422
        check_variable_and_dtype(
423
            index, "index", ['int32', 'int64'], 'multiplex'
424
        )
425

426 427 428 429 430 431 432
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
433

434

435 436 437 438 439 440
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
441
    if in_dynamic_mode():
442
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
443 444


445
def pow(x, y, name=None):
446
    """
C
Chen Long 已提交
447
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
448

449
    .. math::
450
        out = x^{y}
451

452
    Note:
I
Infinity_lee 已提交
453 454 455
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
456 457


458
    Args:
459
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
460
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
461
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
462

463
    Returns:
464
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
465 466 467

    Examples:

468
        .. code-block:: python
469

470
            >>> import paddle
471

472
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
473

474 475 476 477 478 479 480 481 482
            >>> # example 1: y is a float or int
            >>> res = paddle.pow(x, 2)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
            >>> res = paddle.pow(x, 2.5)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.         , 5.65685415 , 15.58845711])
483

484 485 486 487 488 489
            >>> # example 2: y is a Tensor
            >>> y = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.pow(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
490 491

    """
492
    # in dynamic graph mode
493
    if in_dynamic_mode():
494
        if isinstance(y, (int, float)):
495
            return _C_ops.pow(x, y)
496
        elif isinstance(y, (paddle.Tensor, Variable)):
497
            return _C_ops.elementwise_pow(x, y)
498
        else:
499
            raise TypeError(
500 501
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
502 503
    else:
        # in static graph mode
504
        if isinstance(y, (int, float)):
505 506 507 508 509 510
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
511
            )
512 513 514 515 516 517
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
518
        else:
519
            raise TypeError(
520
                'y must be scalar or tensor type, but received: %s ' % (type(y))
521
            )
522 523


524 525 526 527
@inplace_apis_in_dygraph_only
def pow_(x, y, name=None):
    """
    Inplace version of ``pow`` API, the output Tensor will be inplaced with input ``x``.
528
    Please refer to :ref:`api_paddle_pow`.
529 530 531 532
    """
    if isinstance(y, (int, float)):
        return _C_ops.pow_(x, y)
    else:
G
GGBond8488 已提交
533
        raise TypeError('y must be scalar type, but received: %s ' % (type(y)))
534 535


536
OP_NAMEMAPPING = {
537 538 539 540 541 542 543 544
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
545
    'elementwise_mod': 'remainder',
546
}
547

548

549 550 551 552 553 554
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

555 556
    out = helper.kwargs.get('out', None)

557 558
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
559 560 561 562 563
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
564
        "elementwise_max",
565 566 567 568 569 570 571 572 573 574 575 576 577 578
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
579 580 581 582 583 584 585 586 587
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
588
    check_variable_and_dtype(
589 590
        x,
        'x',
591
        data_type,
592 593
        original_op_type,
    )
594
    check_variable_and_dtype(
595 596
        y,
        'y',
597
        data_type,
598 599
        original_op_type,
    )
600 601 602 603

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
604 605 606 607 608

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
609 610 611 612 613 614 615 616 617 618
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
619 620 621
    return helper.append_activation(out)


Y
Yang Zhang 已提交
622
def add(x, y, name=None):
623
    """
624 625 626 627 628 629 630 631
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

632 633
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
634 635

    There are two cases for this operator:
636 637 638 639

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

640
    For case 2:
641 642

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
643
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
644
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
645 646 647

        For example:

648
        .. code-block:: text
649

650 651 652 653 654 655
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
656

657
    Args:
658 659 660
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
661 662

    Returns:
H
HongyuJia 已提交
663
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
664 665 666

    Examples:

667
        .. code-block:: python
668

669
            >>> import paddle
670

671 672 673 674 675 676
            >>> x = paddle.to_tensor([2, 3, 4], 'float64')
            >>> y = paddle.to_tensor([1, 5, 2], 'float64')
            >>> z = paddle.add(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [3., 8., 6.])
677
    """
678

679
    if in_dynamic_mode():
680
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
681
    else:
682
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
683 684


685 686 687 688 689 690 691 692 693
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
694
        raise ValueError(
695 696 697 698
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
699

700
    return _C_ops.add_(x, y)
701 702


Z
zhiboniu 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

729
        .. code-block:: text
Z
zhiboniu 已提交
730 731 732 733 734 735 736 737 738

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
H
Hui Zhang 已提交
739 740
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
Z
zhiboniu 已提交
741 742 743 744 745 746 747
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

748
        .. code-block:: python
Z
zhiboniu 已提交
749

750
            >>> import paddle
Z
zhiboniu 已提交
751

752 753 754 755 756 757
            >>> x = paddle.to_tensor([-1, -2, -3], 'float64')
            >>> y = paddle.to_tensor([-1], 'float64')
            >>> z = paddle.logaddexp(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-0.30685282, -0.68673831, -0.87307199])
Z
zhiboniu 已提交
758 759 760 761 762
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


763 764
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
765
    Substract two tensors element-wise. The equation is:
766 767 768 769

    .. math::
        out = x - y

770
    Note:
I
Infinity_lee 已提交
771 772 773
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
774 775 776 777 778 779 780 781 782 783 784 785

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[5, 6], [3, 4]])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-4, -4],
             [ 4,  4]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([1, 0, 4])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[ 0,  2, -1],
              [ 0,  2, -1]]])

            >>> x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            >>> y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
            >>> y = paddle.to_tensor([1, 4, 5], dtype='float64')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 4.  ,  inf., -inf.])
818
    """
819
    if in_dynamic_mode():
820
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
821
    else:
822
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
823 824


825 826 827 828 829 830 831 832 833
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
834
        raise ValueError(
835 836 837 838
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
839

840
    return _C_ops.subtract_(x, y)
841 842


843
def divide(x, y, name=None):
844
    """
845
    Divide two tensors element-wise. The equation is:
846

847 848
    .. math::
        out = x / y
849

850
    Note:
I
Infinity_lee 已提交
851 852 853
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
854

855 856 857 858
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
859

860
    Returns:
861
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
862

863
    Examples:
864

865
        .. code-block:: python
866

867
            >>> import paddle
868

869 870 871 872 873 874
            >>> x = paddle.to_tensor([2, 3, 4], dtype='float64')
            >>> y = paddle.to_tensor([1, 5, 2], dtype='float64')
            >>> z = paddle.divide(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [2.        , 0.60000000, 2.        ])
875

876
    """
877
    if in_dynamic_mode():
878
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
879
    else:
880 881
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.divide(x, y)
882
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
883 884


885 886
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
887
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
888

889
    .. math::
L
Lin Manhui 已提交
890
        out = trunc(x / y)
891

H
hg-1099255210 已提交
892 893 894
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

895
    Note:
I
Infinity_lee 已提交
896 897 898 899
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
900
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
901

902
    Args:
903 904
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
905
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
906

907 908
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
909

910
    Examples:
911

912
        .. code-block:: python
913

914
            >>> import paddle
915

916 917 918 919 920 921
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.floor_divide(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 0, 2, 2])
922

923
    """
924
    if in_dynamic_mode():
925
        return _C_ops.floor_divide(x, y)
926
    else:
927
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
928 929


930
def remainder(x, y, name=None):
931
    r"""
932 933 934
    Mod two tensors element-wise. The equation is:

    .. math::
935

936 937
        out = x \% y

938
    Note:
I
Infinity_lee 已提交
939 940 941
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
942 943

    Args:
944 945
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
946 947 948
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
949
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
950 951 952

    Examples:

953
        .. code-block:: python
954

955
            >>> import paddle
956

957 958 959 960 961 962
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.remainder(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 3, 2, 1])
963 964

    """
965
    if in_dynamic_mode():
966
        return _C_ops.remainder(x, y)
967
    else:
968
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
969 970


971 972 973 974 975 976 977 978 979
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
980 981 982 983
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
984
    return _C_ops.remainder_(x, y)
985 986


987 988
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
989 990


991
def multiply(x, y, name=None):
992
    """
993
    multiply two tensors element-wise. The equation is:
994

995 996
    .. math::
        out = x * y
997

998
    Note:
I
Infinity_lee 已提交
999 1000 1001
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1002

1003
    Args:
W
will-jl944 已提交
1004 1005
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
1006
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1007

1008
    Returns:
1009
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1010

1011 1012
    Examples:

1013
        .. code-block:: python
1014

1015
            >>> import paddle
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
            >>> x = paddle.to_tensor([[1, 2], [3, 4]])
            >>> y = paddle.to_tensor([[5, 6], [7, 8]])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[5 , 12],
             [21, 32]])
            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([2])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[2, 4, 6],
              [2, 4, 6]]])
1031 1032

    """
1033
    if in_dynamic_mode():
1034
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
1035
    else:
1036 1037
        if x.dtype != y.dtype:
            raise TypeError(
1038
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
1039
            )
1040

1041
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
1042

1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


1066 1067 1068 1069 1070
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
1071 1072
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1093
    if in_dynamic_mode():
1094 1095 1096
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1097
        return _elementwise_op(LayerHelper(op_type, **locals()))
1098 1099 1100 1101


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1102
    if in_dynamic_mode():
1103 1104 1105 1106 1107
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1108
        return _elementwise_op(LayerHelper(op_type, **locals()))
1109 1110 1111 1112


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1113
    if in_dynamic_mode():
1114 1115 1116 1117 1118
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1119
        return _elementwise_op(LayerHelper(op_type, **locals()))
1120 1121 1122 1123


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1124
    if in_dynamic_mode():
1125 1126 1127
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1128
        return _elementwise_op(LayerHelper(op_type, **locals()))
1129 1130


1131
def maximum(x, y, name=None):
1132
    """
W
Wei Shengyu 已提交
1133
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1134

1135 1136
    .. math::
        out = max(x, y)
1137

1138
    Note:
I
Infinity_lee 已提交
1139 1140 1141
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
1186
    """
1187
    if in_dynamic_mode():
1188
        return _C_ops.maximum(x, y)
1189
    else:
1190
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1191

1192

1193
def minimum(x, y, name=None):
1194
    """
C
Chen Long 已提交
1195
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1196

