math.py 214.2 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36
from ..framework import (
    LayerHelper,
37
    _dygraph_tracer,
38 39
    convert_np_dtype_to_dtype_,
    core,
40
    in_dynamic_mode,
41 42 43 44
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45 46
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
47
from .ops import acosh  # noqa: F401
48
from .ops import asin  # noqa: F401
49 50 51
from .ops import asinh  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import atanh  # noqa: F401
52 53 54 55
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import cosh  # noqa: F401
56
from .ops import erf  # noqa: F401
57 58 59 60 61 62 63 64 65 66 67
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
68 69
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
70 71
from .ops import sin  # noqa: F401
from .ops import sinh  # noqa: F401
72 73
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
74 75
from .ops import square  # noqa: F401
from .ops import tan  # noqa: F401
76

77 78
__all__ = []

79 80 81 82 83 84 85 86 87 88 89 90 91
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
126 127
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
128 129 130
    return reduce_all, axis


131 132
def log(x, name=None):
    r"""
C
Chen Long 已提交
133
    Calculates the natural log of the given input Tensor, element-wise.
134 135 136

    .. math::

137
        Out = \ln(x)
138 139

    Args:
140
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
158
    if in_dynamic_mode():
159
        return _C_ops.log(x)
160
    else:
161
        check_variable_and_dtype(
162 163 164 165
            x,
            'x',
            ['int32', 'int64', 'uint16', 'float16', 'float32', 'float64'],
            "log",
166
        )
167 168 169 170 171 172
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
192
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
193
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
194 195 196 197
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
198 199

    Returns:
C
Chen Long 已提交
200
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
201 202 203

    Examples:
        .. code-block:: python
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

222
    if in_dynamic_mode():
W
Weilong Wu 已提交
223 224
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
225 226
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
227 228
    else:
        check_variable_and_dtype(
229
            x,
230 231 232 233 234 235 236 237 238 239 240 241 242
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
243
        )
244 245 246 247 248 249 250 251 252 253 254
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
255

256 257 258 259
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
260 261 262


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
263 264
    r"""

265 266 267 268
    stanh activation.

    .. math::

269
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
270 271 272 273 274

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
275
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
276 277 278 279 280 281 282 283 284 285 286 287 288 289

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

290
    if in_dynamic_mode():
Z
zyfncg 已提交
291
        return _C_ops.stanh(x, scale_a, scale_b)
292 293
    else:
        check_variable_and_dtype(
294
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
295
        )
296

297 298 299 300 301 302 303 304 305
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
306

307

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
339
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
340

341 342 343 344 345 346 347 348
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
349

350 351 352 353
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
354
            res = paddle.multiplex(inputs, index)
355
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
356 357

    """
358
    if in_dynamic_mode():
359
        return _C_ops.multiplex(inputs, index)
360 361
    else:
        helper = LayerHelper('multiplex', **locals())
362

363 364 365 366 367 368 369 370 371 372 373 374
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
375
        check_variable_and_dtype(
376
            index, "index", ['int32', 'int64'], 'multiplex'
377
        )
378

379 380 381 382 383 384 385
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
386

387

388 389 390 391 392 393
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
394
    if in_dynamic_mode():
395
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
396 397


398
def pow(x, y, name=None):
399
    """
C
Chen Long 已提交
400
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
401

402
    .. math::
403
        out = x^{y}
404

405
    Note:
I
Infinity_lee 已提交
406 407 408
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
409 410


411
    Args:
412
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
413
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
414
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
415

416
    Returns:
417
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
418 419 420

    Examples:

421
        ..  code-block:: python
422 423 424

            import paddle

425 426 427 428 429 430 431 432 433 434 435 436
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

437
            # example 2: y is a Tensor
438
            y = paddle.to_tensor([2], dtype='float32')
439
            res = paddle.pow(x, y)
440 441 442
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
443 444

    """
445
    # in dynamic graph mode
446
    if in_dynamic_mode():
447
        if isinstance(y, (int, float)):
448
            return _C_ops.pow(x, y)
449
        elif isinstance(y, (paddle.Tensor, Variable)):
450
            return _C_ops.elementwise_pow(x, y)
451
        else:
452
            raise TypeError(
453 454
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
455 456
    else:
        # in static graph mode
457
        if isinstance(y, (int, float)):
458 459 460 461 462 463
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
464
            )
465 466 467 468 469 470
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
471
        else:
472
            raise TypeError(
473
                'y must be scalar or tensor type, but received: %s ' % (type(y))
474
            )
475 476


477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
@inplace_apis_in_dygraph_only
def pow_(x, y, name=None):
    """
    Inplace version of ``pow`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_pow`.
    """
    if isinstance(y, (int, float)):
        return _C_ops.pow_(x, y)
    elif isinstance(y, (paddle.Tensor, Variable)):
        return _C_ops.elementwise_pow_(x, y)
    else:
        raise TypeError(
            'y must be scalar or tensor type, but received: %s ' % (type(y))
        )


493
OP_NAMEMAPPING = {
494 495 496 497 498 499 500 501
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
502
    'elementwise_mod': 'remainder',
503
}
504

505

506 507 508 509 510 511
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

512 513
    out = helper.kwargs.get('out', None)

514 515
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
516 517 518 519 520
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
521
        "elementwise_max",
522 523 524 525 526 527 528 529 530 531 532 533 534 535
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
536 537 538 539 540 541 542 543 544
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
545
    check_variable_and_dtype(
546 547
        x,
        'x',
548
        data_type,
549 550
        original_op_type,
    )
551
    check_variable_and_dtype(
552 553
        y,
        'y',
554
        data_type,
555 556
        original_op_type,
    )
557 558 559 560

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
561 562 563 564 565

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
566 567 568 569 570 571 572 573 574 575
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
576 577 578
    return helper.append_activation(out)


Y
Yang Zhang 已提交
579
def add(x, y, name=None):
580
    """
581 582 583 584 585 586 587 588
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

589 590
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
591 592

    There are two cases for this operator:
593 594 595 596

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

597
    For case 2:
598 599

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
600
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
601
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
602 603 604 605

        For example:

        ..  code-block:: python
606

607 608 609 610 611 612
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
613

614
    Args:
615 616 617
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
618 619

    Returns:
H
HongyuJia 已提交
620
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
621 622 623 624

    Examples:

        ..  code-block:: python
625

626
            import paddle
627

628 629 630 631
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
632
    """
633

634
    if in_dynamic_mode():
635
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
636
    else:
637
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
638 639


640 641 642 643 644 645 646 647 648
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
649
        raise ValueError(
650 651 652 653
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
654

655
    return _C_ops.add_(x, y)
656 657


Z
zhiboniu 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

        ..  code-block:: python

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
H
Hui Zhang 已提交
694 695
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
Z
zhiboniu 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

        ..  code-block:: python

            import paddle

            x = paddle.to_tensor([-1, -2, -3], 'float64')
            y = paddle.to_tensor([-1], 'float64')
            z = paddle.logaddexp(x, y)
            print(z)  # [-0.30685282, -0.68673831, -0.87307199]
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


716 717
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
718
    Substract two tensors element-wise. The equation is:
719 720 721 722

    .. math::
        out = x - y

723
    Note:
I
Infinity_lee 已提交
724 725 726
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
727 728 729 730 731 732 733 734 735 736 737 738

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
739

740 741 742 743 744 745
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
746 747 748
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
749 750 751 752 753

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
754 755 756
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
757

758 759
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
760 761
            res = paddle.subtract(x, y)
            print(res)
762 763
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
764

765
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
766 767 768
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
769 770
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
771
    """
772
    if in_dynamic_mode():
773
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
774
    else:
775
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
776 777


778 779 780 781 782 783 784 785 786
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
787
        raise ValueError(
788 789 790 791
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
792

793
    return _C_ops.subtract_(x, y)
794 795


796
def divide(x, y, name=None):
797
    """
798
    Divide two tensors element-wise. The equation is:
799

