Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bb7fd097
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bb7fd097
编写于
8月 20, 2020
作者:
G
guofei
提交者:
GitHub
8月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add paddle.tensor.math.prod (#26351)
* Add new API: paddle.prod test=develop
上级
40d193ed
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
230 addition
and
3 deletion
+230
-3
python/paddle/__init__.py
python/paddle/__init__.py
+1
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+12
-3
python/paddle/fluid/tests/unittests/test_prod_op.py
python/paddle/fluid/tests/unittests/test_prod_op.py
+132
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+84
-0
未找到文件。
python/paddle/__init__.py
浏览文件 @
bb7fd097
...
...
@@ -183,6 +183,7 @@ from .tensor.math import addmm #DEFINE_ALIAS
from
.tensor.math
import
clamp
#DEFINE_ALIAS
from
.tensor.math
import
trace
#DEFINE_ALIAS
from
.tensor.math
import
kron
#DEFINE_ALIAS
from
.tensor.math
import
prod
#DEFINE_ALIAS
# from .tensor.random import gaussin #DEFINE_ALIAS
# from .tensor.random import uniform #DEFINE_ALIAS
from
.tensor.random
import
shuffle
#DEFINE_ALIAS
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
bb7fd097
...
...
@@ -4595,7 +4595,7 @@ def reduce_prod(input, dim=None, keep_dim=False, name=None):
Args:
input (Variable): The input variable which is a Tensor, the data type is float32,
float64, int32, int64.
dim (
list|int
, optional): The dimensions along which the product is performed. If
dim (
int|list|tuple
, optional): The dimensions along which the product is performed. If
:attr:`None`, multiply all elements of :attr:`input` and return a
Tensor variable with a single element, otherwise must be in the
range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
...
...
@@ -4635,9 +4635,18 @@ def reduce_prod(input, dim=None, keep_dim=False, name=None):
fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
"""
helper = LayerHelper('reduce_prod', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
if isinstance(dim, tuple):
dim = list(dim)
elif isinstance(dim, int):
dim = [dim]
else:
raise TypeError(
"The type of axis must be int, list or tuple, but received {}".
format(type(dim)))
check_variable_and_dtype(
input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod')
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
type='reduce_prod',
inputs={'X': input},
...
...
python/paddle/fluid/tests/unittests/test_prod_op.py
0 → 100644
浏览文件 @
bb7fd097
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
unittest
import
numpy
as
np
class
TestProdOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
input
=
np
.
random
.
random
(
size
=
(
10
,
10
,
5
)).
astype
(
np
.
float32
)
def
run_imperative
(
self
):
input
=
paddle
.
to_tensor
(
self
.
input
)
dy_result
=
paddle
.
prod
(
input
)
expected_result
=
np
.
prod
(
self
.
input
)
self
.
assertTrue
(
np
.
allclose
(
dy_result
.
numpy
(),
expected_result
))
dy_result
=
paddle
.
prod
(
input
,
axis
=
1
)
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
dy_result
.
numpy
(),
expected_result
))
dy_result
=
paddle
.
prod
(
input
,
axis
=-
1
)
expected_result
=
np
.
prod
(
self
.
input
,
axis
=-
1
)
self
.
assertTrue
(
np
.
allclose
(
dy_result
.
numpy
(),
expected_result
))
dy_result
=
paddle
.
prod
(
input
,
axis
=
[
0
,
1
])
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
(
0
,
1
))
self
.
assertTrue
(
np
.
allclose
(
dy_result
.
numpy
(),
expected_result
))
dy_result
=
paddle
.
prod
(
input
,
axis
=
1
,
keepdim
=
True
)
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
1
,
keepdims
=
True
)
self
.
assertTrue
(
np
.
allclose
(
dy_result
.
numpy
(),
expected_result
))
dy_result
=
paddle
.
prod
(
input
,
axis
=
1
,
dtype
=
'int64'
)
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
1
,
dtype
=
np
.
int64
)
self
.
assertTrue
(
np
.
allclose
(
dy_result
.
numpy
(),
expected_result
))
dy_result
=
paddle
.
prod
(
input
,
axis
=
1
,
keepdim
=
True
,
dtype
=
'int64'
)
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
1
,
keepdims
=
True
,
dtype
=
np
.
int64
)
self
.
assertTrue
(
np
.
allclose
(
dy_result
.
numpy
(),
expected_result
))
def
run_static
(
self
,
use_gpu
=
False
):
input
=
paddle
.
data
(
name
=
'input'
,
shape
=
[
10
,
10
,
5
],
dtype
=
'float32'
)
result0
=
paddle
.
prod
(
input
)
result1
=
paddle
.
prod
(
input
,
axis
=
1
)
result2
=
paddle
.
prod
(
input
,
axis
=-
1
)
result3
=
paddle
.
prod
(
input
,
axis
=
[
0
,
1
])
result4
=
paddle
.
prod
(
input
,
axis
=
1
,
keepdim
=
True
)
result5
=
paddle
.
prod
(
input
,
axis
=
1
,
dtype
=
'int64'
)
result6
=
paddle
.
prod
(
input
,
axis
=
1
,
keepdim
=
True
,
dtype
=
'int64'
)
place
=
paddle
.