1197 1198
    .. math::
        out = min(x, y)
1199

1200
    Note:
I
Infinity_lee 已提交
1201 1202 1203
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1204 1205 1206 1207 1208 1209 1210

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1211
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1212 1213 1214 1215 1216

    Examples:

        .. code-block:: python

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
1248
    """
1249
    if in_dynamic_mode():
1250
        return _C_ops.minimum(x, y)
1251
    else:
1252
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1253

1254

L
LJQ❤️ 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1264
    Note:
I
Infinity_lee 已提交
1265 1266 1267
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1268 1269

    Args:
1270 1271
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1312
    """
1313
    if in_dynamic_mode():
1314
        return _C_ops.fmax(x, y)
1315
    else:
1316
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1317

1318

L
LJQ❤️ 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1328
    Note:
I
Infinity_lee 已提交
1329 1330 1331
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1332 1333

    Args:
1334 1335
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1376
    """
1377
    if in_dynamic_mode():
1378
        return _C_ops.fmin(x, y)
1379
    else:
1380
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1381

Y
Yang Zhang 已提交
1382

1383
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1384 1385 1386 1387
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1388
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1389 1390
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1391
            Tensor with a single element, otherwise must be in the
1392 1393 1394 1395 1396 1397 1398
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1399
            value is False.
1400
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1401 1402

    Returns:
1403
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1404
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1405
        otherwise it's data type is the same as `x`.
1406 1407 1408 1409

    Examples:
        .. code-block:: python

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            >>> import paddle

            >>> # x is a Tensor with following elements:
            >>> #    [[0.2, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, 0.6, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.sum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.50000000)
            >>> out2 = paddle.sum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.30000001, 0.50000000, 1.10000002, 1.59999990])
            >>> out3 = paddle.sum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.89999998, 1.60000002])
            >>> out4 = paddle.sum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.89999998],
             [1.60000002]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, 2], [3, 4]],
            >>> #      [[5, 6], [7, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, 2], [3, 4]],
            ...                       [[5, 6], [7, 8]]])
            >>> out5 = paddle.sum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [10, 26])
            >>> out6 = paddle.sum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [16, 20])

            >>> # x is a Tensor with following elements:
            >>> #    [[True, True, True, True]
            >>> #     [False, False, False, False]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[True, True, True, True],
            ...                       [False, False, False, False]])
            >>> out7 = paddle.sum(x)
            >>> out7
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
            >>> out8 = paddle.sum(x, axis=0)
            >>> out8
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 1, 1, 1])
            >>> out9 = paddle.sum(x, axis=1)
            >>> out9
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [4, 0])
1469
    """
1470

1471 1472 1473 1474
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1475

1476
    if in_dynamic_mode():
1477
        return _C_ops.sum(x, axis, dtype, keepdim)
1478
    else:
1479 1480
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.sum(x, axis, dtype, keepdim)
1481 1482
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1483

1484
        if dtype_flag:
1485
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1486

1487 1488 1489 1490 1491
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1492
                'uint16',
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1504

1505 1506 1507
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1521

1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
            >>> import paddle

            >>> x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            >>> out1 = paddle.nan_to_num(x)
            >>> out1
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out2 = paddle.nan_to_num(x, nan=1)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out3 = paddle.nan_to_num(x, posinf=5)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              5.                                      ,
             -340282346638528859811704183484516925440.])
            >>> out4 = paddle.nan_to_num(x, nan=10, neginf=-99)
            >>> out4
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 10.                                    ,
              0.30000001                             ,
             340282346638528859811704183484516925440.,
             -99.                                    ])
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1595 1596 1597 1598 1599
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1600
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1612
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1613 1614 1615 1616 1617 1618 1619

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
                        >>> import paddle

            >>> # x is a Tensor with following elements:
            >>> #    [[nan, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, -nan, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
            >>> out1 = paddle.nansum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.69999981)
            >>> out2 = paddle.nansum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.50000000, 0.50000000, 1.59999990])
            >>> out3 = paddle.nansum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.70000005, 1.        ])
            >>> out4 = paddle.nansum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.70000005],
             [1.        ]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, nan], [3, 4]],
            >>> #       [[5, 6], [-nan, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out5 = paddle.nansum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [8. , 19.])
            >>> out6 = paddle.nansum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [9. , 18.])
W
wangguanqun 已提交
1660
    """
1661
    check_variable_and_dtype(
1662
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1663
    )
W
wangguanqun 已提交
1664 1665 1666 1667 1668 1669 1670
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]])
            >>> out1 = paddle.nanmean(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.44999996)
            >>> out2 = paddle.nanmean(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.25000000, 0.50000000, 0.79999995])
            >>> out3 = paddle.nanmean(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.10000000, 0.25000000, 0.50000000, 0.79999995]])
            >>> out4 = paddle.nanmean(x, axis=1)
            >>> out4
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.56666666, 0.33333334])
            >>> out5 = paddle.nanmean(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.56666666],
             [0.33333334]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out6 = paddle.nanmean(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2.66666675, 6.33333349])
            >>> out7 = paddle.nanmean(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3., 6.])
1739 1740 1741
    """
    if isinstance(axis, int):
        axis = [axis]
1742 1743 1744
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1745 1746 1747
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1748 1749 1750
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1751 1752
        cnt.astype(x.dtype),
    )
1753 1754


1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            >>> out1 = paddle.count_nonzero(x)
            >>> out1
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            3)
            >>> out2 = paddle.count_nonzero(x, axis=0)
            >>> out2
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 2])
            >>> out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 2]])
            >>> out4 = paddle.count_nonzero(x, axis=1)
            >>> out4
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 1, 0])
            >>> out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[2],
             [1],
             [0]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
            ...                         [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            >>> out6 = paddle.count_nonzero(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [3, 6])
            >>> out7 = paddle.count_nonzero(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 3, 5])
1816 1817
    """

1818 1819
    if isinstance(axis, int):
        axis = [axis]
1820 1821 1822 1823 1824 1825

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1826
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1827
def add_n(inputs, name=None):
1828
    """
1829
    Sum one or more Tensor of the input.
1830

S
Steffy-zxf 已提交
1831 1832 1833
    For example:

    .. code-block:: text
1834

S
Steffy-zxf 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1848

S
Steffy-zxf 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1864 1865

    Args:
1866
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1867
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1868
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1869 1870

    Returns:
S
Steffy-zxf 已提交
1871
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1872 1873 1874

    Examples:
        .. code-block:: python
1875

1876
            >>> import paddle
1877

1878 1879 1880 1881 1882 1883 1884
            >>> input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            >>> input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            >>> output = paddle.add_n([input0, input1])
            >>> output
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[8. , 10., 12.],
             [14., 16., 18.]])
1885
    """
1886
    if in_dynamic_mode():
1887 1888
        if isinstance(inputs, Variable):
            inputs = [inputs]
1889
        return _C_ops.add_n(inputs)
1890
    else:
1891 1892
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1893
        if isinstance(inputs, (list, tuple)):
1894 1895 1896 1897 1898
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1899 1900 1901 1902 1903 1904 1905 1906
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1907 1908 1909 1910 1911 1912
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1913
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1914 1915
                'add_n',
            )
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1926

1927
        return out
1928 1929


1930 1931 1932
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1933

1934 1935 1936
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1937

1938 1939
    Returns:
        Tensor: The output Tensor of trunc.
1940

1941 1942 1943
    Examples:
        .. code-block:: python

1944
            >>> import paddle
1945

1946 1947 1948 1949 1950 1951
            >>> input = paddle.to_tensor([[0.1, 1.5], [-0.2, -2.4]], 'float32')
            >>> output = paddle.trunc(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.,  1.],
             [-0., -2.]])
1952
    '''
1953
    if in_dynamic_mode():
1954
        return _C_ops.trunc(input)
1955
    else:
1956 1957
        inputs = {"X": input}
        attrs = {}
1958

1959 1960 1961 1962 1963
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1964

1965 1966 1967 1968
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1969 1970


1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
@inplace_apis_in_dygraph_only
def trunc_(input, name=None):
    r"""
    Inplace version of ``trunc`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_trunc`.
    """
    if in_dynamic_mode():
        return _C_ops.trunc_(input)


W
WuHaobo 已提交
1981
def mm(input, mat2, name=None):
1982
    """
S
swtkiwi 已提交
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1995
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1996
        mat2 (Tensor): The input tensor which is a Tensor.
1997
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1998 1999

    Returns:
N
Noel 已提交
2000
        Tensor: The product Tensor.
2001

W
wawltor 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

2034 2035 2036
    Examples:
        .. code-block:: python

2037 2038 2039 2040 2041 2042 2043 2044 2045
            >>> import paddle
            >>> input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            >>> mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            >>> out = paddle.mm(input, mat2)
            >>> out
            Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[11., 14., 17., 20.],
             [23., 30., 37., 44.],
             [35., 46., 57., 68.]])
2046

N
Noel 已提交
2047

2048
    """
2049
    if in_dynamic_mode():
2050
        return _C_ops.matmul(input, mat2, False, False)
2051
    else:
2052

2053 2054 2055 2056 2057
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
2058
                )
2059 2060 2061 2062 2063 2064
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
2065

2066 2067 2068
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
2069
                    raise ValueError(
2070 2071
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
2072 2073 2074
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
2075
                    )
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
2100

2101

Y
yaoxuefeng 已提交
2102
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
2103 2104 2105
    """
    **addmm**

2106
    Perform matrix multiplication for input $x$ and $y$.
2107 2108 2109 2110 2111 2112 2113 2114 2115
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
2116 2117 2118
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
2119 2120
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
2121
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2122 2123

    Returns:
2124
        Tensor: The output Tensor of addmm.
2125 2126

    Examples:
2127
        .. code-block:: python
2128

2129
            >>> import paddle
2130

2131 2132 2133
            >>> x = paddle.ones([2, 2])
            >>> y = paddle.ones([2, 2])
            >>> input = paddle.ones([2, 2])
Y
yaoxuefeng 已提交
2134

