math.py 243.8 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17

18
import numpy as np
19

20
import paddle
21 22
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils
23 24
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

25
from ..common_ops_import import Variable
26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31
    convert_dtype,
)
32 33
from ..framework import (
    LayerHelper,
34
    _dygraph_tracer,
35 36
    convert_np_dtype_to_dtype_,
    core,
37
    in_dynamic_mode,
38 39 40 41
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
42
from .ops import abs  # noqa: F401
G
GGBond8488 已提交
43
from .ops import abs_  # noqa: F401
44
from .ops import acos  # noqa: F401
G
GGBond8488 已提交
45
from .ops import acos_  # noqa: F401
46
from .ops import acosh  # noqa: F401
G
GGBond8488 已提交
47
from .ops import acosh_  # noqa: F401
48
from .ops import asin  # noqa: F401
G
GGBond8488 已提交
49
from .ops import asin_  # noqa: F401
50
from .ops import asinh  # noqa: F401
G
GGBond8488 已提交
51
from .ops import asinh_  # noqa: F401
52
from .ops import atan  # noqa: F401
G
GGBond8488 已提交
53
from .ops import atan_  # noqa: F401
54
from .ops import atanh  # noqa: F401
G
GGBond8488 已提交
55
from .ops import atanh_  # noqa: F401
56 57 58
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
G
GGBond8488 已提交
59
from .ops import cos_  # noqa: F401
60
from .ops import cosh  # noqa: F401
G
GGBond8488 已提交
61
from .ops import cosh_  # noqa: F401
62
from .ops import erf  # noqa: F401
G
GGBond8488 已提交
63
from .ops import erf_  # noqa: F401
64 65 66
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
G
GGBond8488 已提交
67
from .ops import expm1_  # noqa: F401
68 69 70 71 72 73 74 75
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
76 77
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
78
from .ops import sin  # noqa: F401
G
GGBond8488 已提交
79
from .ops import sin_  # noqa: F401
80
from .ops import sinh  # noqa: F401
G
GGBond8488 已提交
81
from .ops import sinh_  # noqa: F401
82 83
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
84
from .ops import square  # noqa: F401
G
GGBond8488 已提交
85
from .ops import square_  # noqa: F401
86
from .ops import tan  # noqa: F401
G
GGBond8488 已提交
87
from .ops import tan_  # noqa: F401
88

89 90
__all__ = []

91 92 93 94 95 96 97 98 99 100 101 102 103
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
138 139
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
140 141 142
    return reduce_all, axis


143 144
def log(x, name=None):
    r"""
C
Chen Long 已提交
145
    Calculates the natural log of the given input Tensor, element-wise.
146 147 148

    .. math::

149
        Out = \ln(x)
150 151

    Args:
152
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
153 154 155 156 157 158 159 160 161 162
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

163
            >>> import paddle
164

165 166 167 168 169 170
            >>> x = [[2, 3, 4], [7, 8, 9]]
            >>> x = paddle.to_tensor(x, dtype='float32')
            >>> print(paddle.log(x))
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.69314718, 1.09861231, 1.38629436],
             [1.94591010, 2.07944155, 2.19722462]])
171
    """
172
    if in_dynamic_mode():
173
        return _C_ops.log(x)
174
    else:
175
        check_variable_and_dtype(
176 177 178 179
            x,
            'x',
            ['int32', 'int64', 'uint16', 'float16', 'float32', 'float64'],
            "log",
180
        )
181 182 183 184 185 186
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
187 188


189 190 191 192 193 194 195 196 197 198 199
@inplace_apis_in_dygraph_only
def log_(x, name=None):
    r"""
    Inplace version of ``log`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log`.
    """

    if in_dynamic_mode():
        return _C_ops.log_(x)


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
217
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
218
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
219 220 221 222
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
223 224

    Returns:
C
Chen Long 已提交
225
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
226 227 228

    Examples:
        .. code-block:: python
229

230 231
            >>> # scale as a float32 number
            >>> import paddle
232

233 234 235 236 237 238 239 240 241 242
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> res = paddle.scale(data, scale=2.0, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
243 244 245

        .. code-block:: python

246 247
            >>> # scale with parameter scale as a Tensor
            >>> import paddle
248

249 250 251 252 253 254 255 256 257 258 259
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> factor = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.scale(data, scale=factor, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
260 261 262

    """

263
    if in_dynamic_mode():
W
Weilong Wu 已提交
264 265
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
266 267
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
268 269
    else:
        check_variable_and_dtype(
270
            x,
271 272 273 274 275 276 277 278 279 280 281 282 283
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
284
        )
285 286 287 288 289 290 291 292 293 294 295
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
296

297 298 299 300
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
301 302 303


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
304 305
    r"""

306 307 308 309
    stanh activation.