800 801
    .. math::
        out = x / y
802

803
    Note:
I
Infinity_lee 已提交
804 805 806
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
807

808 809 810 811
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
812

813
    Returns:
814
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
815

816
    Examples:
817

818
        ..  code-block:: python
819

820
            import paddle
821

822 823
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
824
            z = paddle.divide(x, y)
825
            print(z)  # [2., 0.6, 2.]
826

827
    """
828
    if in_dynamic_mode():
829
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
830
    else:
831
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
832 833


834 835
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
836
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
837

838
    .. math::
L
Lin Manhui 已提交
839
        out = trunc(x / y)
840

H
hg-1099255210 已提交
841 842 843
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

844
    Note:
I
Infinity_lee 已提交
845 846 847 848
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
849
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
850

851
    Args:
852 853
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
854
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
855

856 857
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
858

859
    Examples:
860

861
        ..  code-block:: python
862

863
            import paddle
864

865 866
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
867
            z = paddle.floor_divide(x, y)
868
            print(z)  # [2, 0, 2, 2]
869

870
    """
871
    if in_dynamic_mode():
872
        return _C_ops.floor_divide(x, y)
873
    else:
874
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
875 876


877
def remainder(x, y, name=None):
878
    r"""
879 880 881
    Mod two tensors element-wise. The equation is:

    .. math::
882

883 884
        out = x \% y

885
    Note:
I
Infinity_lee 已提交
886 887 888
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
889 890

    Args:
891 892
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
893 894 895
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
896
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
897 898 899 900 901 902 903

    Examples:

        ..  code-block:: python

            import paddle

904 905
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
906
            z = paddle.remainder(x, y)
W
WangXi 已提交
907
            print(z)  # [0, 3, 2, 1]
908 909

    """
910
    if in_dynamic_mode():
911
        return _C_ops.remainder(x, y)
912
    else:
913
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
914 915


916 917 918 919 920 921 922 923 924
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
925 926 927 928
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
929
    return _C_ops.remainder_(x, y)
930 931


932 933
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
934 935


936
def multiply(x, y, name=None):
937
    """
938
    multiply two tensors element-wise. The equation is:
939

940 941
    .. math::
        out = x * y
942

943
    Note:
I
Infinity_lee 已提交
944 945 946
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
947

948
    Args:
W
will-jl944 已提交
949 950
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
951
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
952

953
    Returns:
954
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
955

956 957 958 959 960 961
    Examples:

        ..  code-block:: python

            import paddle

962 963
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
964
            res = paddle.multiply(x, y)
965
            print(res) # [[5, 12], [21, 32]]
966

967
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
968 969 970
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
971 972

    """
973
    if in_dynamic_mode():
974
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
975
    else:
976 977
        if x.dtype != y.dtype:
            raise TypeError(
978
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
979
            )
980

981
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
982

983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


1006 1007 1008 1009 1010
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
1011 1012
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1033
    if in_dynamic_mode():
1034 1035 1036
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1037
        return _elementwise_op(LayerHelper(op_type, **locals()))
1038 1039 1040 1041


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1042
    if in_dynamic_mode():
1043 1044 1045 1046 1047
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1048
        return _elementwise_op(LayerHelper(op_type, **locals()))
1049 1050 1051 1052


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1053
    if in_dynamic_mode():
1054 1055 1056 1057 1058
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1059
        return _elementwise_op(LayerHelper(op_type, **locals()))
1060 1061 1062 1063


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1064
    if in_dynamic_mode():
1065 1066 1067
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1068
        return _elementwise_op(LayerHelper(op_type, **locals()))
1069 1070


1071
def maximum(x, y, name=None):
1072
    """
W
Wei Shengyu 已提交
1073
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1074

1075 1076
    .. math::
        out = max(x, y)
1077

1078
    Note:
I
Infinity_lee 已提交
1079 1080 1081
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1101 1102 1103
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1104 1105 1106 1107 1108

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1109 1110 1111
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1112 1113

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1114
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1115 1116
            res = paddle.maximum(x, y)
            print(res)
1117 1118
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1119

1120 1121
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1122 1123
            res = paddle.maximum(x, y)
            print(res)
1124 1125
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1126
    """
1127
    if in_dynamic_mode():
1128
        return _C_ops.maximum(x, y)
1129
    else:
1130
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1131

1132

1133
def minimum(x, y, name=None):
1134
    """
C
Chen Long 已提交
1135
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1136

1137 1138
    .. math::
        out = min(x, y)
1139

1140
    Note:
I
Infinity_lee 已提交
1141 1142 1143
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1144 1145 1146 1147 1148 1149 1150

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1151
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1163 1164 1165
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1166 1167 1168 1169 1170

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1171 1172 1173
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1174 1175

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1176
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1177 1178
            res = paddle.minimum(x, y)
            print(res)
1179 1180
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1181

1182 1183
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1184 1185
            res = paddle.minimum(x, y)
            print(res)
1186 1187
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1188
    """
1189
    if in_dynamic_mode():
1190
        return _C_ops.minimum(x, y)
1191
    else:
1192
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1193

1194

L
LJQ❤️ 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1204
    Note:
I
Infinity_lee 已提交
1205 1206 1207
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1208 1209

    Args:
1210 1211
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1227 1228 1229
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1230 1231 1232 1233 1234

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1235 1236 1237
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1238 1239

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1240
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1241 1242
            res = paddle.fmax(x, y)
            print(res)
1243 1244
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1245

1246 1247
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1248 1249
            res = paddle.fmax(x, y)
            print(res)
1250 1251
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1252
    """
1253
    if in_dynamic_mode():
1254
        return _C_ops.fmax(x, y)
1255
    else:
1256
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1257

1258

L
LJQ❤️ 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1268
    Note:
I
Infinity_lee 已提交
1269 1270 1271
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1272 1273

    Args:
1274 1275
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1291 1292 1293
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1294 1295 1296 1297 1298

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1299 1300 1301
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1302 1303

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1304
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1305 1306
            res = paddle.fmin(x, y)
            print(res)
1307 1308
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1309

1310 1311
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1312 1313
            res = paddle.fmin(x, y)
            print(res)
1314 1315
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1316
    """
1317
    if in_dynamic_mode():
1318
        return _C_ops.fmin(x, y)
1319
    else:
1320
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1321

Y
Yang Zhang 已提交
1322

1323
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1324 1325 1326 1327
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1328
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1329 1330
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1331
            Tensor with a single element, otherwise must be in the
1332 1333 1334 1335 1336 1337 1338
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1339
            value is False.
1340
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1341 1342

    Returns:
1343
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1344
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1345
        otherwise it's data type is the same as `x`.
1346 1347 1348 1349 1350

    Examples:
        .. code-block:: python

            import paddle
1351

1352
            # x is a Tensor with following elements:
1353 1354 1355
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1356 1357
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1358
            out1 = paddle.sum(x)          # 3.5
1359
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
1360
            out3 = paddle.sum(x, axis=-1) # [1.9, 1.6]
1361
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1362

1363
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1364 1365 1366
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1367
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1368
                                  [[5, 6], [7, 8]]])
1369 1370
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1371

1372 1373 1374 1375 1376 1377
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
1378
            out7 = paddle.sum(x)          # 4
1379 1380
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1381
    """
1382

1383 1384 1385 1386
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1387

1388
    if in_dynamic_mode():
1389
        return _C_ops.sum(x, axis, dtype, keepdim)
1390 1391 1392
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1393

1394
        if dtype_flag:
1395
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1396

1397 1398 1399 1400 1401
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1402
                'uint16',
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1414

1415 1416 1417
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1431

1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1481 1482 1483 1484 1485
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1486
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1498
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1512 1513
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
1514
            out1 = paddle.nansum(x)          # 2.7
W
wangguanqun 已提交
1515
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
1516
            out3 = paddle.nansum(x, axis=-1) # [1.7, 1.0]
W
wangguanqun 已提交
1517 1518 1519 1520 1521 1522
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1523
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1524 1525 1526 1527
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1528
    check_variable_and_dtype(
1529
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1530
    )
W
wangguanqun 已提交
1531 1532 1533 1534 1535 1536 1537
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
1574
            # 0.44999996
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1595 1596 1597
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1598 1599 1600
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1601 1602 1603
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1604 1605
        cnt.astype(x.dtype),
    )
1606 1607