CUDAPlace
(
0
)
if
use_gpu
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
static_result
=
exe
.
run
(
feed
=
{
"input"
:
self
.
input
},
fetch_list
=
[
result0
,
result1
,
result2
,
result3
,
result4
,
result5
,
result6
])
expected_result
=
np
.
prod
(
self
.
input
)
self
.
assertTrue
(
np
.
allclose
(
static_result
[
0
],
expected_result
))
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
static_result
[
1
],
expected_result
))
expected_result
=
np
.
prod
(
self
.
input
,
axis
=-
1
)
self
.
assertTrue
(
np
.
allclose
(
static_result
[
2
],
expected_result
))
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
(
0
,
1
))
self
.
assertTrue
(
np
.
allclose
(
static_result
[
3
],
expected_result
))
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
1
,
keepdims
=
True
)
self
.
assertTrue
(
np
.
allclose
(
static_result
[
4
],
expected_result
))
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
1
,
dtype
=
np
.
int64
)
self
.
assertTrue
(
np
.
allclose
(
static_result
[
5
],
expected_result
))
expected_result
=
np
.
prod
(
self
.
input
,
axis
=
1
,
keepdims
=
True
,
dtype
=
np
.
int64
)
self
.
assertTrue
(
np
.
allclose
(
static_result
[
6
],
expected_result
))
def
test_cpu
(
self
):
paddle
.
disable_static
(
place
=
paddle
.
CPUPlace
())
self
.
run_imperative
()
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
self
.
run_static
()
def
test_gpu
(
self
):
if
not
paddle
.
fluid
.
core
.
is_compiled_with_cuda
():
return
paddle
.
disable_static
(
place
=
paddle
.
CUDAPlace
(
0
))
self
.
run_imperative
()
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
self
.
run_static
(
use_gpu
=
True
)
class
TestProdOpError
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
name
=
'x'
,
shape
=
[
2
,
2
,
4
],
dtype
=
'float32'
)
bool_x
=
paddle
.
data
(
name
=
'bool_x'
,
shape
=
[
2
,
2
,
4
],
dtype
=
'bool'
)
# The argument x shoule be a Tensor
self
.
assertRaises
(
TypeError
,
paddle
.
prod
,
[
1
])
# The data type of x should be float32, float64, int32, int64
self
.
assertRaises
(
TypeError
,
paddle
.
prod
,
bool_x
)
# The argument axis's type shoule be int ,list or tuple
self
.
assertRaises
(
TypeError
,
paddle
.
prod
,
x
,
1.5
)
# The argument dtype of prod_op should be float32, float64, int32 or int64.
self
.
assertRaises
(
TypeError
,
paddle
.
prod
,
x
,
'bool'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
bb7fd097
...
...
@@ -157,6 +157,7 @@ from .math import addmm #DEFINE_ALIAS
from
.math
import
clamp
#DEFINE_ALIAS
from
.math
import
trace
#DEFINE_ALIAS
from
.math
import
kron
#DEFINE_ALIAS
from
.math
import
prod
#DEFINE_ALIAS
# from .random import gaussin #DEFINE_ALIAS
# from .random import uniform #DEFINE_ALIAS
from
.random
import
shuffle
#DEFINE_ALIAS
...
...
python/paddle/tensor/math.py
浏览文件 @
bb7fd097
...
...
@@ -63,6 +63,7 @@ from ..fluid.layers import tanh #DEFINE_ALIAS
from
..fluid.layers
import
increment
#DEFINE_ALIAS
from
..fluid.layers
import
multiplex
#DEFINE_ALIAS
from
..fluid.layers
import
sums
#DEFINE_ALIAS
from
..fluid
import
layers
__all__
=
[
'abs'
,
...
...
@@ -85,6 +86,7 @@ __all__ = [
'log'
,
'mul'
,
'multiplex'
,
'prod'
,
'pow'
,
'reciprocal'
,
'reduce_max'
,
...
...
@@ -1632,3 +1634,85 @@ def cumsum(x, axis=None, dtype=None, name=None):
kwargs
[
name
]
=
val
_cum_sum_
=
generate_layer_fn
(
'cumsum'
)
return
_cum_sum_
(
**
kwargs
)
def
prod
(
x
,
axis
=
None
,
keepdim
=
False
,
dtype
=
None
,
name
=
None
):
"""
Compute the product of tensor elements over the given axis.
Args:
x(Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
multiply all elements of `x` and return a Tensor with a single element,
otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
int32, int64. If specified, the input tensor is casted to dtype before operator performed.
This is very useful for avoiding data type overflows. The default value is None, the dtype
of output is the same as input Tensor `x`.
keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
tensor will have one fewer dimension than the input unless keep_dim is true. Default is False.
name(string, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Tensor, result of product on the specified dim of input tensor.
Raises:
ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
TypeError: The type of :attr:`axis` must be int, list or tuple.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# the axis is a int element
data_x = np.array([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]]).astype(np.float32)
x = paddle.to_tensor(data_x)
out1 = paddle.prod(x)
print(out1.numpy())
# [0.0002268]
out2 = paddle.prod(x, -1)
print(out2.numpy())
# [0.027 0.0084]
out3 = paddle.prod(x, 0)
print(out3.numpy())
# [0.02 0.06 0.3 0.63]
print(out3.numpy().dtype)
# float32
out4 = paddle.prod(x, 0, keepdim=True)
print(out4.numpy())
# [[0.02 0.06 0.3 0.63]]
out5 = paddle.prod(x, 0, dtype='int64')
print(out5.numpy())
# [0 0 0 0]
print(out5.numpy().dtype)
# int64
# the axis is list
data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]])
y = paddle.to_tensor(data_y)
out6 = paddle.prod(y, [0, 1])
print(out6.numpy())
# [105. 384.]
out7 = paddle.prod(y, (1, 2))
print(out7.numpy())
# [ 24. 1680.]
"""
if
dtype
is
not
None
:
check_dtype
(
dtype
,
'dtype'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'prod'
)
if
x
.
dtype
!=
convert_np_dtype_to_dtype_
(
dtype
):
x
=
layers
.
cast
(
x
,
dtype
)
return
layers
.
reduce_prod
(
input
=
x
,
dim
=
axis
,
keep_dim
=
keepdim
,
name
=
name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录