    .. math::

310
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
311 312 313 314 315

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
316
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
317 318 319 320 321 322 323

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

324
            >>> import paddle
325

326 327 328 329 330
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = paddle.stanh(x, scale_a=0.67, scale_b=1.72)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00616539, 1.49927628, 1.65933096, 1.70390463])
331 332 333

    """

334
    if in_dynamic_mode():
Z
zyfncg 已提交
335
        return _C_ops.stanh(x, scale_a, scale_b)
336 337
    else:
        check_variable_and_dtype(
338
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
339
        )
340

341 342 343 344 345 346 347 348 349
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
350

351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
383
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
384

385 386 387 388 389 390 391
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

392
            >>> import paddle
393

394 395 396 397 398 399 400 401 402
            >>> img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            >>> img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            >>> inputs = [img1, img2]
            >>> index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
            >>> res = paddle.multiplex(inputs, index)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[5., 6.],
             [3., 4.]])
403 404

    """
405
    if in_dynamic_mode():
406
        return _C_ops.multiplex(inputs, index)
407 408
    else:
        helper = LayerHelper('multiplex', **locals())
409

410 411 412 413 414 415 416 417 418 419 420 421
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
422
        check_variable_and_dtype(
423
            index, "index", ['int32', 'int64'], 'multiplex'
424
        )
425

426 427 428 429 430 431 432
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
433

434

435 436 437 438 439 440
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
441
    if in_dynamic_mode():
442
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
443 444


445
def pow(x, y, name=None):
446
    """
C
Chen Long 已提交
447
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
448

449
    .. math::
450
        out = x^{y}
451

452
    Note:
I
Infinity_lee 已提交
453 454 455
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
456 457


458
    Args:
459
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
460
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
461
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
462

463
    Returns:
464
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
465 466 467

    Examples:

468
        .. code-block:: python
469

470
            >>> import paddle
471

472
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
473

474 475 476 477 478 479 480 481 482
            >>> # example 1: y is a float or int
            >>> res = paddle.pow(x, 2)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
            >>> res = paddle.pow(x, 2.5)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.         , 5.65685415 , 15.58845711])
483

484 485 486 487 488 489
            >>> # example 2: y is a Tensor
            >>> y = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.pow(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
490 491

    """
492
    # in dynamic graph mode
493
    if in_dynamic_mode():
494
        if isinstance(y, (int, float)):
495
            return _C_ops.pow(x, y)
496
        elif isinstance(y, (paddle.Tensor, Variable)):
497
            return _C_ops.elementwise_pow(x, y)
498
        else:
499
            raise TypeError(
500 501
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
502 503
    else:
        # in static graph mode
504
        if isinstance(y, (int, float)):
505 506 507 508 509 510
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
511
            )
512 513 514 515 516 517
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
518
        else:
519
            raise TypeError(
520
                'y must be scalar or tensor type, but received: %s ' % (type(y))
521
            )
522 523


524 525 526 527
@inplace_apis_in_dygraph_only
def pow_(x, y, name=None):
    """
    Inplace version of ``pow`` API, the output Tensor will be inplaced with input ``x``.
528
    Please refer to :ref:`api_paddle_pow`.
529 530 531 532
    """
    if isinstance(y, (int, float)):
        return _C_ops.pow_(x, y)
    else:
G
GGBond8488 已提交
533
        raise TypeError('y must be scalar type, but received: %s ' % (type(y)))
534 535


536
OP_NAMEMAPPING = {
537 538 539 540 541 542 543 544
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
545
    'elementwise_mod': 'remainder',
546
}
547

548

549 550 551 552 553 554
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

555 556
    out = helper.kwargs.get('out', None)