1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
1636
            # 3
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

1657 1658
    if isinstance(axis, int):
        axis = [axis]
1659 1660 1661 1662 1663 1664

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1665
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1666
def add_n(inputs, name=None):
1667
    """
1668
    Sum one or more Tensor of the input.
1669

S
Steffy-zxf 已提交
1670 1671 1672
    For example:

    .. code-block:: text
1673

S
Steffy-zxf 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1687

S
Steffy-zxf 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1703 1704

    Args:
1705
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1706
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1707
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1708 1709

    Returns:
S
Steffy-zxf 已提交
1710
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1711 1712 1713

    Examples:
        .. code-block:: python
1714

1715 1716
            import paddle

S
Steffy-zxf 已提交
1717 1718 1719
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1720
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1721
            #  [14., 16., 18.]]
1722
    """
1723
    if in_dynamic_mode():
1724 1725
        if isinstance(inputs, Variable):
            inputs = [inputs]
1726
        return _C_ops.add_n(inputs)
1727
    else:
1728 1729
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1730
        if isinstance(inputs, (list, tuple)):
1731 1732 1733 1734 1735
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1736 1737 1738 1739 1740 1741 1742 1743
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1744 1745 1746 1747 1748 1749
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1750
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1751 1752
                'add_n',
            )
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1763

1764
        return out
1765 1766


1767 1768 1769
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1770

1771 1772 1773
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1774

1775 1776
    Returns:
        Tensor: The output Tensor of trunc.
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
1795
    if in_dynamic_mode():
1796
        return _C_ops.trunc(input)
1797
    else:
1798 1799
        inputs = {"X": input}
        attrs = {}
1800

1801 1802 1803 1804 1805
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1806

1807 1808 1809 1810
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1811 1812


W
WuHaobo 已提交
1813
def mm(input, mat2, name=None):
1814
    """
S
swtkiwi 已提交
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1827
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1828
        mat2 (Tensor): The input tensor which is a Tensor.
1829
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1830 1831

    Returns:
N
Noel 已提交
1832
        Tensor: The product Tensor.
1833

W
wawltor 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1866 1867 1868 1869
    Examples:
        .. code-block:: python

            import paddle
1870 1871 1872 1873 1874 1875 1876 1877
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1878

1879
    """
1880
    if in_dynamic_mode():
1881
        return _C_ops.matmul(input, mat2, False, False)
1882
    else:
1883

1884 1885 1886 1887 1888
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1889
                )
1890 1891 1892 1893 1894 1895
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1896

1897 1898 1899
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1900
                    raise ValueError(
1901 1902
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
1903 1904 1905
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
1906
                    )
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1931

1932

Y
yaoxuefeng 已提交
1933
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1934 1935 1936
    """
    **addmm**

1937
    Perform matrix multiplication for input $x$ and $y$.
1938 1939 1940 1941 1942 1943 1944 1945 1946
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1947 1948 1949
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1950 1951
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1952
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1953 1954

    Returns:
1955
        Tensor: The output Tensor of addmm.
1956 1957 1958

    Examples:
        ..  code-block:: python
1959

1960 1961
            import paddle

Y
yaoxuefeng 已提交
1962 1963 1964
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1965

Y
yaoxuefeng 已提交
1966
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1967

N
Noel 已提交
1968
            print(out)
1969 1970 1971
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1972 1973 1974
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1975
    if not len(x_shape) == len(y_shape) == 2:
1976
        raise ValueError(
1977 1978 1979 1980
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1981
    if x_shape[1] != y_shape[0]:
1982
        raise ValueError(
1983 1984 1985 1986
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1987 1988 1989
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1990
                raise ValueError(
1991 1992 1993 1994
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1995
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1996
                raise ValueError(
1997 1998 1999 2000
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2001 2002
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
2003
                raise ValueError(
2004 2005 2006 2007
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2008 2009
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2010
            raise ValueError(
2011 2012 2013 2014
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2015
    else:
2016
        raise ValueError(
2017 2018 2019 2020
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2021

2022
    if in_dynamic_mode():
2023
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2024
    else:
2025 2026
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2027

2028 2029
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2030 2031 2032 2033 2034 2035 2036
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2037 2038
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2039

2040 2041 2042 2043
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2044

2045

S
seemingwang 已提交
2046 2047 2048 2049 2050 2051 2052
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2053
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
2068

S
seemingwang 已提交
2069 2070 2071 2072
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
2073
            print(y)
S
seemingwang 已提交
2074 2075 2076 2077
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
2078

S
seemingwang 已提交
2079 2080 2081
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2082 2083
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2084 2085 2086
                axis, len(input_shape), input_shape
            )
        )
2087
    if not axis >= 0:
S
seemingwang 已提交
2088
        if not axis >= -1 * len(input_shape):
2089
            raise ValueError(
2090 2091 2092 2093
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2094
        axis = axis + len(input_shape)
2095
    if in_dynamic_mode():
2096
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2097
        return out
2098
    else:
2099
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2100 2101
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2102

2103 2104
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2105

2106 2107 2108 2109
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2110

2111

Z
zhiboniu 已提交
2112 2113 2114 2115
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2116

Z
zhiboniu 已提交
2117 2118 2119 2120 2121
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2122
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2145
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2146

Z
zhiboniu 已提交
2147 2148 2149
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2150
        if in_dynamic_mode():
2151
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2152
        else:
Z
zhiboniu 已提交
2153

2154 2155 2156 2157 2158
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2159
                    )
2160 2161 2162 2163 2164 2165 2166 2167 2168
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2169 2170 2171
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2194 2195
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2196
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2218
    if in_dynamic_mode():
2219
        return _C_ops.matmul(nx, ny, False, False)
2220
    else:
Z
zhiboniu 已提交
2221

2222 2223 2224 2225 2226 2227
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2228

2229
        __check_input(nx, ny)
Z
zhiboniu 已提交
2230

2231 2232 2233 2234 2235 2236
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2237 2238


2239
def logsumexp(x, axis=None, keepdim=False, name=None):
2240
    r"""
2241
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2242

2243
    .. math::
2244
       logsumexp(x) = \log\sum exp(x)
2245

2246
    Args:
2247
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2248
            have no more than 4 dimensions.
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2265

2266
    Returns:
2267 2268
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2269

2270
    Examples:
2271

2272
    .. code-block:: python
2273

2274 2275
        import paddle

2276
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2277
        out1 = paddle.logsumexp(x)    # 3.4691226
2278
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2279 2280

    """
2281
    reduce_all, axis = _get_reduce_axis(axis, x)
2282

2283
    if in_dynamic_mode():
2284
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2285
    else:
2286
        check_variable_and_dtype(
2287
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2288
        )
2289 2290 2291 2292 2293 2294

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2295
        )
2296
        return out
2297

S
swtkiwi 已提交
2298

2299 2300
def inverse(x, name=None):
    """
2301 2302 2303 2304 2305
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2306
        x (Tensor): The input tensor. The last two
2307 2308 2309
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2310
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2311 2312

    Returns:
2313
        Tensor: A Tensor holds the inverse of x. The shape and data type
2314
                        is the same as x.
2315 2316 2317 2318 2319

    Examples:
        .. code-block:: python

            import paddle
2320 2321

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2322 2323
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2324 2325

    """
2326
    if in_dynamic_mode():
W
wanghuancoder 已提交
2327
        return _C_ops.inverse(x)
2328
    else:
2329

2330 2331 2332 2333 2334 2335 2336 2337
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2338

2339 2340 2341 2342 2343 2344 2345
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2346

2347

2348
def max(x, axis=None, keepdim=False, name=None):
2349
    """
S
swtkiwi 已提交
2350

2351
    Computes the maximum of tensor elements over the given axis.
2352

T
Tao Luo 已提交
2353 2354
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2355
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2356 2357 2358
        while max propagates gradient to all of them.