2135
            >>> out = paddle.addmm(input=input, x=x, y=y, beta=0.5, alpha=5.0)
Y
yaoxuefeng 已提交
2136

2137 2138 2139 2140
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[10.50000000, 10.50000000],
             [10.50000000, 10.50000000]])
2141
    """
Y
yaoxuefeng 已提交
2142 2143 2144
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
2145
    if not len(x_shape) == len(y_shape) == 2:
2146
        raise ValueError(
2147 2148 2149 2150
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
2151
    if x_shape[1] != y_shape[0]:
2152
        raise ValueError(
2153 2154 2155 2156
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
2157 2158 2159
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
2160
                raise ValueError(
2161 2162 2163 2164
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
2165
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
2166
                raise ValueError(
2167 2168 2169 2170
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2171 2172
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
2173
                raise ValueError(
2174 2175 2176 2177
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2178 2179
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2180
            raise ValueError(
2181 2182 2183 2184
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2185
    else:
2186
        raise ValueError(
2187 2188 2189 2190
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2191

2192
    if in_dynamic_mode():
2193
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2194
    else:
2195 2196
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2197

2198 2199
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2200 2201 2202 2203 2204 2205 2206
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2207 2208
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2209

2210 2211 2212 2213
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2214

2215

G
GGBond8488 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
@inplace_apis_in_dygraph_only
def addmm_(input, x, y, beta=1.0, alpha=1.0, name=None):
    """
    Inplace version of ``addmm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_label_addmm`.
    """
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
    if x_shape[1] != y_shape[0]:
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
    else:
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )

    if in_dynamic_mode():
        return _C_ops.addmm_(input, x, y, beta, alpha)


S
seemingwang 已提交
2276 2277 2278 2279 2280 2281 2282
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2283
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
2297
        .. code-block:: python
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
            >>> import paddle
            >>> input = [[[2.0, 2, -2], [3, 0.3, 3]],
            ...          [[2, -8, 2],   [3.1, 3.7, 3]]]
            >>> x = paddle.to_tensor(input,dtype='float32')
            >>> y = paddle.renorm(x, 1.0, 2, 2.05)
            >>> print(y)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[ 0.40594056,  0.29285714, -0.41000000],
              [ 0.60891086,  0.04392857,  0.61500001]],
             [[ 0.40594056, -1.17142856,  0.41000000],
              [ 0.62920785,  0.54178572,  0.61500001]]])
2310

S
seemingwang 已提交
2311 2312 2313
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2314 2315
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2316 2317 2318
                axis, len(input_shape), input_shape
            )
        )
2319
    if not axis >= 0:
S
seemingwang 已提交
2320
        if not axis >= -1 * len(input_shape):
2321
            raise ValueError(
2322 2323 2324 2325
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2326
        axis = axis + len(input_shape)
2327
    if in_dynamic_mode():
2328
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2329
        return out
2330
    else:
2331
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2332 2333
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2334

2335 2336
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2337

2338 2339 2340 2341
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2342

2343

Z
zhiboniu 已提交
2344 2345 2346 2347
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2348

Z
zhiboniu 已提交
2349 2350 2351 2352 2353
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2354
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2355 2356 2357 2358 2359 2360 2361

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

2362 2363 2364 2365 2366 2367 2368 2369
            >>> import paddle
            >>> x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            >>> y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            >>> out = paddle.inner(x, y)
            >>> print(out)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[14. , 32. , 50. ],
             [32. , 77. , 122.]])
Z
zhiboniu 已提交
2370 2371 2372 2373 2374 2375 2376 2377


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2378
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2379

Z
zhiboniu 已提交
2380 2381 2382
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2383
        if in_dynamic_mode():
2384
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2385
        else:
Z
zhiboniu 已提交
2386

2387 2388 2389 2390 2391
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2392
                    )
2393 2394 2395 2396 2397 2398 2399 2400 2401
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2402 2403 2404
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2427 2428
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2429
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2430 2431 2432 2433 2434 2435 2436

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

2437 2438 2439 2440 2441 2442 2443 2444 2445
            >>> import paddle
            >>> x = paddle.arange(1, 4).astype('float32')
            >>> y = paddle.arange(1, 6).astype('float32')
            >>> out = paddle.outer(x, y)
            >>> print(out)
            Tensor(shape=[3, 5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 2. , 3. , 4. , 5. ],
             [2. , 4. , 6. , 8. , 10.],
             [3. , 6. , 9. , 12., 15.]])
Z
zhiboniu 已提交
2446 2447 2448 2449 2450 2451


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2452
    if in_dynamic_mode():
2453
        return _C_ops.matmul(nx, ny, False, False)
2454
    else:
Z
zhiboniu 已提交
2455

2456 2457 2458 2459
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
2460 2461 2462 2463
                    val,
                    name,
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'outer',
2464
                )
Z
zhiboniu 已提交
2465

2466
        __check_input(nx, ny)
Z
zhiboniu 已提交
2467

2468 2469 2470 2471 2472 2473
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2474 2475


2476
def logsumexp(x, axis=None, keepdim=False, name=None):
2477
    r"""
2478
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2479

2480
    .. math::
2481
       logsumexp(x) = \log\sum exp(x)
2482

2483
    Args:
2484
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2485
            have no more than 4 dimensions.
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2502

2503
    Returns:
2504 2505
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2506

2507
    Examples:
2508

2509
    .. code-block:: python
2510

2511
        >>> import paddle
2512

2513 2514 2515 2516 2517 2518 2519 2520 2521
        >>> x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        >>> out1 = paddle.logsumexp(x)
        >>> out1
        Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
        3.46912265)
        >>> out2 = paddle.logsumexp(x, 1)
        >>> out2
        Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
        [2.15317822, 3.15684605])
2522 2523

    """
2524
    reduce_all, axis = _get_reduce_axis(axis, x)
2525

2526
    if in_dynamic_mode():
2527
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2528
    else:
2529
        check_variable_and_dtype(
2530
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2531
        )
2532 2533 2534 2535 2536 2537

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2538
        )
2539
        return out
2540

S
swtkiwi 已提交
2541

2542 2543
def inverse(x, name=None):
    """
2544 2545 2546 2547 2548
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2549
        x (Tensor): The input tensor. The last two
2550 2551 2552
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2553
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2554 2555

    Returns:
2556
        Tensor: A Tensor holds the inverse of x. The shape and data type
2557
                        is the same as x.
2558 2559 2560 2561

    Examples:
        .. code-block:: python

2562
            >>> import paddle
2563

2564 2565 2566 2567 2568 2569
            >>> mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
            >>> inv = paddle.inverse(mat)
            >>> print(inv)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.        ],
             [0.        , 0.50000000]])
2570 2571

    """
2572
    if in_dynamic_mode():
W
wanghuancoder 已提交
2573
        return _C_ops.inverse(x)
2574
    else:
2575

2576 2577 2578 2579 2580 2581 2582 2583
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2584

2585 2586 2587 2588 2589 2590 2591
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2592

2593

2594
def max(x, axis=None, keepdim=False, name=None):
2595
    """
S
swtkiwi 已提交
2596

2597
    Computes the maximum of tensor elements over the given axis.
2598

T
Tao Luo 已提交
2599 2600
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2601
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2602 2603 2604
        while max propagates gradient to all of them.


2605
    Args:
2606 2607
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2608
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2609
            `x` and return a Tensor with a single element,
2610 2611
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2612
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2613
            output Tensor. The result tensor will have one fewer dimension
2614
            than the `x` unless :attr:`keepdim` is true, default
2615
            value is False.
2616
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2617 2618

    Returns:
2619
        Tensor, results of maximum on the specified axis of input tensor,
2620
        it's data type is the same as `x`.
2621 2622 2623

    Examples:
        .. code-block:: python
2624

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.max(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.max(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.30000000, 0.60000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 1., 0., 1.],
             [0., 0., 1., 0.]])

            >>> x.clear_grad()
            >>> result3 = paddle.max(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> x.clear_grad()
            >>> result4 = paddle.max(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.70000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.max(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [4., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 1.]],
             [[0., 0.],
              [0., 1.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.max(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [7., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 0.]],
             [[0., 0.],
              [1., 1.]]])
2705 2706
    """

2707
    if in_dynamic_mode():
2708
        return _C_ops.max(x, axis, keepdim)
2709 2710 2711 2712
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2713 2714 2715 2716
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2717
        )
2718 2719
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2720

2721 2722 2723 2724 2725 2726 2727 2728
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2729

2730

2731
def min(x, axis=None, keepdim=False, name=None):
2732
    """
S
swtkiwi 已提交
2733

2734
    Computes the minimum of tensor elements over the given axis
2735

T
Tao Luo 已提交
2736 2737
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2738
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2739 2740
        while min propagates gradient to all of them.

2741
    Args:
2742 2743
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2744
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2745
            `x` and return a Tensor with a single element,
2746 2747
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2748
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2749
            output Tensor. The result tensor will have one fewer dimension
2750
            than the `x` unless :attr:`keepdim` is true, default
2751
            value is False.
2752
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2753

2754
    Returns:
2755
        Tensor, results of minimum on the specified axis of input tensor,
2756
        it's data type is the same as input's Tensor.
2757

2758 2759 2760
    Examples:
        .. code-block:: python

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.min(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.min(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.20000000, 0.50000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 1., 0.],
             [1., 1., 0., 1.]])

            >>> x.clear_grad()
            >>> result3 = paddle.min(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result4 = paddle.min(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.20000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                       [[5.0, 6.0], [7.0, 8.0]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.min(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 5.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 0.],
              [0., 0.]],
             [[1., 0.],
              [0., 0.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.min(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 2.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 1.],
              [0., 0.]],
             [[0., 0.],
              [0., 0.]]])
2841
    """
2842

2843
    if in_dynamic_mode():
2844
        return _C_ops.min(x, axis, keepdim)
2845 2846 2847 2848
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2849 2850 2851 2852
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2853
        )
2854

2855 2856 2857 2858 2859 2860 2861 2862
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2863

2864

T
Tao Luo 已提交
2865 2866 2867 2868 2869 2870
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2871
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2872 2873 2874
        while max propagates gradient to all of them.