557 558
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
559 560 561 562 563
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
564
        "elementwise_max",
565 566 567 568 569 570 571 572 573 574 575 576 577 578
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
579 580 581 582 583 584 585 586 587
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
588
    check_variable_and_dtype(
589 590
        x,
        'x',
591
        data_type,
592 593
        original_op_type,
    )
594
    check_variable_and_dtype(
595 596
        y,
        'y',
597
        data_type,
598 599
        original_op_type,
    )
600 601 602 603

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
604 605 606 607 608

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
609 610 611 612 613 614 615 616 617 618
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
619 620 621
    return helper.append_activation(out)


Y
Yang Zhang 已提交
622
def add(x, y, name=None):
623
    """
624 625 626 627 628 629 630 631
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

632 633
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
634 635

    There are two cases for this operator:
636 637 638 639

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

640
    For case 2:
641 642

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
643
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
644
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
645 646 647

        For example:

648
        .. code-block:: text
649

650 651 652 653 654 655
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
656

657
    Args:
658 659 660
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
661 662

    Returns:
H
HongyuJia 已提交
663
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
664 665 666

    Examples:

667
        .. code-block:: python
668

669
            >>> import paddle
670

671 672 673 674 675 676
            >>> x = paddle.to_tensor([2, 3, 4], 'float64')
            >>> y = paddle.to_tensor([1, 5, 2], 'float64')
            >>> z = paddle.add(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [3., 8., 6.])
677
    """
678

679
    if in_dynamic_mode():
680
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
681
    else:
682
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
683 684


685 686 687 688 689 690 691 692 693
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
694
        raise ValueError(
695 696 697 698
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
699

700
    return _C_ops.add_(x, y)
701 702


Z
zhiboniu 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

729
        .. code-block:: text
Z
zhiboniu 已提交
730 731 732 733 734 735 736 737 738

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
H
Hui Zhang 已提交
739 740
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
Z
zhiboniu 已提交
741 742 743 744 745 746 747
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

748
        .. code-block:: python
Z
zhiboniu 已提交
749

750
            >>> import paddle
Z
zhiboniu 已提交
751

752 753 754 755 756 757
            >>> x = paddle.to_tensor([-1, -2, -3], 'float64')
            >>> y = paddle.to_tensor([-1], 'float64')
            >>> z = paddle.logaddexp(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-0.30685282, -0.68673831, -0.87307199])
Z
zhiboniu 已提交
758 759 760 761 762
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


763 764
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
765
    Substract two tensors element-wise. The equation is:
766 767 768 769

    .. math::
        out = x - y

770
    Note:
I
Infinity_lee 已提交
771 772 773
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
774 775 776 777 778 779 780 781 782 783 784 785

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[5, 6], [3, 4]])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-4, -4],
             [ 4,  4]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([1, 0, 4])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[ 0,  2, -1],
              [ 0,  2, -1]]])

            >>> x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            >>> y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
            >>> y = paddle.to_tensor([1, 4, 5], dtype='float64')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 4.  ,  inf., -inf.])
818
    """
819
    if in_dynamic_mode():
820
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
821
    else:
822
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
823 824


825 826 827 828 829 830 831 832 833
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
834
        raise ValueError(
835 836 837 838
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
839

840
    return _C_ops.subtract_(x, y)
841 842


843
def divide(x, y, name=None):
844
    """
845
    Divide two tensors element-wise. The equation is:
846

847 848
    .. math::
        out = x / y
849

850
    Note:
I
Infinity_lee 已提交
851 852 853
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
854

855 856 857 858
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
859

860
    Returns:
861
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
862

863
    Examples:
864

865
        .. code-block:: python
866

867
            >>> import paddle
868

869 870 871 872 873 874
            >>> x = paddle.to_tensor([2, 3, 4], dtype='float64')
            >>> y = paddle.to_tensor([1, 5, 2], dtype='float64')
            >>> z = paddle.divide(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [2.        , 0.60000000, 2.        ])
875

876
    """
877
    if in_dynamic_mode():
878
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
879
    else:
880
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
881 882


883 884
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
885
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
886

887
    .. math::
L
Lin Manhui 已提交
888
        out = trunc(x / y)
889

H
hg-1099255210 已提交
890 891 892
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