2359
    Args:
2360 2361
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2362
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2363
            `x` and return a Tensor with a single element,
2364 2365
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2366
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2367
            output Tensor. The result tensor will have one fewer dimension
2368
            than the `x` unless :attr:`keepdim` is true, default
2369
            value is False.
2370
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2371 2372

    Returns:
2373
        Tensor, results of maximum on the specified axis of input tensor,
2374
        it's data type is the same as `x`.
2375 2376 2377

    Examples:
        .. code-block:: python
2378

2379
            import paddle
2380

N
Noel 已提交
2381
            # data_x is a Tensor with shape [2, 4]
2382
            # the axis is a int element
2383
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2384
                                  [0.1, 0.2, 0.6, 0.7]],
2385
                                 dtype='float64', stop_gradient=False)
2386
            result1 = paddle.max(x)
2387
            result1.backward()
2388
            print(result1, x.grad)
2389
            # 0.9, [[0., 0., 0., 1.], [0., 0., 0., 0.]]
2390 2391

            x.clear_grad()
2392
            result2 = paddle.max(x, axis=0)
2393
            result2.backward()
2394
            print(result2, x.grad)
2395 2396 2397
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2398
            result3 = paddle.max(x, axis=-1)
2399
            result3.backward()
2400
            print(result3, x.grad)
2401 2402 2403
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2404
            result4 = paddle.max(x, axis=1, keepdim=True)
2405
            result4.backward()
2406
            print(result4, x.grad)
2407
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2408

N
Noel 已提交
2409
            # data_y is a Tensor with shape [2, 2, 2]
2410
            # the axis is list
2411
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2412 2413
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2414
            result5 = paddle.max(y, axis=[1, 2])
2415
            result5.backward()
2416
            print(result5, y.grad)
2417 2418 2419
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2420
            result6 = paddle.max(y, axis=[0, 1])
2421
            result6.backward()
2422
            print(result6, y.grad)
2423
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2424 2425
    """

2426
    if in_dynamic_mode():
2427
        return _C_ops.max(x, axis, keepdim)
2428 2429 2430 2431
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2432 2433 2434 2435
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2436
        )
2437 2438
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2439

2440 2441 2442 2443 2444 2445 2446 2447
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2448

2449

2450
def min(x, axis=None, keepdim=False, name=None):
2451
    """
S
swtkiwi 已提交
2452

2453
    Computes the minimum of tensor elements over the given axis
2454

T
Tao Luo 已提交
2455 2456
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2457
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2458 2459
        while min propagates gradient to all of them.

2460
    Args:
2461 2462
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2463
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2464
            `x` and return a Tensor with a single element,
2465 2466
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2467
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2468
            output Tensor. The result tensor will have one fewer dimension
2469
            than the `x` unless :attr:`keepdim` is true, default
2470
            value is False.
2471
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2472

2473
    Returns:
2474
        Tensor, results of minimum on the specified axis of input tensor,
2475
        it's data type is the same as input's Tensor.
2476

2477 2478 2479
    Examples:
        .. code-block:: python

2480
            import paddle
2481

2482
            # data_x is a Tensor with shape [2, 4]
2483
            # the axis is a int element
2484
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2485
                                  [0.1, 0.2, 0.6, 0.7]],
2486
                                 dtype='float64', stop_gradient=False)
2487
            result1 = paddle.min(x)
2488
            result1.backward()
2489
            print(result1, x.grad)
2490
            # 0.1, [[0., 0., 0., 0.], [1., 0., 0., 0.]]
2491 2492

            x.clear_grad()
2493
            result2 = paddle.min(x, axis=0)
2494
            result2.backward()
2495
            print(result2, x.grad)
2496 2497 2498
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2499
            result3 = paddle.min(x, axis=-1)
2500
            result3.backward()
2501
            print(result3, x.grad)
2502 2503 2504
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2505
            result4 = paddle.min(x, axis=1, keepdim=True)
2506
            result4.backward()
2507
            print(result4, x.grad)
2508
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2509

2510
            # data_y is a Tensor with shape [2, 2, 2]
2511
            # the axis is list
2512
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2513 2514
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2515
            result5 = paddle.min(y, axis=[1, 2])
2516
            result5.backward()
2517
            print(result5, y.grad)
2518 2519 2520
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2521
            result6 = paddle.min(y, axis=[0, 1])
2522
            result6.backward()
2523
            print(result6, y.grad)
2524
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2525
    """
2526

2527
    if in_dynamic_mode():
2528
        return _C_ops.min(x, axis, keepdim)
2529 2530 2531 2532
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2533 2534 2535 2536
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2537
        )
2538

2539 2540 2541 2542 2543 2544 2545 2546
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2547

2548

T
Tao Luo 已提交
2549 2550 2551 2552 2553 2554
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2555
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2556 2557 2558
        while max propagates gradient to all of them.

    Args:
2559
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2560
            the dimension is no more than 4.
2561
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2562 2563 2564 2565
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2566
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2567 2568 2569
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2570
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2584
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2585
                                 dtype='float64', stop_gradient=False)
2586 2587
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2588
            #    thus the corresponding gradients are 1/5=0.2;
2589
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2590
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2591 2592
            result1 = paddle.amax(x)
            result1.backward()
2593
            print(result1, x.grad)
2594
            # 0.9, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
T
Tao Luo 已提交
2595

T
Tao Luo 已提交
2596 2597 2598
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2599
            print(result1_max, x.grad)
2600
            # 0.9, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]
T
Tao Luo 已提交
2601 2602 2603

            ###############################

T
Tao Luo 已提交
2604 2605 2606
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2607
            print(result2, x.grad)
T
Tao Luo 已提交
2608 2609 2610 2611 2612
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2613
            print(result3, x.grad)
T
Tao Luo 已提交
2614 2615 2616 2617 2618
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2619
            print(result4, x.grad)
T
Tao Luo 已提交
2620 2621 2622
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2623
            # the axis is list
T
Tao Luo 已提交
2624 2625 2626 2627 2628
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2629
            print(result5, y.grad)
T
Tao Luo 已提交
2630 2631 2632 2633 2634
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2635
            print(result6, y.grad)
T
Tao Luo 已提交
2636 2637
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2638
    if in_dynamic_mode():
2639
        return _C_ops.amax(x, axis, keepdim)
2640

2641 2642 2643 2644 2645
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2646
        )
T
Tao Luo 已提交
2647

2648 2649 2650 2651 2652 2653 2654 2655
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2656

2657

T
Tao Luo 已提交
2658 2659 2660 2661 2662 2663 2664
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2665
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2666 2667 2668
        while min propagates gradient to all of them.

    Args:
2669
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2670
            the dimension is no more than 4.
2671
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2672 2673 2674 2675
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2676
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2677 2678 2679
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2680
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2694
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2695
                                 dtype='float64', stop_gradient=False)
2696 2697
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2698
            #    thus the corresponding gradients are 1/5=0.2;
2699
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2700
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2701 2702
            result1 = paddle.amin(x)
            result1.backward()
2703
            print(result1, x.grad)
2704
            # 0.1, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
T
Tao Luo 已提交
2705

T
Tao Luo 已提交
2706 2707 2708
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2709
            print(result1_min, x.grad)
2710
            # 0.1, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]
T
Tao Luo 已提交
2711 2712 2713

            ###############################

T
Tao Luo 已提交
2714 2715 2716
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2717
            print(result2, x.grad)
T
Tao Luo 已提交
2718 2719 2720 2721 2722
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2723
            print(result3, x.grad)
T
Tao Luo 已提交
2724 2725 2726 2727 2728
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2729
            print(result4, x.grad)
T
Tao Luo 已提交
2730 2731 2732
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2733
            # the axis is list
T
Tao Luo 已提交
2734 2735 2736 2737 2738
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2739
            print(result5, y.grad)
T
Tao Luo 已提交
2740 2741 2742 2743 2744
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2745
            print(result6, y.grad)
T
Tao Luo 已提交
2746 2747
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2748
    if in_dynamic_mode():
2749
        return _C_ops.amin(x, axis, keepdim)
2750