    Args:
2875
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2876
            the dimension is no more than 4.
2877
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2878 2879 2880 2881
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2882
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2883 2884 2885
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2886
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2887 2888 2889 2890 2891 2892 2893 2894

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
            ...                         [0.9, 0.9, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 maximum elements:
            >>> # 1) amax evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while max propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amax(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_max = paddle.max(x)
            >>> result1_max.backward()
            >>> result1_max
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amax(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000, 0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amax(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amax(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.90000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
            ...                         [[0.9, 0.9], [0.6, 0.7]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amax(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amax(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
2991
    """
2992
    if in_dynamic_mode():
2993
        return _C_ops.amax(x, axis, keepdim)
2994

2995 2996 2997 2998 2999
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
3000
        )
T
Tao Luo 已提交
3001

3002 3003 3004 3005 3006 3007 3008 3009
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3010

3011

T
Tao Luo 已提交
3012 3013 3014 3015 3016 3017 3018
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
3019
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
3020 3021 3022
        while min propagates gradient to all of them.

    Args:
3023
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
3024
            the dimension is no more than 4.
3025
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
3026 3027 3028 3029
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
3030
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
3031 3032 3033
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
3034
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
3035 3036 3037 3038 3039 3040 3041 3042

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
            ...                         [0.1, 0.1, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 minimum elements:
            >>> # 1) amin evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while min propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amin(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_min = paddle.min(x)
            >>> result1_min.backward()
            >>> result1_min
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amin(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000, 0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amin(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amin(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.10000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
            ...                       [[0.1, 0.1], [0.6, 0.7]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amin(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amin(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
3139
    """
3140
    if in_dynamic_mode():
3141
        return _C_ops.amin(x, axis, keepdim)
3142

3143 3144 3145 3146 3147
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
3148
        )
T
Tao Luo 已提交
3149

3150 3151 3152 3153 3154 3155 3156 3157
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3158

3159

W
WuHaobo 已提交
3160
def log1p(x, name=None):
3161
    r"""
3162
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
3163

3164
    .. math::
3165
        Out = \ln(x+1)
S
Steffy-zxf 已提交
3166

3167
    Args:
3168
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3169
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3170

3171
    Returns:
S
Steffy-zxf 已提交
3172
        Tensor, the natural log of the input Tensor computed element-wise.
3173

3174 3175
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
3176

3177
            >>> import paddle
S
Steffy-zxf 已提交
3178

3179 3180 3181 3182 3183 3184
            >>> data = paddle.to_tensor([[0], [1]], dtype='float32')
            >>> res = paddle.log1p(data)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        ],
             [0.69314718]])
3185 3186
    """

3187
    if in_dynamic_mode():
W
wanghuancoder 已提交
3188
        return _C_ops.log1p(x)
3189
    else:
3190
        check_variable_and_dtype(
3191 3192 3193 3194
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log1p",
3195
        )
3196 3197 3198 3199 3200 3201
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
3202

3203

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
@inplace_apis_in_dygraph_only
def log1p_(x, name=None):
    r"""
    Inplace version of ``log1p`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log1p`.
    """

    if in_dynamic_mode():
        return _C_ops.log1p_(x)


J
joejiong 已提交
3215
def log2(x, name=None):
3216
    r"""
J
joejiong 已提交
3217 3218 3219 3220
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

3221
        Out = \log_2x
J
joejiong 已提交
3222 3223

    Args:
3224
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3225
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3226 3227 3228 3229 3230 3231 3232 3233


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [2.0]])
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3260
    """
3261
    if in_dynamic_mode():
W
wanghuancoder 已提交
3262
        return _C_ops.log2(x)
3263 3264
    else:
        check_variable_and_dtype(
3265 3266 3267 3268
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log2",
3269 3270 3271 3272 3273 3274 3275
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
3276

J
joejiong 已提交
3277

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
@inplace_apis_in_dygraph_only
def log2_(x, name=None):
    r"""
    Inplace version of ``log2`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log2`.
    """

    if in_dynamic_mode():
        return _C_ops.log2_(x)


J
joejiong 已提交
3289
def log10(x, name=None):
3290
    r"""
J
joejiong 已提交
3291 3292 3293 3294
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

3295
        Out = \log_10_x
J
joejiong 已提交
3296 3297

    Args:
3298
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3299
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3300 3301 3302 3303 3304 3305 3306 3307


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3308

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [10.0]])
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3334
    """
3335
    if in_dynamic_mode():
W
wanghuancoder 已提交
3336
        return _C_ops.log10(x)
3337 3338
    else:
        check_variable_and_dtype(
3339 3340 3341 3342
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log10",
3343 3344 3345 3346 3347 3348 3349
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
3350 3351


3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
@inplace_apis_in_dygraph_only
def log10_(x, name=None):
    r"""
    Inplace version of ``log10`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log10`.
    """

    if in_dynamic_mode():
        return _C_ops.log10_(x)


Y
Yang Zhang 已提交
3363
def clip(x, min=None, max=None, name=None):
3364
    """
Y
Yang Zhang 已提交
3365
    This operator clip all elements in input into the range [ min, max ] and return
3366 3367 3368 3369
    a resulting tensor as the following equation:

    .. math::

3370
        Out = MIN(MAX(x, min), max)
3371 3372

    Args:
3373
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
3374 3375 3376 3377
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
3378
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3379 3380

    Returns:
Y
Yang Zhang 已提交
3381
        Tensor: A Tensor with the same data type and data shape as input.
3382 3383 3384 3385

    Examples:
        .. code-block:: python

3386
            >>> import paddle
N
Noel 已提交
3387

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
            >>> x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
            >>> out1 = paddle.clip(x1, min=3.5, max=5.0)
            >>> out1
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[3.50000000, 3.50000000],
             [4.50000000, 5.        ]])
            >>> out2 = paddle.clip(x1, min=2.5)
            >>> out2
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[2.50000000, 3.50000000],
             [4.50000000, 6.40000010]])
3399 3400
    """

3401 3402 3403 3404 3405 3406 3407
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
3408 3409 3410
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
3411 3412 3413
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
3414

3415
    if in_dynamic_mode():
C
chentianyu03 已提交
3416
        if isinstance(min, Variable):
3417
            min = min.item(0)
C
chentianyu03 已提交
3418
        if isinstance(max, Variable):
3419
            max = max.item(0)
C
chentianyu03 已提交
3420 3421
        min = min_ if min is None else min
        max = max_ if max is None else max
3422
        return _C_ops.clip(x, min, max)
3423 3424 3425 3426 3427 3428 3429
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
3430
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3431 3432 3433 3434 3435 3436 3437 3438 3439
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
3440
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3441 3442 3443
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
3444

3445
        check_variable_and_dtype(
3446 3447 3448 3449
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
3450
        )
Y
Yang Zhang 已提交
3451

3452 3453
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
3454

3455 3456 3457 3458 3459
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3474

3475
        return output
F
Feiyu Chan 已提交
3476

W
WuHaobo 已提交
3477

3478 3479 3480 3481 3482 3483 3484 3485 3486
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3487
        min = min.item(0)
3488
    if isinstance(max, Variable):
3489
        max = max.item(0)
3490 3491
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3492

3493
    if in_dynamic_mode():
3494
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3495

3496

3497
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3498
    """
S
swtkiwi 已提交
3499

3500
    Computes the sum along diagonals of the input tensor x.
3501 3502

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3503

3504
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3505
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3506
    of the input tensor x.
L
Li Fuchen 已提交
3507

3508
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3509 3510 3511 3512

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3513
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3514

L
Li Fuchen 已提交
3515
    Args:
3516 3517 3518 3519 3520
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3521 3522

    Returns:
3523
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3524 3525 3526 3527

    Examples:
        .. code-block:: python

3528
            >>> import paddle
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
            >>> case1 = paddle.randn([2, 3])
            >>> case2 = paddle.randn([3, 10, 10])
            >>> case3 = paddle.randn([3, 10, 5, 10])
            >>> data1 = paddle.trace(case1)
            >>> data1.shape
            []
            >>> data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2)
            >>> data2.shape
            [3]
            >>> data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1)
            >>> data3.shape
            [3, 5]
L
Li Fuchen 已提交
3542
    """
3543

Z
zyfncg 已提交
3544
    def __check_input(x, offset, axis1, axis2):
3545 3546 3547 3548 3549 3550
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3551

3552
        input_shape = list(x.shape)
3553 3554 3555 3556
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3557

3558 3559
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3560

3561 3562
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3563
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3564
        )
L
Li Fuchen 已提交
3565

3566 3567
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3568
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3569
        )
L
Li Fuchen 已提交
3570

3571 3572 3573 3574
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3575

3576
    if in_dynamic_mode():
3577
        return _C_ops.trace(x, offset, axis1, axis2)
3578 3579
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3580

3581 3582
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3583

3584 3585 3586 3587 3588 3589 3590
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3591

3592

3593 3594
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3595
    Computes the diagonals of the input tensor x.
3596 3597

    If ``x`` is 2D, returns the diagonal.
3598
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3599 3600 3601 3602 3603 3604 3605
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3606

3607
    Args:
3608 3609 3610 3611 3612
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3613 3614 3615 3616 3617 3618 3619

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
            >>> import paddle

            >>> paddle.seed(2023)
            >>> x = paddle.rand([2, 2, 3],'float32')
            >>> print(x)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[0.86583614, 0.52014720, 0.25960937],
              [0.90525323, 0.42400089, 0.40641287]],
             [[0.97020894, 0.74437362, 0.51785129],
              [0.73292869, 0.97786582, 0.04315904]]])

            >>> out1 = paddle.diagonal(x)
            >>> print(out1)
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.73292869],
             [0.52014720, 0.97786582],
             [0.25960937, 0.04315904]])

            >>> out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            >>> print(out2)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])

            >>> out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            >>> print(out3)
            Tensor(shape=[3, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.90525323],
             [0.42400089],
             [0.40641287]])