893
    Note:
I
Infinity_lee 已提交
894 895 896 897
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
898
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
899

900
    Args:
901 902
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
903
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
904

905 906
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
907

908
    Examples:
909

910
        .. code-block:: python
911

912
            >>> import paddle
913

914 915 916 917 918 919
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.floor_divide(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 0, 2, 2])
920

921
    """
922
    if in_dynamic_mode():
923
        return _C_ops.floor_divide(x, y)
924
    else:
925
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
926 927


928
def remainder(x, y, name=None):
929
    r"""
930 931 932
    Mod two tensors element-wise. The equation is:

    .. math::
933

934 935
        out = x \% y

936
    Note:
I
Infinity_lee 已提交
937 938 939
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
940 941

    Args:
942 943
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
944 945 946
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
947
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
948 949 950

    Examples:

951
        .. code-block:: python
952

953
            >>> import paddle
954

955 956 957 958 959 960
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.remainder(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 3, 2, 1])
961 962

    """
963
    if in_dynamic_mode():
964
        return _C_ops.remainder(x, y)
965
    else:
966
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
967 968


969 970 971 972 973 974 975 976 977
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
978 979 980 981
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
982
    return _C_ops.remainder_(x, y)
983 984


985 986
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
987 988


989
def multiply(x, y, name=None):
990
    """
991
    multiply two tensors element-wise. The equation is:
992

993 994
    .. math::
        out = x * y
995

996
    Note:
I
Infinity_lee 已提交
997 998 999
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1000

1001
    Args:
W
will-jl944 已提交
1002 1003
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
1004
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1005

1006
    Returns:
1007
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1008

1009 1010
    Examples:

1011
        .. code-block:: python
1012

1013
            >>> import paddle
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
            >>> x = paddle.to_tensor([[1, 2], [3, 4]])
            >>> y = paddle.to_tensor([[5, 6], [7, 8]])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[5 , 12],
             [21, 32]])
            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([2])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[2, 4, 6],
              [2, 4, 6]]])
1029 1030

    """
1031
    if in_dynamic_mode():
1032
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
1033
    else:
1034 1035
        if x.dtype != y.dtype:
            raise TypeError(
1036
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
1037
            )
1038

1039
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
1040

1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


1064 1065 1066 1067 1068
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
1069 1070
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1091
    if in_dynamic_mode():
1092 1093 1094
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1095
        return _elementwise_op(LayerHelper(op_type, **locals()))
1096 1097 1098 1099


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1100
    if in_dynamic_mode():
1101 1102 1103 1104 1105
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1106
        return _elementwise_op(LayerHelper(op_type, **locals()))
1107 1108 1109 1110


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1111
    if in_dynamic_mode():
1112 1113 1114 1115 1116
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1117
        return _elementwise_op(LayerHelper(op_type, **locals()))
1118 1119 1120 1121


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1122
    if in_dynamic_mode():
1123 1124 1125
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1126
        return _elementwise_op(LayerHelper(op_type, **locals()))
1127 1128


1129
def maximum(x, y, name=None):
1130
    """
W
Wei Shengyu 已提交
1131
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1132

1133 1134
    .. math::
        out = max(x, y)
1135

1136
    Note:
I
Infinity_lee 已提交
1137 1138 1139
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
1184
    """
1185
    if in_dynamic_mode():
1186
        return _C_ops.maximum(x, y)
1187
    else:
1188
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1189

1190

1191
def minimum(x, y, name=None):
1192
    """
C
Chen Long 已提交
1193
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1194

1195 1196
    .. math::
        out = min(x, y)
1197

1198
    Note:
I
Infinity_lee 已提交
1199 1200 1201
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1202 1203 1204 1205 1206 1207 1208

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1209
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1210 1211 1212 1213 1214

    Examples:

        .. code-block:: python

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
1246
    """
1247
    if in_dynamic_mode():
1248
        return _C_ops.minimum(x, y)
1249
    else:
1250
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1251

1252

L
LJQ❤️ 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1262
    Note:
I
Infinity_lee 已提交
1263 1264 1265
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1266 1267

    Args:
1268 1269
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1310
    """
1311
    if in_dynamic_mode():
1312
        return _C_ops.fmax(x, y)
1313
    else:
1314
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1315