2751 2752 2753 2754 2755
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2756
        )
T
Tao Luo 已提交
2757

2758 2759 2760 2761 2762 2763 2764 2765
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2766

2767

W
WuHaobo 已提交
2768
def log1p(x, name=None):
2769
    r"""
2770
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2771

2772
    .. math::
2773
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2774

2775
    Args:
2776
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2777
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2778

2779
    Returns:
S
Steffy-zxf 已提交
2780
        Tensor, the natural log of the input Tensor computed element-wise.
2781

2782 2783
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2784

2785
            import paddle
S
Steffy-zxf 已提交
2786 2787 2788 2789

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2790 2791
    """

2792
    if in_dynamic_mode():
W
wanghuancoder 已提交
2793
        return _C_ops.log1p(x)
2794
    else:
2795
        check_variable_and_dtype(
2796 2797 2798 2799
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log1p",
2800
        )
2801 2802 2803 2804 2805 2806
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2807

2808

J
joejiong 已提交
2809
def log2(x, name=None):
2810
    r"""
J
joejiong 已提交
2811 2812 2813 2814
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2815
        Out = \log_2x
J
joejiong 已提交
2816 2817

    Args:
2818
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2819
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2820 2821 2822 2823 2824 2825 2826 2827


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2828

J
joejiong 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2847
    if in_dynamic_mode():
W
wanghuancoder 已提交
2848
        return _C_ops.log2(x)
2849 2850
    else:
        check_variable_and_dtype(
2851 2852 2853 2854
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log2",
2855 2856 2857 2858 2859 2860 2861
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2862

J
joejiong 已提交
2863 2864

def log10(x, name=None):
2865
    r"""
J
joejiong 已提交
2866 2867 2868 2869
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2870
        Out = \log_10_x
J
joejiong 已提交
2871 2872

    Args:
2873
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2874
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2875 2876 2877 2878 2879 2880 2881 2882


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2883

J
joejiong 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2902
    if in_dynamic_mode():
W
wanghuancoder 已提交
2903
        return _C_ops.log10(x)
2904 2905
    else:
        check_variable_and_dtype(
2906 2907 2908 2909
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log10",
2910 2911 2912 2913 2914 2915 2916
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2917 2918


Y
Yang Zhang 已提交
2919
def clip(x, min=None, max=None, name=None):
2920
    """
Y
Yang Zhang 已提交
2921
    This operator clip all elements in input into the range [ min, max ] and return
2922 2923 2924 2925
    a resulting tensor as the following equation:

    .. math::

2926
        Out = MIN(MAX(x, min), max)
2927 2928

    Args:
2929
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
2930 2931 2932 2933
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
2934
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2935 2936

    Returns:
Y
Yang Zhang 已提交
2937
        Tensor: A Tensor with the same data type and data shape as input.
2938 2939 2940 2941 2942

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2943

2944
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2945 2946
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2947
            print(out1)
Y
Yang Zhang 已提交
2948 2949
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2950
            print(out2)
Y
Yang Zhang 已提交
2951 2952
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2953 2954
    """

2955 2956 2957 2958 2959 2960 2961
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
2962 2963 2964
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
2965 2966 2967
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2968

2969
    if in_dynamic_mode():
C
chentianyu03 已提交
2970
        if isinstance(min, Variable):
2971
            min = min.item(0)
C
chentianyu03 已提交
2972
        if isinstance(max, Variable):
2973
            max = max.item(0)
C
chentianyu03 已提交
2974 2975
        min = min_ if min is None else min
        max = max_ if max is None else max
2976
        return _C_ops.clip(x, min, max)
2977 2978 2979 2980 2981 2982 2983
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
2984
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2985 2986 2987 2988 2989 2990 2991 2992 2993
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
2994
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2995 2996 2997
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
2998

2999
        check_variable_and_dtype(
3000 3001 3002 3003
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
3004
        )
Y
Yang Zhang 已提交
3005

3006 3007
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
3008

3009 3010 3011 3012 3013
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3028

3029
        return output
F
Feiyu Chan 已提交
3030

W
WuHaobo 已提交
3031

3032 3033 3034 3035 3036 3037 3038 3039 3040
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3041
        min = min.item(0)
3042
    if isinstance(max, Variable):
3043
        max = max.item(0)
3044 3045
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3046

3047
    if in_dynamic_mode():
3048
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3049

3050

3051
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3052
    """
S
swtkiwi 已提交
3053

3054
    Computes the sum along diagonals of the input tensor x.
3055 3056

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3057

3058
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3059
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3060
    of the input tensor x.
L
Li Fuchen 已提交
3061

3062
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3063 3064 3065 3066

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3067
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3068

L
Li Fuchen 已提交
3069
    Args:
3070 3071 3072 3073 3074
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3075 3076

    Returns:
3077
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3078 3079 3080 3081 3082

    Examples:
        .. code-block:: python

            import paddle
3083

3084 3085 3086
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
3087
            data1 = paddle.trace(case1) # data1.shape = []
3088 3089
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
3090
    """
3091

Z
zyfncg 已提交
3092
    def __check_input(x, offset, axis1, axis2):
3093 3094 3095 3096 3097 3098
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3099

3100
        input_shape = list(x.shape)
3101 3102 3103 3104
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3105

3106 3107
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3108

3109 3110
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3111
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3112
        )
L
Li Fuchen 已提交
3113

3114 3115
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3116
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3117
        )
L
Li Fuchen 已提交
3118

3119 3120 3121 3122
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3123

3124
    if in_dynamic_mode():
3125
        return _C_ops.trace(x, offset, axis1, axis2)
3126 3127
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3128

3129 3130
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3131

3132 3133 3134 3135 3136 3137 3138
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3139

3140

3141 3142
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3143
    Computes the diagonals of the input tensor x.
3144 3145

    If ``x`` is 2D, returns the diagonal.
3146
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3147 3148 3149 3150 3151 3152 3153
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3154

3155
    Args:
3156 3157 3158 3159 3160
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3204

3205
    """
3206
    if in_dynamic_mode():
3207
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3208
    else:
W
wanghuancoder 已提交
3209

3210 3211 3212 3213
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3214 3215 3216 3217 3218 3219 3220 3221 3222
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3223 3224
                'diagonal',
            )
3225

3226 3227 3228 3229 3230
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3231

3232 3233
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3234

3235 3236 3237 3238
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3239

3240 3241 3242 3243
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3244

3245 3246 3247 3248
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3249

3250 3251 3252
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3253

3254 3255 3256 3257 3258 3259 3260
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3261 3262


W
WuHaobo 已提交
3263
def kron(x, y, name=None):
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3283 3284

    Args:
3285 3286
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3287
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3288 3289

    Returns:
3290
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3291 3292 3293

    Examples:
        .. code-block:: python
3294

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3306
    """
3307
    if in_dynamic_mode():
3308 3309 3310 3311 3312 3313 3314 3315 3316
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3317

3318 3319 3320 3321 3322
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3323 3324 3325 3326


def cumsum(x, axis=None, dtype=None, name=None):
    """
3327 3328
    The cumulative sum of the elements along a given axis.