            >>> out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            >>> print(out4)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])
3656

3657
    """
3658
    if in_dynamic_mode():
3659
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3660
    else:
W
wanghuancoder 已提交
3661

3662 3663 3664 3665
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3666 3667 3668 3669 3670 3671 3672 3673 3674
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3675 3676
                'diagonal',
            )
3677

3678 3679 3680 3681 3682
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3683

3684 3685
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3686

3687 3688 3689 3690
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3691

3692 3693 3694 3695
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3696

3697 3698 3699 3700
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3701

3702 3703 3704
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3705

3706 3707 3708 3709 3710 3711 3712
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3713 3714


W
WuHaobo 已提交
3715
def kron(x, y, name=None):
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3735 3736

    Args:
3737 3738
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3739
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3740 3741

    Returns:
3742
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3743 3744 3745

    Examples:
        .. code-block:: python
3746

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
            >>> import paddle
            >>> x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            >>> y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            >>> out = paddle.kron(x, y)
            >>> out
            Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1 , 2 , 3 , 2 , 4 , 6 ],
             [4 , 5 , 6 , 8 , 10, 12],
             [7 , 8 , 9 , 14, 16, 18],
             [3 , 6 , 9 , 4 , 8 , 12],
             [12, 15, 18, 16, 20, 24],
             [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3759
    """
3760
    if in_dynamic_mode():
3761 3762 3763 3764 3765 3766 3767 3768 3769
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3770

3771 3772 3773 3774 3775
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3776 3777 3778 3779


def cumsum(x, axis=None, dtype=None, name=None):
    """
3780 3781
    The cumulative sum of the elements along a given axis.

3782
    Note:
3783
        The first element of the result is the same as the first element of the input.
3784 3785

    Args:
3786
        x (Tensor): The input tensor needed to be cumsumed.
3787
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3788
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3789 3790 3791
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3792
        Tensor, the result of cumsum operator.
3793 3794 3795

    Examples:
        .. code-block:: python
3796

3797
            >>> import paddle
3798

3799 3800
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
3801

3802 3803 3804 3805
            >>> y = paddle.cumsum(data)
            >>> y
            Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0 , 1 , 3 , 6 , 10, 15, 21, 28, 36, 45, 55, 66])
3806

3807 3808 3809 3810 3811 3812
            >>> y = paddle.cumsum(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 6 , 8 , 10],
             [12, 15, 18, 21]])
3813

3814 3815 3816 3817 3818 3819
            >>> y = paddle.cumsum(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 3 , 6 ],
             [4 , 9 , 15, 22],
             [8 , 17, 27, 38]])
3820

3821 3822
            >>> y = paddle.cumsum(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
3823 3824 3825 3826 3827 3828
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3829
        x = cast(x, dtype)
3830

3831
    if in_dynamic_mode():
3832 3833
        if axis is None:
            axis = -1
3834
        return _C_ops.cumsum(x, axis, flatten, False, False)
3835
    else:
3836 3837 3838
        check_variable_and_dtype(
            x,
            'x',
3839
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3840 3841
            'cumsum',
        )
3842 3843
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3844
        kwargs = {}
3845 3846 3847 3848 3849
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3850

3851

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
def cummax(x, axis=None, dtype='int64', name=None):
    """
    The cumulative max of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummaxed.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.

        indices (Tensor), The corresponding index results of cummax operation.

    Examples:
        .. code-block:: python

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
            >>> import paddle

            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummax(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1,  5,  5,  5,  5,  5])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 1, 1, 1, 1])

            >>> value, indices = paddle.cummax(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-1,  5,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 0, 1]])

            >>> value, indices = paddle.cummax(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  5],
             [-2, -2,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 1],
             [0, 0, 2]])

            >>> value, indices = paddle.cummax(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummax')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummax(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummax',
        )
        check_type(x, 'x', (Variable), 'cummax')
        helper = LayerHelper('cummax', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummax',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


def cummin(x, axis=None, dtype='int64', name=None):
    """
    The cumulative min of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummined.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.

        indices (Tensor), The corresponding index results of cummin operation.

    Examples:
        .. code-block:: python

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
            >>> import paddle
            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummin(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1, -1, -1, -2, -3, -3])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 3, 4, 4])

            >>> value, indices = paddle.cummin(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-2, -3,  0]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [1, 1, 0]])

            >>> value, indices = paddle.cummin(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1, -1, -1],
             [-2, -3, -3]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 1, 1]])

            >>> value, indices = paddle.cummin(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummin')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummin(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummin',
        )
        check_type(x, 'x', (Variable), 'cummin')
        helper = LayerHelper('cummin', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummin',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


4023 4024
def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
4025
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
4026 4027 4028 4029 4030 4031

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
4032

4033 4034 4035 4036 4037 4038
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
4039
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
4040 4041 4042
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4043
        Tensor, the result of logcumsumexp operator.
4044 4045 4046

    Examples:
        .. code-block:: python
4047

4048
            >>> import paddle
4049

4050 4051
            >>> data = paddle.arange(12, dtype='float64')
            >>> data = paddle.reshape(data, (3, 4))
4052

4053 4054 4055 4056 4057 4058
            >>> y = paddle.logcumsumexp(data)
            >>> y
            Tensor(shape=[12], dtype=float64, place=Place(cpu), stop_gradient=True,
            [0.         , 1.31326169 , 2.40760596 , 3.44018970 , 4.45191440 ,
             5.45619332 , 6.45776285 , 7.45833963 , 8.45855173 , 9.45862974 ,
             10.45865844, 11.45866900])
4059

4060 4061 4062 4063 4064 4065
            >>> y = paddle.logcumsumexp(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.         , 2.         , 3.         ],
             [4.01814993 , 5.01814993 , 6.01814993 , 7.01814993 ],
             [8.01847930 , 9.01847930 , 10.01847930, 11.01847930]])
4066

4067 4068 4069 4070 4071 4072
            >>> y = paddle.logcumsumexp(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.31326169 , 2.40760596 , 3.44018970 ],
             [4.         , 5.31326169 , 6.40760596 , 7.44018970 ],
             [8.         , 9.31326169 , 10.40760596, 11.44018970]])
4073

4074 4075
            >>> y = paddle.logcumsumexp(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
4076 4077 4078 4079 4080 4081 4082 4083
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

4084
    if in_dynamic_mode():
4085 4086
        if axis is None:
            axis = -1
4087
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
4088 4089
    else:
        check_variable_and_dtype(
4090
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
4091
        )
4092

4093 4094 4095 4096 4097 4098 4099 4100 4101
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
4102 4103


H
hlygit66666 已提交
4104 4105 4106 4107
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

4108 4109
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
4110 4111 4112

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
4113 4114 4115 4116 4117 4118 4119
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
4120 4121 4122 4123 4124 4125 4126

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

4127
            >>> import paddle
H
hlygit66666 已提交
4128

4129 4130 4131 4132 4133 4134 4135
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
            >>> data
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11]])
H
hlygit66666 已提交
4136

4137 4138 4139 4140 4141 4142
            >>> y = paddle.cumprod(data, dim=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0  , 1  , 2  , 3  ],
             [0  , 5  , 12 , 21 ],
             [0  , 45 , 120, 231]])
H
hlygit66666 已提交
4143

4144 4145 4146 4147 4148 4149
            >>> y = paddle.cumprod(data, dim=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0   , 0   , 0   , 0   ],
             [4   , 20  , 120 , 840 ],
             [8   , 72  , 720 , 7920]])
H
hlygit66666 已提交
4150

4151 4152 4153 4154 4155 4156
            >>> y = paddle.cumprod(data, dim=1, dtype='float64')
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.   , 0.   , 0.   , 0.   ],
             [4.   , 20.  , 120. , 840. ],
             [8.   , 72.  , 720. , 7920.]])
H
hlygit66666 已提交
4157

4158
            >>> assert y.dtype == paddle.float64
H
hlygit66666 已提交
4159 4160 4161 4162

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4163
        x = cast(x, dtype)
H
hlygit66666 已提交
4164

4165
    if in_dynamic_mode():
4166
        return _C_ops.cumprod(x, dim)
4167 4168 4169 4170
    else:
        check_variable_and_dtype(
            x,
            "x",
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4181 4182 4183
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
4184

4185 4186 4187 4188 4189 4190 4191 4192 4193
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
4194

4195

J
Jack Zhou 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

4211
            >>> import paddle
N
Noel 已提交
4212

4213 4214 4215 4216 4217
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isfinite(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True , True , False, True , False, False])
J
Jack Zhou 已提交
4218
    """
4219
    if in_dynamic_mode():
4220
        return _C_ops.isfinite(x)
4221 4222 4223 4224 4225
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
4226 4227 4228 4229 4230 4231 4232 4233
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
4234 4235 4236 4237 4238 4239 4240
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
4241

4242

J
Jack Zhou 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

4258
            >>> import paddle
C
Chen Long 已提交
4259

4260 4261 4262 4263 4264
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isinf(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False, False, True , False, False, False])
J
Jack Zhou 已提交
4265
    """
4266
    if in_dynamic_mode():
4267
        return _C_ops.isinf(x)
4268 4269 4270
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
4282 4283 4284 4285
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4286

4287

J
Jack Zhou 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

4303
            >>> import paddle
4304

4305 4306 4307 4308 4309
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isnan(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, False, False, False, False, True , True ])
J
Jack Zhou 已提交
4310
    """
4311
    if in_dynamic_mode():
4312
        return _C_ops.isnan(x)
4313 4314 4315
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
4327 4328 4329 4330
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4331 4332


G
guofei 已提交
4333 4334 4335 4336 4337
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
4338
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
4339 4340 4341
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
4342
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
4343
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
4344
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
4345 4346 4347
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
4348
            of output is the same as input Tensor `x`.
4349
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
4350 4351 4352

    Returns:
        Tensor, result of product on the specified dim of input tensor.
4353

G
guofei 已提交
4354 4355 4356
    Examples:
        .. code-block:: python

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
            >>> import paddle

            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.prod(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.00022680)

            >>> out2 = paddle.prod(x, -1)
            >>> out2
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02700000, 0.00840000])

            >>> out3 = paddle.prod(x, 0)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02000000, 0.06000000, 0.30000001, 0.63000000])

            >>> out4 = paddle.prod(x, 0, keepdim=True)
            >>> out4
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.02000000, 0.06000000, 0.30000001, 0.63000000]])

            >>> out5 = paddle.prod(x, 0, dtype='int64')
            >>> out5
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 0])

            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]])
            >>> out6 = paddle.prod(y, [0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [105., 384.])