1316

L
LJQ❤️ 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1326
    Note:
I
Infinity_lee 已提交
1327 1328 1329
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1330 1331

    Args:
1332 1333
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1374
    """
1375
    if in_dynamic_mode():
1376
        return _C_ops.fmin(x, y)
1377
    else:
1378
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1379

Y
Yang Zhang 已提交
1380

1381
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1382 1383 1384 1385
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1386
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1387 1388
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1389
            Tensor with a single element, otherwise must be in the
1390 1391 1392 1393 1394 1395 1396
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1397
            value is False.
1398
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1399 1400

    Returns:
1401
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1402
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1403
        otherwise it's data type is the same as `x`.
1404 1405 1406 1407

    Examples:
        .. code-block:: python

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            >>> import paddle

            >>> # x is a Tensor with following elements:
            >>> #    [[0.2, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, 0.6, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.sum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.50000000)
            >>> out2 = paddle.sum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.30000001, 0.50000000, 1.10000002, 1.59999990])
            >>> out3 = paddle.sum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.89999998, 1.60000002])
            >>> out4 = paddle.sum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.89999998],
             [1.60000002]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, 2], [3, 4]],
            >>> #      [[5, 6], [7, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, 2], [3, 4]],
            ...                       [[5, 6], [7, 8]]])
            >>> out5 = paddle.sum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [10, 26])
            >>> out6 = paddle.sum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [16, 20])

            >>> # x is a Tensor with following elements:
            >>> #    [[True, True, True, True]
            >>> #     [False, False, False, False]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[True, True, True, True],
            ...                       [False, False, False, False]])
            >>> out7 = paddle.sum(x)
            >>> out7
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
            >>> out8 = paddle.sum(x, axis=0)
            >>> out8
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 1, 1, 1])
            >>> out9 = paddle.sum(x, axis=1)
            >>> out9
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [4, 0])
1467
    """
1468

1469 1470 1471 1472
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1473

1474
    if in_dynamic_mode():
1475
        return _C_ops.sum(x, axis, dtype, keepdim)
1476 1477 1478
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1479

1480
        if dtype_flag:
1481
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1482

1483 1484 1485 1486 1487
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1488
                'uint16',
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1500

1501 1502 1503
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1517

1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
            >>> import paddle

            >>> x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            >>> out1 = paddle.nan_to_num(x)
            >>> out1
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out2 = paddle.nan_to_num(x, nan=1)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out3 = paddle.nan_to_num(x, posinf=5)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              5.                                      ,
             -340282346638528859811704183484516925440.])
            >>> out4 = paddle.nan_to_num(x, nan=10, neginf=-99)
            >>> out4
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 10.                                    ,
              0.30000001                             ,
             340282346638528859811704183484516925440.,
             -99.                                    ])
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1591 1592 1593 1594 1595
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1596
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1608
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1609 1610 1611 1612 1613 1614 1615

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
                        >>> import paddle

            >>> # x is a Tensor with following elements:
            >>> #    [[nan, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, -nan, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
            >>> out1 = paddle.nansum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.69999981)
            >>> out2 = paddle.nansum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.50000000, 0.50000000, 1.59999990])
            >>> out3 = paddle.nansum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.70000005, 1.        ])
            >>> out4 = paddle.nansum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.70000005],
             [1.        ]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, nan], [3, 4]],
            >>> #       [[5, 6], [-nan, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out5 = paddle.nansum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [8. , 19.])
            >>> out6 = paddle.nansum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [9. , 18.])
W
wangguanqun 已提交
1656
    """
1657
    check_variable_and_dtype(
1658
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1659
    )
W
wangguanqun 已提交
1660 1661 1662 1663 1664 1665 1666
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]])
            >>> out1 = paddle.nanmean(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.44999996)
            >>> out2 = paddle.nanmean(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.25000000, 0.50000000, 0.79999995])
            >>> out3 = paddle.nanmean(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.10000000, 0.25000000, 0.50000000, 0.79999995]])
            >>> out4 = paddle.nanmean(x, axis=1)
            >>> out4
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.56666666, 0.33333334])
            >>> out5 = paddle.nanmean(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.56666666],
             [0.33333334]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out6 = paddle.nanmean(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2.66666675, 6.33333349])
            >>> out7 = paddle.nanmean(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3., 6.])
1735 1736 1737
    """
    if isinstance(axis, int):
        axis = [axis]
1738 1739 1740
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1741 1742 1743
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1744 1745 1746
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1747 1748
        cnt.astype(x.dtype),
    )
1749 1750