3329
    Note:
3330
        The first element of the result is the same as the first element of the input.
3331 3332

    Args:
3333
        x (Tensor): The input tensor needed to be cumsumed.
3334
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3335
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3336 3337 3338
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3339
        Tensor, the result of cumsum operator.
3340 3341 3342

    Examples:
        .. code-block:: python
3343

3344
            import paddle
3345

3346 3347
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3348 3349 3350 3351 3352 3353 3354 3355

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3356

3357 3358 3359 3360 3361 3362 3363
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3364
            # paddle.float64
3365 3366 3367 3368 3369 3370
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3371
        x = cast(x, dtype)
3372

3373
    if in_dynamic_mode():
3374 3375
        if axis is None:
            axis = -1
3376
        return _C_ops.cumsum(x, axis, flatten, False, False)
3377
    else:
3378 3379 3380
        check_variable_and_dtype(
            x,
            'x',
3381
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3382 3383
            'cumsum',
        )
3384 3385
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3386
        kwargs = {}
3387 3388 3389 3390 3391
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3392

3393

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
def cummax(x, axis=None, dtype='int64', name=None):
    """
    The cumulative max of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummaxed.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.

        indices (Tensor), The corresponding index results of cummax operation.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            data = paddle.reshape(data, (2, 3))

            y = paddle.cummax(data)
            # value: [-1, 5, 5, 5, 5, 5]
            # indcies: [0, 1, 1, 1, 1, 1]

            y = paddle.cummax(data, axis=0)
            # value: [[-1, 5, 0]
            #         [-1, 5, 2]]
            # indcies: [[0, 0, 0]
            #           [0, 0, 1]]

            y = paddle.cummax(data, axis=-1)
            # value: [[-1, 5, 5]
            #         [-2, -2, 2]]
            # indcies: [[0, 1, 1]
            #           [0, 0, 2]]

            y = paddle.cummax(data, dtype='int64')
            print(y[1].dtype)
            # indcies type: paddle.int64
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummax')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummax(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummax',
        )
        check_type(x, 'x', (Variable), 'cummax')
        helper = LayerHelper('cummax', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummax',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


def cummin(x, axis=None, dtype='int64', name=None):
    """
    The cumulative min of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummined.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.

        indices (Tensor), The corresponding index results of cummin operation.

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            data = paddle.reshape(data, (2, 3))

            y = paddle.cummin(data)
            # value: [-1, -1, -1, -2, -3, -3]
            # indcies: [0, 0, 0, 3, 4, 4]

            y = paddle.cummin(data, axis=0)
            # value: [[-1, 5, 0]
            #         [-2, -3, 0]]
            # indcies: [[0, 0, 0]
            #           [1, 1, 0]]

            y = paddle.cummin(data, axis=-1)
            # value: [[-1, -1, -1]
            #         [-2, -3, -3]]
            # indcies: [[0, 0, 0]
            #           [0, 1, 1]]

            y = paddle.cummin(data, dtype='int64')
            print(y[1].dtype)
            # indcies type: paddle.int64
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummin')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummin(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummin',
        )
        check_type(x, 'x', (Variable), 'cummin')
        helper = LayerHelper('cummin', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummin',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


3543 3544
def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3545
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3546 3547 3548 3549 3550 3551

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3552

3553 3554 3555 3556 3557 3558
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3559
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3560 3561 3562
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3563
        Tensor, the result of logcumsumexp operator.
3564 3565 3566

    Examples:
        .. code-block:: python
3567

3568
            import paddle
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

3598
    if in_dynamic_mode():
3599 3600
        if axis is None:
            axis = -1
3601
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3602 3603
    else:
        check_variable_and_dtype(
3604
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
3605
        )
3606

3607 3608 3609 3610 3611 3612 3613 3614 3615
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3616 3617


H
hlygit66666 已提交
3618 3619 3620 3621
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3622 3623
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3624 3625 3626

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3627 3628 3629 3630 3631 3632 3633
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3670
        x = cast(x, dtype)
H
hlygit66666 已提交
3671

3672
    if in_dynamic_mode():
3673
        return _C_ops.cumprod(x, dim)
3674 3675 3676 3677
    else:
        check_variable_and_dtype(
            x,
            "x",
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3688 3689 3690
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3691

3692 3693 3694 3695 3696 3697 3698 3699 3700
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3701

3702

J
Jack Zhou 已提交
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3719

3720
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3721
            out = paddle.isfinite(x)
N
Noel 已提交
3722
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3723
    """
3724
    if in_dynamic_mode():
3725
        return _C_ops.isfinite(x)
3726 3727 3728 3729 3730
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
3731 3732 3733 3734 3735 3736 3737 3738
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3739 3740 3741 3742 3743 3744 3745
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3746

3747

J
Jack Zhou 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3764

3765
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3766
            out = paddle.isinf(x)
N
Noel 已提交
3767
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3768
    """
3769
    if in_dynamic_mode():
3770
        return _C_ops.isinf(x)
3771 3772 3773
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
3785 3786 3787 3788
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3789

3790

J
Jack Zhou 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3807

3808
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3809
            out = paddle.isnan(x)
N
Noel 已提交
3810
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3811
    """
3812
    if in_dynamic_mode():
3813
        return _C_ops.isnan(x)
3814 3815 3816
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
3828 3829 3830 3831
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3832 3833


G
guofei 已提交
3834 3835 3836 3837 3838
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3839
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3840 3841 3842
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3843
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3844
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3845
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3846 3847 3848
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3849
            of output is the same as input Tensor `x`.
3850
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3851 3852 3853

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3854

G
guofei 已提交
3855 3856 3857 3858 3859 3860
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3861 3862
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3863
            out1 = paddle.prod(x)
3864
            # 0.0002268
G
guofei 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3879 3880
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3881 3882 3883 3884 3885 3886 3887 3888
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3889
        check_dtype(
3890 3891 3892 3893
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
3894
        )
G
guofei 已提交
3895
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3896
            x = cast(x, dtype)
G
guofei 已提交
3897

3898
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3899
    if in_dynamic_mode():
3900
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3901 3902 3903 3904 3905
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
3906
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
3907
            'reduce_prod',
3908
        )
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3919 3920 3921 3922


def sign(x, name=None):
    """
3923
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3924 3925

    Args:
3926 3927
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3937
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3938 3939 3940
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
3941
    if in_dynamic_mode():
3942
        return _C_ops.sign(x)
3943 3944
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
3945
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
3946 3947 3948
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3949

3950
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
3951

3952
        return out
W
WangXi 已提交
3953 3954 3955


def tanh(x, name=None):
3956
    r"""
W
WangXi 已提交
3957 3958 3959
    Tanh Activation Operator.

    .. math::
3960
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3961 3962

    Args:
3963
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3975
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3976
            out = paddle.tanh(x)
N
Noel 已提交
3977
            print(out)
W
WangXi 已提交
3978 3979
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
3980
    if in_dynamic_mode():
3981
        return _C_ops.tanh(x)
3982 3983
    else:
        check_variable_and_dtype(
3984
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
3985 3986 3987 3988 3989 3990
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
3991

3992

3993
@inplace_apis_in_dygraph_only
3994 3995 3996 3997 3998
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3999
    return _C_ops.tanh_(x)
4000 4001


S
Steffy-zxf 已提交
4002 4003
def increment(x, value=1.0, name=None):
    """
4004
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
4005 4006 4007 4008
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
4009
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
4025
    if in_dynamic_mode():
4026
        return _C_ops.increment_(x, value)
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
4039 4040 4041 4042


def all(x, axis=None, keepdim=False, name=None):
    """
4043
    Computes the ``logical and`` of tensor elements over the given dimension.
4044 4045 4046 4047 4048

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4049
            Tensor with a single element, otherwise must be in the
4050 4051 4052 4053 4054 4055
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4056
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4057 4058 4059 4060 4061 4062 4063 4064

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
4065

N
Noel 已提交
4066
            # x is a bool Tensor with following elements:
4067 4068
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
4069
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
4070
            print(x)
S
syyxsxx 已提交
4071
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
4072

4073 4074
            # out1 should be False
            out1 = paddle.all(x)          # False
4075
            print(out1)
C
Chen Long 已提交
4076

4077 4078 4079
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
4080 4081

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
4082
            out3 = paddle.all(x, axis=-1) # [False, True]
4083
            print(out3)
C
Chen Long 已提交
4084 4085 4086

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
4087
            print(out4)
4088

4089
    """
4090
    if in_dynamic_mode():
4091
        return _C_ops.all(x, axis, keepdim)
4092 4093 4094 4095 4096 4097 4098 4099
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
        check_variable_and_dtype(x, 'x', ['bool'], 'all')
4100

4101
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
4102

4103 4104 4105 4106 4107 4108 4109 4110 4111
        helper = LayerHelper('all', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
4112 4113 4114 4115