            >>> out7 = paddle.prod(y, (1, 2))
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [24.  , 1680.])
G
guofei 已提交
4399 4400 4401

    """
    if dtype is not None:
4402
        check_dtype(
4403 4404 4405 4406
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
4407
        )
G
guofei 已提交
4408
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4409
            x = cast(x, dtype)
G
guofei 已提交
4410

4411
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
4412
    if in_dynamic_mode():
4413
        return _C_ops.prod(x, axis, keepdim, reduce_all)
4414 4415 4416 4417 4418
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
4419
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
4420
            'reduce_prod',
4421
        )
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
4432 4433 4434 4435


def sign(x, name=None):
    """
4436
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
4437 4438

    Args:
4439 4440
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
4441 4442 4443 4444 4445 4446 4447

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

4448
            >>> import paddle
W
WangXi 已提交
4449

4450 4451 4452 4453 4454
            >>> x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
            >>> out = paddle.sign(x=x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.,  0., -1.,  1.])
W
WangXi 已提交
4455
    """
4456
    if in_dynamic_mode():
4457
        return _C_ops.sign(x)
4458 4459
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4460
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
4461 4462 4463
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
4464

4465
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
4466

4467
        return out
W
WangXi 已提交
4468 4469 4470


def tanh(x, name=None):
4471
    r"""
W
WangXi 已提交
4472 4473 4474
    Tanh Activation Operator.

    .. math::
4475
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
4476 4477

    Args:
4478
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

4488
            >>> import paddle
W
WangXi 已提交
4489

4490 4491 4492 4493 4494
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.tanh(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.37994900, -0.19737528,  0.09966799,  0.29131261])
W
WangXi 已提交
4495
    """
4496
    if in_dynamic_mode():
4497
        return _C_ops.tanh(x)
4498 4499
    else:
        check_variable_and_dtype(
4500
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
4501 4502 4503 4504 4505 4506
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
4507

4508

4509
@inplace_apis_in_dygraph_only
4510 4511 4512 4513 4514
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
4515
    return _C_ops.tanh_(x)
4516 4517


S
Steffy-zxf 已提交
4518 4519
def increment(x, value=1.0, name=None):
    """
4520
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
4521 4522 4523 4524
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
4525
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
4526 4527 4528 4529 4530 4531 4532 4533
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

4534
            >>> import paddle
S
Steffy-zxf 已提交
4535

4536 4537 4538 4539 4540
            >>> data = paddle.zeros(shape=[1], dtype='float32')
            >>> counter = paddle.increment(data)
            >>> counter
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])
S
Steffy-zxf 已提交
4541 4542

    """
4543
    if in_dynamic_mode():
4544
        return _C_ops.increment_(x, value)
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
4557 4558 4559 4560


def all(x, axis=None, keepdim=False, name=None):
    """
4561
    Computes the ``logical and`` of tensor elements over the given dimension.
4562 4563 4564 4565 4566

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4567
            Tensor with a single element, otherwise must be in the
4568 4569 4570 4571 4572 4573
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4574
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4575 4576 4577 4578 4579 4580 4581

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
            >>> import paddle

            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]
            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')

            >>> # out1 should be False
            >>> out1 = paddle.all(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            False)

            >>> # out2 should be [True, False]
            >>> out2 = paddle.all(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False])

            >>> # keepdim=False, out3 should be [False, True], out.shape should be (2,)
            >>> out3 = paddle.all(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True ])

            >>> # keepdim=True, out4 should be [[False], [True]], out.shape should be (2, 1)
            >>> out4 = paddle.all(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[False],
             [True ]])
4618

4619
    """
4620
    if in_dynamic_mode():
4621
        return _C_ops.all(x, axis, keepdim)
4622 4623 4624 4625 4626 4627 4628
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4629 4630 4631
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'all'
        )
4632
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
4633

4634
        helper = LayerHelper('all', **locals())
4635
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4636 4637 4638 4639 4640 4641 4642
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
4643 4644 4645 4646


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
4647
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
4648 4649 4650 4651 4652

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4653
            Tensor with a single element, otherwise must be in the
4654 4655 4656 4657 4658 4659
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4660
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4661 4662 4663 4664 4665 4666 4667

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x = paddle.assign(x)
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')
            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]

            >>> # out1 should be True
            >>> out1 = paddle.any(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            True)

            >>> # out2 should be [True, True]
            >>> out2 = paddle.any(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=False, out3 should be [True, True], out.shape should be (2,)
            >>> out3 = paddle.any(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            >>> out4 = paddle.any(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[True],
             [True]])
4705

4706
    """
4707
    if in_dynamic_mode():
4708
        return _C_ops.any(x, axis, keepdim)
4709 4710 4711 4712 4713 4714 4715
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4716 4717 4718
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'any'
        )
4719
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4720

4721
        helper = LayerHelper('any', **locals())
4722
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4723 4724 4725 4726 4727 4728 4729
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4730

4731

L
Leo Chen 已提交
4732 4733
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4734 4735 4736 4737 4738 4739
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4740 4741 4742 4743

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4744

L
Leo Chen 已提交
4745 4746 4747 4748 4749 4750 4751

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

4752
            >>> import paddle
L
Leo Chen 已提交
4753

4754 4755 4756
            >>> shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            >>> shape
            [2, 3, 3]
4757

4758 4759
            >>> # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            >>> # ValueError (terminated with error message).
L
Leo Chen 已提交
4760 4761 4762 4763

    """

    return core.broadcast_shape(x_shape, y_shape)
4764

4765

4766 4767 4768 4769 4770
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4771
        x (Tensor): The input Tensor which hold the complex numbers.
4772
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4773
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4774 4775

    Returns:
C
Chen Long 已提交
4776
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4777 4778 4779 4780

    Examples:
        .. code-block:: python

4781
            >>> import paddle
4782

4783 4784 4785 4786 4787
            >>> data = paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
            >>> data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1+1j), (2+2j), (3+3j)],
             [(4+4j), (5+5j), (6+6j)]])
4788

4789 4790 4791 4792 4793
            >>> conj_data = paddle.conj(data)
            >>> conj_data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1-1j), (2-2j), (3-3j)],
             [(4-4j), (5-5j), (6-6j)]])
4794 4795

    """
4796
    if in_dynamic_mode():
4797
        return _C_ops.conj(x)
4798 4799 4800 4801
    else:
        check_variable_and_dtype(
            x,
            "x",
4802 4803 4804 4805
            [
                'complex64',
                'complex128',
                'float16',
4806
                'uint16',
4807 4808 4809 4810 4811
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4812 4813
            'conj',
        )
H
hong 已提交
4814

4815 4816 4817 4818
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4819

4820 4821
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4822

4823

Z
zyfncg 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4833
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4834 4835 4836 4837 4838 4839
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

4840
            >>> import paddle
Z
zyfncg 已提交
4841

4842 4843 4844 4845 4846 4847
            >>> data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            >>> res = paddle.digamma(data)
            >>> res
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.57721591,  0.03648996],
             [ nan       ,  5.32286835]])
Z
zyfncg 已提交
4848 4849
    """

4850
    if in_dynamic_mode():
4851
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4852
    else:
4853 4854 4855
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4856 4857 4858 4859
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4860

4861

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
@inplace_apis_in_dygraph_only
def digamma_(x, name=None):
    r"""
    Inplace version of ``digamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_digamma`.
    """
    if in_dynamic_mode():
        return _C_ops.digamma_(x)


4872 4873 4874 4875 4876 4877 4878 4879 4880
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4881
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4882 4883 4884 4885 4886 4887 4888 4889
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

4890
            >>> import paddle
4891

4892 4893 4894 4895 4896
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.lgamma(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.31452453, 1.76149762, 2.25271273, 1.09579790])
4897
    """
4898
    if in_dynamic_mode():
4899
        return _C_ops.lgamma(x)
4900
    else:
4901 4902 4903
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4904 4905 4906 4907
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4908 4909


4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
@inplace_apis_in_dygraph_only
def lgamma_(x, name=None):
    r"""
    Inplace version of ``lgamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_lgamma`.
    """
    if in_dynamic_mode():
        return _C_ops.lgamma_(x)


4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

4934
            >>> import paddle
4935

4936 4937 4938 4939 4940
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.neg(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.40000001,  0.20000000, -0.10000000, -0.30000001])
4941 4942
    """

4943 4944 4945
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4946

R
ronnywang 已提交
4947

4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
@inplace_apis_in_dygraph_only
def neg_(x, name=None):
    r"""
    Inplace version of ``neg`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_neg`.
    """
    return x.scale_(
        scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )


4959
def atan2(x, y, name=None):
R
ronnywang 已提交
4960
    r"""
4961
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4962 4963 4964 4965

    Equation:
        .. math::

4966 4967 4968 4969 4970 4971 4972 4973
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4974 4975

    Args:
4976 4977
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4978 4979 4980 4981 4982 4983 4984 4985
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4986
            >>> import paddle
R
ronnywang 已提交
4987

4988 4989 4990 4991
            >>> x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            >>> x
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  1,  1, -1])
R
ronnywang 已提交
4992

4993 4994 4995 4996
            >>> y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            >>> y
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  -1,  1, 1])
R
ronnywang 已提交
4997

4998 4999 5000 5001
            >>> out = paddle.atan2(x, y)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
5002 5003 5004

    """

5005
    if in_dynamic_mode():
5006
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
5007
    else:
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
5020

5021 5022 5023 5024 5025
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
5026