1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            >>> out1 = paddle.count_nonzero(x)
            >>> out1
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            3)
            >>> out2 = paddle.count_nonzero(x, axis=0)
            >>> out2
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 2])
            >>> out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 2]])
            >>> out4 = paddle.count_nonzero(x, axis=1)
            >>> out4
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 1, 0])
            >>> out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[2],
             [1],
             [0]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
            ...                         [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            >>> out6 = paddle.count_nonzero(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [3, 6])
            >>> out7 = paddle.count_nonzero(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 3, 5])
1812 1813
    """

1814 1815
    if isinstance(axis, int):
        axis = [axis]
1816 1817 1818 1819 1820 1821

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1822
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1823
def add_n(inputs, name=None):
1824
    """
1825
    Sum one or more Tensor of the input.
1826

S
Steffy-zxf 已提交
1827 1828 1829
    For example:

    .. code-block:: text
1830

S
Steffy-zxf 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1844

S
Steffy-zxf 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1860 1861

    Args:
1862
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1863
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1864
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1865 1866

    Returns:
S
Steffy-zxf 已提交
1867
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1868 1869 1870

    Examples:
        .. code-block:: python
1871

1872
            >>> import paddle
1873

1874 1875 1876 1877 1878 1879 1880
            >>> input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            >>> input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            >>> output = paddle.add_n([input0, input1])
            >>> output
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[8. , 10., 12.],
             [14., 16., 18.]])
1881
    """
1882
    if in_dynamic_mode():
1883 1884
        if isinstance(inputs, Variable):
            inputs = [inputs]
1885
        return _C_ops.add_n(inputs)
1886
    else:
1887 1888
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1889
        if isinstance(inputs, (list, tuple)):
1890 1891 1892 1893 1894
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1895 1896 1897 1898 1899 1900 1901 1902
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1903 1904 1905 1906 1907 1908
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1909
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1910 1911
                'add_n',
            )
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1922

1923
        return out
1924 1925


1926 1927 1928
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1929

1930 1931 1932
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1933

1934 1935
    Returns:
        Tensor: The output Tensor of trunc.
1936

1937 1938 1939
    Examples:
        .. code-block:: python

1940
            >>> import paddle
1941

1942 1943 1944 1945 1946 1947
            >>> input = paddle.to_tensor([[0.1, 1.5], [-0.2, -2.4]], 'float32')
            >>> output = paddle.trunc(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.,  1.],
             [-0., -2.]])
1948
    '''
1949
    if in_dynamic_mode():
1950
        return _C_ops.trunc(input)
1951
    else:
1952 1953
        inputs = {"X": input}
        attrs = {}
1954

1955 1956 1957 1958 1959
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1960

1961 1962 1963 1964
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1965 1966


1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
@inplace_apis_in_dygraph_only
def trunc_(input, name=None):
    r"""
    Inplace version of ``trunc`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_trunc`.
    """
    if in_dynamic_mode():
        return _C_ops.trunc_(input)


W
WuHaobo 已提交
1977
def mm(input, mat2, name=None):
1978
    """
S
swtkiwi 已提交
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1991
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1992
        mat2 (Tensor): The input tensor which is a Tensor.
1993
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1994 1995

    Returns:
N
Noel 已提交
1996
        Tensor: The product Tensor.
1997

W
wawltor 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

2030 2031 2032
    Examples:
        .. code-block:: python

2033 2034 2035 2036 2037 2038 2039 2040 2041
            >>> import paddle
            >>> input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            >>> mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            >>> out = paddle.mm(input, mat2)
            >>> out
            Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[11., 14., 17., 20.],
             [23., 30., 37., 44.],
             [35., 46., 57., 68.]])
2042

N
Noel 已提交
2043

2044
    """
2045
    if in_dynamic_mode():
2046
        return _C_ops.matmul(input, mat2, False, False)
2047
    else:
2048