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
4116
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
4117 4118 4119 4120 4121

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4122
            Tensor with a single element, otherwise must be in the
4123 4124 4125 4126 4127 4128
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4129
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4130 4131 4132 4133 4134 4135 4136 4137

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
4138 4139 4140

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
4141
            print(x)
S
syyxsxx 已提交
4142
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
4143 4144 4145 4146
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

4147 4148
            # out1 should be True
            out1 = paddle.any(x)           # True
4149
            print(out1)
C
Chen Long 已提交
4150

4151
            # out2 should be [True, True]
4152
            out2 = paddle.any(x, axis=0)   # [True, True]
4153
            print(out2)
C
Chen Long 已提交
4154 4155

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
4156
            out3 = paddle.any(x, axis=-1)  # [True, True]
4157
            print(out3)
C
Chen Long 已提交
4158 4159 4160

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
4161 4162
            print(out4)

4163
    """
4164
    if in_dynamic_mode():
4165
        return _C_ops.any(x, axis, keepdim)
4166 4167 4168 4169 4170 4171 4172
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4173

4174
        check_variable_and_dtype(x, 'x', ['bool'], 'any')
4175

4176
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4177

4178 4179 4180 4181 4182 4183 4184 4185 4186
        helper = LayerHelper('any', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4187

4188

L
Leo Chen 已提交
4189 4190
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4191 4192 4193 4194 4195 4196
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4197 4198 4199 4200

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4201

L
Leo Chen 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
4213

L
Leo Chen 已提交
4214 4215 4216 4217 4218 4219
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
4220

4221

4222 4223 4224 4225 4226
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4227
        x (Tensor): The input Tensor which hold the complex numbers.
4228
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4229
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4230 4231

    Returns:
C
Chen Long 已提交
4232
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4233 4234 4235 4236 4237

    Examples:
        .. code-block:: python

          import paddle
4238

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
4250
    if in_dynamic_mode():
4251
        return _C_ops.conj(x)
4252 4253 4254 4255
    else:
        check_variable_and_dtype(
            x,
            "x",
4256 4257 4258 4259
            [
                'complex64',
                'complex128',
                'float16',
4260
                'uint16',
4261 4262 4263 4264 4265
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4266 4267
            'conj',
        )
H
hong 已提交
4268

4269 4270 4271 4272
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4273

4274 4275
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4276

4277

Z
zyfncg 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4287
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

4304
    if in_dynamic_mode():
4305
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4306
    else:
4307 4308 4309
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4310 4311 4312 4313
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4314

4315

4316 4317 4318 4319 4320 4321 4322 4323 4324
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4325
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
4341
    if in_dynamic_mode():
4342
        return _C_ops.lgamma(x)
4343
    else:
4344 4345 4346
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4347 4348 4349 4350
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4351 4352


4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4375 4376 4377
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4378

R
ronnywang 已提交
4379

4380
def atan2(x, y, name=None):
R
ronnywang 已提交
4381
    r"""
4382
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4383 4384 4385 4386

    Equation:
        .. math::

4387 4388 4389 4390 4391 4392 4393 4394
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4395 4396

    Args:
4397 4398
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4399 4400 4401 4402 4403 4404 4405 4406
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4407
            import paddle
R
ronnywang 已提交
4408

4409 4410 4411
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4412

4413 4414 4415
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4416

4417 4418 4419
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4420 4421 4422

    """

4423
    if in_dynamic_mode():
4424
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4425
    else:
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4438

4439 4440 4441 4442 4443
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4444

4445

W
wangzhen38 已提交
4446 4447 4448 4449 4450
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4451

W
wangzhen38 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4483
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4484 4485

    """
4486
    if eps is None:
W
wangzhen38 已提交
4487
        eps = 0.0
4488
    if in_dynamic_mode():
4489
        return _C_ops.logit(x, eps)
4490 4491
    else:
        check_variable_and_dtype(
4492
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4503

4504

4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4515 4516 4517
        x (Tensor): An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
4518 4519 4520 4521 4522 4523 4524 4525 4526
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4527

4528 4529 4530
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4531
            out = paddle.lerp(x, y, 0.5)
4532
            # out: [5.5, 6., 6.5, 7.]
4533 4534

    """
4535 4536
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4537

4538
    if in_dynamic_mode():
4539
        return _C_ops.lerp(x, y, weight)
4540 4541
    else:
        check_variable_and_dtype(
4542
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
4543 4544
        )
        check_variable_and_dtype(
4545
            y, 'y', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
4546 4547
        )
        check_variable_and_dtype(
4548 4549 4550 4551
            weight,
            'weight',
            ['uint16', 'float16', 'float32', 'float64'],
            'lerp',
4552
        )
4553

4554 4555 4556 4557 4558
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4559

4560

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4574
        raise ValueError(
4575 4576 4577 4578
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4579
    return _C_ops.lerp_(x, y, weight)
4580

4581

W
wuhuanzhou 已提交
4582 4583
def erfinv(x, name=None):
    r"""
4584
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4595
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4596 4597 4598 4599 4600

    Example:
        .. code-block:: python

            import paddle
4601

W
wuhuanzhou 已提交
4602 4603 4604 4605 4606
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
4607
    if in_dynamic_mode():
4608
        return _C_ops.erfinv(x)
4609 4610 4611 4612 4613 4614
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4615

4616

W
wuhuanzhou 已提交
4617 4618 4619 4620 4621 4622 4623
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4624
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4625

4626

4627
def rad2deg(x, name=None):
4628
    r"""
4629
    Convert each of the elements of input x from angles in radians to degrees.
4630

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4647
            import math
4648

4649 4650 4651 4652 4653 4654 4655
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4656
            x2 = paddle.to_tensor(math.pi/2)
4657 4658
            result2 = paddle.rad2deg(x2)
            print(result2)
4659 4660
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         90.)
4661

4662 4663 4664
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
4665 4666
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        57.29578018)
4667 4668
    """
    rad2deg_scale = 180 / np.pi
4669
    if in_dynamic_mode():
4670 4671
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4672
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4673
    else:
4674 4675 4676
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4677 4678 4679
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4680
            out_cast = helper.create_variable_for_type_inference(
4681 4682 4683 4684 4685 4686 4687 4688
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4689
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4690 4691 4692 4693 4694 4695
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4696 4697
        return out

4698

4699
def deg2rad(x, name=None):
4700
    r"""
4701
    Convert each of the elements of input x from degrees to angles in radians.
4702

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4718

4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
4729 4730
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        3.14159274)
4731 4732
    """
    deg2rad_scale = np.pi / 180.0
4733
    if in_dynamic_mode():
4734 4735
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4736
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4737
    else:
4738 4739 4740
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4741 4742 4743
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4744
            out_cast = helper.create_variable_for_type_inference(
4745 4746 4747 4748 4749 4750 4751 4752
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4753
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4754 4755 4756 4757 4758 4759
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4760
        return out
A
andyjpaddle 已提交
4761

4762

T
Tao Luo 已提交
4763 4764 4765 4766
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4767

T
Tao Luo 已提交
4768 4769 4770
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4771 4772
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4773
    Args:
C
cyberslack_lee 已提交
4774 4775
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
4776 4777 4778 4779 4780 4781 4782 4783 4784
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4785

T
Tao Luo 已提交
4786 4787 4788
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
4789 4790
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4791

T
Tao Luo 已提交
4792
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4793 4794 4795 4796 4797 4798
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
4799 4800
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        20)
T
Tao Luo 已提交
4801 4802

            paddle.gcd(x4, x4)
4803 4804
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4805

T
Tao Luo 已提交
4806 4807
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
4808 4809
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4810 4811 4812 4813 4814 4815 4816 4817
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4818
        return paddle.any(y != 0)
T
Tao Luo 已提交
4819 4820 4821 4822 4823

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4824
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4825
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4826 4827 4828 4829 4830 4831 4832 4833
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4834 4835
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4836
    if in_dynamic_mode():
T
Tao Luo 已提交
4837 4838 4839 4840 4841
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4842 4843
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4844 4845 4846
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4847

T
Tao Luo 已提交
4848 4849 4850 4851
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4852

T
Tao Luo 已提交
4853 4854 4855
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4856 4857
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4858
    Args:
C
cyberslack_lee 已提交
4859 4860
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4870

T
Tao Luo 已提交
4871 4872 4873
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
4874 4875
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4876

T
Tao Luo 已提交
4877
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4878 4879 4880 4881 4882 4883
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
4884 4885
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
T
Tao Luo 已提交
4886 4887

            paddle.lcm(x4, x4)
4888 4889
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4890

T
Tao Luo 已提交
4891 4892
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
4893 4894
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4895 4896 4897 4898 4899 4900 4901
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4902 4903 4904
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4905 4906
    return out

4907

A
andyjpaddle 已提交
4908 4909 4910
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4911
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4912 4913 4914 4915

    .. math::

        out[i] = x[i+1] - x[i]
4916 4917

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4918 4919 4920
    Only n=1 is currently supported.