5027

W
wangzhen38 已提交
5028 5029 5030 5031 5032
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
5033

W
wangzhen38 已提交
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
5049
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
W
wangzhen38 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

5060
            >>> import paddle
W
wangzhen38 已提交
5061

5062 5063 5064 5065 5066
            >>> x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            >>> out1 = paddle.logit(x)
            >>> out1
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.02785587, -4.53624487, -0.95440406, -1.32673466,  1.44676447])
W
wangzhen38 已提交
5067 5068

    """
5069
    if eps is None:
W
wangzhen38 已提交
5070
        eps = 0.0
5071
    if in_dynamic_mode():
5072
        return _C_ops.logit(x, eps)
5073 5074
    else:
        check_variable_and_dtype(
5075
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
5086

5087

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
@inplace_apis_in_dygraph_only
def logit_(x, eps=None, name=None):
    r"""
    Inplace version of ``logit`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_logit`.
    """
    if eps is None:
        eps = 0.0
    if in_dynamic_mode():
        return _C_ops.logit_(x, eps)


5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
5110 5111 5112
        x (Tensor): An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
5113 5114 5115 5116 5117 5118 5119 5120
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

5121
            >>> import paddle
5122

5123 5124 5125 5126 5127 5128 5129
            >>> x = paddle.arange(1., 5., dtype='float32')
            >>> y = paddle.empty([4], dtype='float32')
            >>> y.fill_(10.)
            >>> out = paddle.lerp(x, y, 0.5)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.50000000, 6.        , 6.50000000, 7.        ])
5130 5131

    """
5132 5133
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
5134

5135
    if in_dynamic_mode():
5136
        return _C_ops.lerp(x, y, weight)
5137 5138
    else:
        check_variable_and_dtype(
5139
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5140 5141
        )
        check_variable_and_dtype(
5142
            y, 'y', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5143 5144
        )
        check_variable_and_dtype(
5145 5146 5147 5148
            weight,
            'weight',
            ['uint16', 'float16', 'float32', 'float64'],
            'lerp',
5149
        )
5150

5151 5152 5153 5154 5155
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
5156

5157

5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
5171
        raise ValueError(
5172 5173 5174 5175
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
5176
    return _C_ops.lerp_(x, y, weight)
5177

5178

W
wuhuanzhou 已提交
5179 5180
def erfinv(x, name=None):
    r"""
5181
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
5182 5183 5184 5185 5186 5187

        .. math::

            erfinv(erf(x)) = x.

    Args:
5188
        x (Tensor): An N-D Tensor, the data type is float16, bfloat16, float32, float64.
W
wuhuanzhou 已提交
5189 5190 5191
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5192
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
5193 5194 5195 5196

    Example:
        .. code-block:: python

5197
            >>> import paddle
5198

5199 5200 5201 5202 5203
            >>> x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            >>> out = paddle.erfinv(x)
            >>> out
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.       , 0.47693631, -inf.     ])
W
wuhuanzhou 已提交
5204 5205

    """
5206
    if in_dynamic_mode():
5207
        return _C_ops.erfinv(x)
5208
    else:
5209 5210 5211
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'float16', 'uint16'], 'erfinv'
        )
5212 5213 5214 5215
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
5216

5217

W
wuhuanzhou 已提交
5218 5219 5220 5221 5222 5223 5224
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
5225
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
5226

5227

5228
def rad2deg(x, name=None):
5229
    r"""
5230
    Convert each of the elements of input x from angles in radians to degrees.
5231

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5247 5248
            >>> import paddle
            >>> import math
5249

5250 5251 5252 5253 5254 5255
            >>> x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            >>> result1 = paddle.rad2deg(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 180.02334595, -180.02334595,  359.98937988, -359.98937988,
              89.95437622 , -89.95437622 ])
5256

5257 5258 5259 5260 5261
            >>> x2 = paddle.to_tensor(math.pi/2)
            >>> result2 = paddle.rad2deg(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            90.)
5262

5263 5264 5265 5266 5267
            >>> x3 = paddle.to_tensor(1)
            >>> result3 = paddle.rad2deg(x3)
            >>> result3
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            57.29578018)
5268 5269
    """
    rad2deg_scale = 180 / np.pi
5270
    if in_dynamic_mode():
5271 5272
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5273
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
5274
    else:
5275 5276 5277
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
5278 5279 5280
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5281
            out_cast = helper.create_variable_for_type_inference(
5282 5283 5284 5285 5286 5287 5288 5289
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5290
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5291 5292 5293 5294 5295 5296
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
5297 5298
        return out

5299

5300
def deg2rad(x, name=None):
5301
    r"""
5302
    Convert each of the elements of input x from degrees to angles in radians.
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5318
            >>> import paddle
5319

5320 5321 5322 5323 5324 5325
            >>> x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            >>> result1 = paddle.deg2rad(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            -1.57079637])
5326

5327 5328 5329 5330 5331
            >>> x2 = paddle.to_tensor(180)
            >>> result2 = paddle.deg2rad(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.14159274)
5332 5333
    """
    deg2rad_scale = np.pi / 180.0
5334
    if in_dynamic_mode():
5335 5336
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5337
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
5338
    else:
5339 5340 5341
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
5342 5343 5344
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5345
            out_cast = helper.create_variable_for_type_inference(
5346 5347 5348 5349 5350 5351 5352 5353
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5354
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5355 5356 5357 5358 5359 5360
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
5361
        return out
A
andyjpaddle 已提交
5362

5363

T
Tao Luo 已提交
5364 5365 5366 5367
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
5368

T
Tao Luo 已提交
5369 5370 5371
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
5372 5373
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5374
    Args:
C
cyberslack_lee 已提交
5375 5376
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5377 5378 5379 5380 5381 5382 5383 5384
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5385
            >>> import paddle
5386

5387 5388 5389 5390 5391
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.gcd(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5392

5393 5394 5395 5396
            >>> x3 = paddle.arange(6)
            >>> paddle.gcd(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [20, 1 , 2 , 1 , 4 , 5])
T
Tao Luo 已提交
5397

5398 5399 5400 5401
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.gcd(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            20)
T
Tao Luo 已提交
5402

5403 5404 5405
            >>> paddle.gcd(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5406

5407 5408 5409 5410
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.gcd(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5411 5412 5413 5414 5415 5416 5417 5418
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
5419
        return paddle.any(y != 0)
T
Tao Luo 已提交
5420 5421 5422 5423 5424

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
5425
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
5426
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
5427 5428 5429 5430 5431 5432 5433 5434
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
5435 5436
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

5437
    if in_dynamic_mode():
T
Tao Luo 已提交
5438 5439 5440 5441 5442
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
5443 5444
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
5445 5446 5447
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

5448

T
Tao Luo 已提交
5449 5450 5451 5452
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
5453

T
Tao Luo 已提交
5454 5455 5456
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
5457 5458
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5459
    Args:
C
cyberslack_lee 已提交
5460 5461
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5462 5463 5464 5465 5466 5467 5468 5469
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5470
            >>> import paddle
5471

5472 5473 5474 5475 5476
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.lcm(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5477

5478 5479 5480 5481
            >>> x3 = paddle.arange(6)
            >>> paddle.lcm(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 20, 20, 60, 20, 20])
T
Tao Luo 已提交
5482

5483 5484 5485 5486
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.lcm(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
T
Tao Luo 已提交
5487

5488 5489 5490
            >>> paddle.lcm(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5491

5492 5493 5494 5495
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.lcm(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5496 5497 5498 5499 5500 5501 5502
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
5503 5504 5505
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
5506 5507
    return out

5508

A
andyjpaddle 已提交
5509 5510 5511
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
5512
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
5513 5514 5515 5516

    .. math::

        out[i] = x[i+1] - x[i]
5517 5518

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
5519 5520 5521
    Only n=1 is currently supported.

    Args:
5522
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
5523
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
5524
                          Only support n=1. Default:1
5525 5526
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
5527
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5528
                                   and its shapes must match x's shape except on axis.
5529 5530
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5531
                                   and its shapes must match x's shape except on axis.
5532
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5533

A
andyjpaddle 已提交
5534 5535 5536 5537 5538 5539
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

5540
            >>> import paddle
5541

5542 5543 5544 5545 5546
            >>> x = paddle.to_tensor([1, 4, 5, 2])
            >>> out = paddle.diff(x)
            >>> out
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3])
A
andyjpaddle 已提交
5547

5548 5549 5550 5551 5552
            >>> y = paddle.to_tensor([7, 9])
            >>> out = paddle.diff(x, append=y)
            >>> out
            Tensor(shape=[5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3,  5,  2])
A
andyjpaddle 已提交
5553

5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
            >>> z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            >>> out = paddle.diff(z, axis=0)
            >>> out
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 3, 3]])
            >>> out = paddle.diff(z, axis=1)
            >>> out
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 1],
             [1, 1]])
A
andyjpaddle 已提交
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
5574
    infer_flags = [1 for i in range(len(axes))]
5575
    if in_dynamic_mode():
A
andyjpaddle 已提交
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
5588
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
5601 5602 5603
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
5604 5605 5606 5607
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
5608 5609 5610
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
5611 5612

        if x.dtype == paddle.bool:
5613
            return _C_ops.logical_xor(input_back, input_front)
5614
        else:
5615
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
5616
    else:
5617
        check_variable_and_dtype(
5618 5619 5620 5621
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
5622
        )
A
andyjpaddle 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
5639 5640 5641 5642 5643 5644
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
5655 5656 5657 5658 5659 5660
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
5661 5662 5663 5664 5665 5666
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
5667 5668 5669 5670 5671 5672
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
5673 5674 5675

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
5676 5677 5678 5679 5680
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
5681
        else:
Z
zyfncg 已提交
5682
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
5683
        return out
F
Feiyu Chan 已提交
5684

5685

F
Feiyu Chan 已提交
5686 5687
def angle(x, name=None):
    r"""
5688
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5701
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5702 5703 5704 5705