2049 2050 2051 2052 2053
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
2054
                )
2055 2056 2057 2058 2059 2060
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
2061

2062 2063 2064
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
2065
                    raise ValueError(
2066 2067
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
2068 2069 2070
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
2071
                    )
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
2096

2097

Y
yaoxuefeng 已提交
2098
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
2099 2100 2101
    """
    **addmm**

2102
    Perform matrix multiplication for input $x$ and $y$.
2103 2104 2105 2106 2107 2108 2109 2110 2111
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
2112 2113 2114
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
2115 2116
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
2117
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2118 2119

    Returns:
2120
        Tensor: The output Tensor of addmm.
2121 2122

    Examples:
2123
        .. code-block:: python
2124

2125
            >>> import paddle
2126

2127 2128 2129
            >>> x = paddle.ones([2, 2])
            >>> y = paddle.ones([2, 2])
            >>> input = paddle.ones([2, 2])
Y
yaoxuefeng 已提交
2130

2131
            >>> out = paddle.addmm(input=input, x=x, y=y, beta=0.5, alpha=5.0)
Y
yaoxuefeng 已提交
2132

2133 2134 2135 2136
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[10.50000000, 10.50000000],
             [10.50000000, 10.50000000]])
2137
    """
Y
yaoxuefeng 已提交
2138 2139 2140
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
2141
    if not len(x_shape) == len(y_shape) == 2:
2142
        raise ValueError(
2143 2144 2145 2146
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
2147
    if x_shape[1] != y_shape[0]:
2148
        raise ValueError(
2149 2150 2151 2152
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
2153 2154 2155
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
2156
                raise ValueError(
2157 2158 2159 2160
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
2161
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
2162
                raise ValueError(
2163 2164 2165 2166
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2167 2168
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
2169
                raise ValueError(
2170 2171 2172 2173
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2174 2175
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2176
            raise ValueError(
2177 2178 2179 2180
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2181
    else:
2182
        raise ValueError(
2183 2184 2185 2186
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2187

2188
    if in_dynamic_mode():
2189
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2190
    else:
2191 2192
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2193

2194 2195
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2196 2197 2198 2199 2200 2201 2202
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2203 2204
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2205

2206 2207 2208 2209
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2210

2211

G
GGBond8488 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
@inplace_apis_in_dygraph_only
def addmm_(input, x, y, beta=1.0, alpha=1.0, name=None):
    """
    Inplace version of ``addmm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_label_addmm`.
    """
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
    if x_shape[1] != y_shape[0]:
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
    else:
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )

    if in_dynamic_mode():
        return _C_ops.addmm_(input, x, y, beta, alpha)


S
seemingwang 已提交
2272 2273 2274 2275 2276 2277 2278
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2279
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
2293
        .. code-block:: python
2294

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
            >>> import paddle
            >>> input = [[[2.0, 2, -2], [3, 0.3, 3]],
            ...          [[2, -8, 2],   [3.1, 3.7, 3]]]
            >>> x = paddle.to_tensor(input,dtype='float32')
            >>> y = paddle.renorm(x, 1.0, 2, 2.05)
            >>> print(y)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[ 0.40594056,  0.29285714, -0.41000000],
              [ 0.60891086,  0.04392857,  0.61500001]],
             [[ 0.40594056, -1.17142856,  0.41000000],
              [ 0.62920785,  0.54178572,  0.61500001]]])
2306

S
seemingwang 已提交
2307 2308 2309
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2310 2311
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2312 2313 2314
                axis, len(input_shape), input_shape
            )
        )
2315
    if not axis >= 0:
S
seemingwang 已提交
2316
        if not axis >= -1 * len(input_shape):
2317
            raise ValueError(
2318 2319 2320 2321
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2322
        axis = axis + len(input_shape)
2323
    if in_dynamic_mode():
2324
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2325
        return out
2326
    else:
2327
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2328 2329
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2330

2331 2332
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2333

2334 2335 2336 2337
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2338

2339

Z
zhiboniu 已提交
2340 2341 2342 2343
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2344

Z
zhiboniu 已提交
2345 2346 2347 2348 2349
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2350
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2351 2352 2353 2354 2355 2356 2357