    Args:
4921
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
4922
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4923
                          Only support n=1. Default:1
4924 4925
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4926
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4927
                                   and its shapes must match x's shape except on axis.
4928 4929
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4930
                                   and its shapes must match x's shape except on axis.
4931
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4932

A
andyjpaddle 已提交
4933 4934 4935 4936 4937 4938 4939
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4940

A
andyjpaddle 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4950
            # out:
A
andyjpaddle 已提交
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
4972
    infer_flags = [1 for i in range(len(axes))]
4973
    if in_dynamic_mode():
A
andyjpaddle 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4986
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4999 5000 5001
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
5002 5003 5004 5005
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
5006 5007 5008
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
5009 5010

        if x.dtype == paddle.bool:
5011
            return _C_ops.logical_xor(input_back, input_front)
5012
        else:
5013
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
5014
    else:
5015
        check_variable_and_dtype(
5016 5017 5018 5019
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
5020
        )
A
andyjpaddle 已提交
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
5037 5038 5039 5040 5041 5042
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
5053 5054 5055 5056 5057 5058
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
5059 5060 5061 5062 5063 5064
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
5065 5066 5067 5068 5069 5070
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
5071 5072 5073

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
5074 5075 5076 5077 5078
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
5079
        else:
Z
zyfncg 已提交
5080
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
5081
        return out
F
Feiyu Chan 已提交
5082

5083

F
Feiyu Chan 已提交
5084 5085
def angle(x, name=None):
    r"""
5086
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5099
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
5109 5110 5111 5112 5113 5114
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5115 5116

            theta = paddle.angle(z)
5117 5118 5119 5120 5121 5122
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5123 5124
    """

5125
    if in_dynamic_mode():
F
Feiyu Chan 已提交
5126
        return _C_ops.angle(x)
5127 5128
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
5150

5151

5152
def heaviside(x, y, name=None):
5153
    r"""
5154 5155 5156 5157 5158
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5159 5160 5161 5162
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5163
                \end{array}
5164
            \right.
5165

5166
    Note:
I
Infinity_lee 已提交
5167 5168 5169
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
5170 5171

    Args:
5172 5173
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
5192
    """
5193
    if in_dynamic_mode():
5194
        return _C_ops.heaviside(x, y)
5195
    else:
W
Weilong Wu 已提交
5196
        op_type = 'elementwise_heaviside'
5197
        return _elementwise_op(LayerHelper(op_type, **locals()))
5198

5199

5200 5201 5202 5203 5204 5205
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
5206
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5207 5208 5209 5210 5211

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
5212
        .. code-block:: python
5213 5214 5215

            import paddle

5216 5217
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
5218
            output = paddle.frac(input)
5219 5220 5221 5222
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
5223
    """
5224
    if x.dtype not in [
5225 5226 5227 5228
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
5229
    ]:
5230
        raise TypeError(
5231 5232 5233 5234
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5235
    if in_dynamic_mode():
5236 5237
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5238
    else:
5239 5240
        inputs = {"X": x}
        attrs = {}
5241

5242 5243 5244 5245 5246 5247 5248 5249
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5250
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5251

5252

5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
5278
    if x.dtype not in [
5279 5280 5281 5282 5283
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5284
    ]:
5285
        raise TypeError(
5286 5287 5288 5289
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5301

5302

5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5370 5371 5372 5373
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5374

5375
    if in_dynamic_mode():
5376 5377
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5378
                "The type of 'index' must be Tensor, but got {}".format(
5379 5380 5381
                    type(index)
                )
            )
5382 5383
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5384 5385 5386 5387
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5401
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5402 5403 5404
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5405 5406 5407 5408 5409 5410 5411
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5438
    """
5439 5440
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5441 5442 5443 5444
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5445 5446
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5447 5448 5449
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5450 5451 5452 5453

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5464 5465 5466

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
5509
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.trapezoid(y))
5560 5561
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        10.)
5562 5563

            print(paddle.trapezoid(y, dx=2.))
5564 5565
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        20.)
5566 5567 5568 5569 5570

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.trapezoid(y, x))
5571 5572
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        10.)
5573 5574 5575 5576 5577 5578


            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.trapezoid(y, x))
5579 5580
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        -8.)
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.trapezoid(y, axis=0))
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 2.50000000, 3.50000000])
            print(paddle.trapezoid(y, axis=1))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 8.])
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.cumulative_trapezoid(y))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            print(paddle.cumulative_trapezoid(y, dx=2.))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [9. , 20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-3., -8.])

            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.cumulative_trapezoid(y, axis=0))
            # Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1.50000000, 2.50000000, 3.50000000]])
            print(paddle.cumulative_trapezoid(y, axis=1))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.50000000, 2.        ],
            #         [3.50000000, 8.        ]])
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            out = paddle.vander(x)
            print(out.numpy())
            # [[1., 1., 1.],
            #  [4., 2., 1.],
            #  [9., 3., 1.]]
            out1 = paddle.vander(x,2)
            print(out1.numpy())
            # [[1., 1.],
            #  [2., 1.],
            #  [3., 1.]]
            out2 = paddle.vander(x, increasing = True)
            print(out2.numpy())
            # [[1., 1., 1.],
            #  [1., 2., 4.],
            #  [1., 3., 9.]]
            real = paddle.to_tensor([2., 4.])
            imag = paddle.to_tensor([1., 3.])
            complex = paddle.complex(real, imag)
            out3 = paddle.vander(complex)
            print(out3.numpy())
            # [[2.+1.j, 1.+0.j],
            #  [4.+3.j, 1.+0.j]]
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

    if n > 0:
        res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
    if n > 1:
        res[:, 1:] = x[:, None]
        res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    res = res[:, ::-1] if not increasing else res
    return res
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            print(out)
            #Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #       [1.00000012, 1.99999988])
    """
5750
    if in_dynamic_mode():
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i0(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089]),
    """
5789
    if in_dynamic_mode():
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i0e(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 0.46575961, 0.30850832, 0.24300035, 0.20700192]),
    """
5826
    if in_dynamic_mode():
5827 5828 5829 5830 5831 5832 5833 5834
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i1(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0., 0.5651591 , 1.59063685 , 3.95337022 , 9.75946515]),
    """
5857
    if in_dynamic_mode():
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i1e(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0., 0.20791042, 0.21526929, 0.24300035, 0.17875084]),
    """
5891
    if in_dynamic_mode():
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            res = paddle.polygamma(data, 1)
            print(res)
            # Tensor(shape=[2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [0.64493407,  0.39493407,  0.03999467])
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011


def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

        ..  code-block:: python

            import paddle

            #example1
            x = paddle.to_tensor([1, 2, 3], dtype='float32')
            y = paddle.to_tensor([2, 3, 4], dtype='int32')
            res = paddle.ldexp(x, y)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [4., 16., 48.])

            #example2
            x = paddle.to_tensor([1, 2, 3], dtype='float32')
            y = paddle.to_tensor([2], dtype='int32')
            res = paddle.ldexp(x, y)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [4., 8., 12.])

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))