    Examples:
        .. code-block:: python

5706
            >>> import paddle
F
Feiyu Chan 已提交
5707

5708 5709 5710 5711 5712 5713 5714 5715 5716
            >>> x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            >>> y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            >>> z = x + 1j * y
            >>> z
            Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
             [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
             [-2j    , -1j    ,  0j    ,  1j    ],
             [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5717

5718 5719 5720 5721 5722 5723 5724
            >>> theta = paddle.angle(z)
            >>> theta
            Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
             [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
             [-1.57079637, -1.57079637,  0.        ,  1.57079637],
             [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5725 5726
    """

5727
    if in_dynamic_mode():
F
Feiyu Chan 已提交
5728
        return _C_ops.angle(x)
5729 5730
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
5752

5753

5754
def heaviside(x, y, name=None):
5755
    r"""
5756 5757 5758 5759 5760
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5761 5762 5763 5764
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5765
                \end{array}
5766
            \right.
5767

5768
    Note:
I
Infinity_lee 已提交
5769 5770 5771
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
5772 5773

    Args:
5774 5775
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5776 5777 5778 5779 5780 5781 5782 5783
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
            >>> import paddle
            >>> x = paddle.to_tensor([-0.5, 0, 0.5])
            >>> y = paddle.to_tensor([0.1])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.10000000, 1.        ])
            >>> x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            >>> y = paddle.to_tensor([0.1, 0.2, 0.3])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        , 0.20000000, 1.        ],
             [0.        , 1.        , 0.30000001]])
5796
    """
5797
    if in_dynamic_mode():
5798
        return _C_ops.heaviside(x, y)
5799
    else:
W
Weilong Wu 已提交
5800
        op_type = 'elementwise_heaviside'
5801
        return _elementwise_op(LayerHelper(op_type, **locals()))
5802

5803

5804 5805 5806 5807 5808 5809
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
5810
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5811 5812 5813 5814 5815

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
5816
        .. code-block:: python
5817

5818
            >>> import paddle
5819

5820 5821 5822 5823 5824 5825 5826
            >>> input = paddle.to_tensor([[12.22000003, -1.02999997],
            ...                           [-0.54999995, 0.66000003]])
            >>> output = paddle.frac(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.22000003, -0.02999997],
             [-0.54999995,  0.66000003]])
5827
    """
5828
    if x.dtype not in [
5829 5830 5831 5832
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
5833
    ]:
5834
        raise TypeError(
5835 5836 5837 5838
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5839
    if in_dynamic_mode():
5840 5841
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5842
    else:
5843 5844
        inputs = {"X": x}
        attrs = {}
5845

5846 5847 5848 5849 5850 5851 5852 5853
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5854
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5855

5856

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
@inplace_apis_in_dygraph_only
def frac_(x, name=None):
    r"""
    Inplace version of ``frac`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_frac`.
    """

    if x.dtype not in [
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
    ]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
    if in_dynamic_mode():
        y = _C_ops.trunc(x)
        return _C_ops.subtract_(x, y)


5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
5895
        .. code-block:: python
5896

5897
            >>> import paddle
5898

5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
            >>> x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            >>> paddle.sgn(x)
            Tensor(shape=[2, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[ (0.6000000238418579+0.800000011920929j),
              (0.2800000011920929-0.9599999785423279j),
               0j                                     ,
              (0.4472135901451111+0.8944271802902222j)],
             [ (0.6000000238418579+0.800000011920929j),
               (1+0j)                                 ,
               0j                                     ,
              (-1+0j)                                 ]])
5910 5911

    """
5912
    if x.dtype not in [
5913 5914 5915 5916 5917
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5918
    ]:
5919
        raise TypeError(
5920 5921 5922 5923
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5935

5936

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

5960
            >>> import paddle
5961

5962 5963
            >>> x_int = paddle.arange(0, 12).reshape([3, 4])
            >>> x_float = x_int.astype(paddle.float64)
5964

5965 5966 5967
            >>> idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            >>> idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            >>> idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range
5968

5969 5970 5971 5972
            >>> paddle.take(x_int, idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
5973

5974 5975 5976 5977
            >>> paddle.take(x_int, idx_neg)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 ],
             [1 , 2 , 3 ]])
5978

5979 5980 5981 5982
            >>> paddle.take(x_float, idx_pos)
            Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[4., 5., 6.],
             [7., 8., 9.]])
5983

5984 5985 5986 5987
            >>> x_int.take(idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
5988

5989 5990 5991 5992 5993
            >>> paddle.take(x_int, idx_err, mode='wrap')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 0 ]])
5994

5995 5996 5997 5998 5999
            >>> paddle.take(x_int, idx_err, mode='clip')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 0 , 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 11]])
6000 6001 6002 6003

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
6004 6005 6006 6007
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
6008

6009
    if in_dynamic_mode():
6010 6011
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
6012
                "The type of 'index' must be Tensor, but got {}".format(
6013 6014 6015
                    type(index)
                )
            )
6016 6017
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
6018 6019 6020 6021
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
6035
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
6036 6037 6038
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
6039 6040 6041 6042 6043 6044 6045
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
6046 6047 6048 6049 6050 6051 6052 6053 6054


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
6055

6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

6067
            >>> import paddle
6068

6069 6070 6071 6072 6073 6074 6075 6076
            >>> x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            >>> mantissa, exponent = paddle.tensor.math.frexp(x)
            >>> mantissa
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.50000000, 0.75000000, 0.50000000]])
            >>> exponent
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 2., 2., 3.]])
6077
    """
6078 6079
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
6080 6081 6082 6083
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
6084 6085
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
6086 6087 6088
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
6089 6090 6091 6092

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
6103 6104 6105

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
6148
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

6194
            >>> import paddle
6195

6196
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6197

6198 6199 6200
            >>> paddle.trapezoid(y)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6201

6202 6203 6204
            >>> paddle.trapezoid(y, dx=2.)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            20.)
6205

6206 6207
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6208

6209 6210 6211
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6212

6213 6214
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6215

6216 6217 6218 6219
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            -8.)
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6220

6221 6222 6223 6224 6225 6226
            >>> paddle.trapezoid(y, axis=0)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.50000000, 2.50000000, 3.50000000])
            >>> paddle.trapezoid(y, axis=1)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 8.])
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

6251
            >>> import paddle
6252

6253
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6254

6255 6256 6257
            >>> paddle.cumulative_trapezoid(y)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6258

6259 6260 6261
            >>> paddle.cumulative_trapezoid(y, dx=2.)
            >>> # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            >>> #        [9. , 20.])
6262

6263 6264
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6265

6266 6267 6268
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6269

6270 6271
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6272

6273 6274 6275
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-3., -8.])
6276

6277
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6278

6279 6280 6281 6282 6283 6284 6285
            >>> paddle.cumulative_trapezoid(y, axis=0)
            Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.50000000, 2.50000000, 3.50000000]])
            >>> paddle.cumulative_trapezoid(y, axis=1)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 2.        ],
             [3.50000000, 8.        ]])
6286 6287
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
            >>> import paddle
            >>> x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            >>> out = paddle.vander(x)
            >>> out
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [4., 2., 1.],
             [9., 3., 1.]])
            >>> out1 = paddle.vander(x,2)
            >>> out1
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1.],
             [2., 1.],
             [3., 1.]])
            >>> out2 = paddle.vander(x, increasing = True)
            >>> out2
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [1., 2., 4.],
             [1., 3., 9.]])
            >>> real = paddle.to_tensor([2., 4.])
            >>> imag = paddle.to_tensor([1., 3.])
            >>> complex = paddle.complex(real, imag)
            >>> out3 = paddle.vander(complex)
            >>> out3
            Tensor(shape=[2, 2], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(2+1j), (1+0j)],
             [(4+3j), (1+0j)]])
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
    if paddle.in_dynamic_mode():
        if n > 0:
            res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
        if n > 1:
            res[:, 1:] = x[:, None]
            res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    else:
        if n > 0:
            res = paddle.static.setitem(
                res, (slice(None), 0), paddle.to_tensor([1], dtype=x.dtype)
            )
        if n > 1:
            res = paddle.static.setitem(
                res, (slice(None), slice(1, None)), x[:, None]
            )
            res = paddle.static.setitem(
                res,
                (slice(None), slice(1, None)),
                paddle.cumprod(res[:, 1:], dim=-1),
            )
6381 6382
    res = res[:, ::-1] if not increasing else res
    return res
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6401 6402 6403 6404 6405
            >>> import paddle
            >>> out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            >>> out
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00000012, 1.99999988])
6406
    """
6407
    if in_dynamic_mode():
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6440
            >>> import paddle
6441

6442 6443 6444 6445
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> paddle.i0(x)
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089])
6446
    """
6447
    if in_dynamic_mode():
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
@inplace_apis_in_dygraph_only
def i0_(x, name=None):
    r"""
    Inplace version of ``i0`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_i0`.
    """

    if in_dynamic_mode():
        return _C_ops.i0_(x)


6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6489
            >>> import paddle
6490

6491 6492 6493 6494
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i0e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994, 0.46575963, 0.30850831, 0.24300036, 0.20700191])
6495
    """
6496
    if in_dynamic_mode():
6497 6498 6499 6500 6501 6502 6503 6504
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6521
            >>> import paddle
6522

6523 6524 6525 6526
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.56515908, 1.59063685, 3.95337057, 9.75946712])
6527
    """
6528
    if in_dynamic_mode():
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6556
            >>> import paddle
6557

6558 6559 6560 6561
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.20791042, 0.21526928, 0.19682673, 0.17875087])
6562
    """
6563
    if in_dynamic_mode():
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6596
            >>> import paddle
6597

6598 6599 6600 6601 6602
            >>> data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            >>> res = paddle.polygamma(data, 1)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.64493412,  0.39493406,  0.03999467])
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
6632 6633


6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
def polygamma_(x, n, name=None):
    r"""
    Inplace version of ``polygamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_polygamma`.
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma_(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma_(x, n)


6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
        .. code-block:: python

            >>> import paddle

            >>> # example1
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2, 3, 4], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 16., 48.])

            >>> # example2
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 8. , 12.])
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))