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

2358 2359 2360 2361 2362 2363 2364 2365
            >>> import paddle
            >>> x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            >>> y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            >>> out = paddle.inner(x, y)
            >>> print(out)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[14. , 32. , 50. ],
             [32. , 77. , 122.]])
Z
zhiboniu 已提交
2366 2367 2368 2369 2370 2371 2372 2373


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2374
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2375

Z
zhiboniu 已提交
2376 2377 2378
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2379
        if in_dynamic_mode():
2380
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2381
        else:
Z
zhiboniu 已提交
2382

2383 2384 2385 2386 2387
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2388
                    )
2389 2390 2391 2392 2393 2394 2395 2396 2397
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2398 2399 2400
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2423 2424
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2425
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2426 2427 2428 2429 2430 2431 2432

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

2433 2434 2435 2436 2437 2438 2439 2440 2441
            >>> import paddle
            >>> x = paddle.arange(1, 4).astype('float32')
            >>> y = paddle.arange(1, 6).astype('float32')
            >>> out = paddle.outer(x, y)
            >>> print(out)
            Tensor(shape=[3, 5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 2. , 3. , 4. , 5. ],
             [2. , 4. , 6. , 8. , 10.],
             [3. , 6. , 9. , 12., 15.]])
Z
zhiboniu 已提交
2442 2443 2444 2445 2446 2447


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2448
    if in_dynamic_mode():
2449
        return _C_ops.matmul(nx, ny, False, False)
2450
    else:
Z
zhiboniu 已提交
2451

2452 2453 2454 2455
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
2456 2457 2458 2459
                    val,
                    name,
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'outer',
2460
                )
Z
zhiboniu 已提交
2461

2462
        __check_input(nx, ny)
Z
zhiboniu 已提交
2463

2464 2465 2466 2467 2468 2469
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2470 2471


2472
def logsumexp(x, axis=None, keepdim=False, name=None):
2473
    r"""
2474
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2475

2476
    .. math::
2477
       logsumexp(x) = \log\sum exp(x)
2478

2479
    Args:
2480
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2481
            have no more than 4 dimensions.
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2498

2499
    Returns:
2500 2501
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2502

2503
    Examples:
2504

2505
    .. code-block:: python
2506

2507
        >>> import paddle
2508

2509 2510 2511 2512 2513 2514 2515 2516 2517
        >>> x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        >>> out1 = paddle.logsumexp(x)
        >>> out1
        Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
        3.46912265)
        >>> out2 = paddle.logsumexp(x, 1)
        >>> out2
        Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
        [2.15317822, 3.15684605])
2518 2519

    """
2520
    reduce_all, axis = _get_reduce_axis(axis, x)
2521

2522
    if in_dynamic_mode():
2523
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2524
    else:
2525
        check_variable_and_dtype(
2526
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2527
        )
2528 2529 2530 2531 2532 2533

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2534
        )
2535
        return out
2536

S
swtkiwi 已提交
2537

2538 2539
def inverse(x, name=None):
    """
2540 2541 2542 2543 2544
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2545
        x (Tensor): The input tensor. The last two
2546 2547 2548
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2549
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2550 2551

    Returns:
2552
        Tensor: A Tensor holds the inverse of x. The shape and data type
2553
                        is the same as x.
2554 2555 2556 2557

    Examples:
        .. code-block:: python

2558
            >>> import paddle
2559

2560 2561 2562 2563 2564 2565
            >>> mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
            >>> inv = paddle.inverse(mat)
            >>> print(inv)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.        ],
             [0.        , 0.50000000]])
2566 2567

    """
2568
    if in_dynamic_mode():
W
wanghuancoder 已提交
2569
        return _C_ops.inverse(x)
2570
    else:
2571

2572 2573 2574 2575 2576 2577 2578 2579
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2580

2581 2582 2583 2584 2585 2586 2587
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2588

2589

2590
def max(x, axis=None, keepdim=False, name=None):
2591
    """
S
swtkiwi 已提交
2592

2593
    Computes the maximum of tensor elements over the given axis.
2594

T
Tao Luo 已提交
2595 2596
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2597
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2598 2599 2600
        while max propagates gradient to all of them.


2601
    Args:
2602 2603
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2604
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2605
            `x` and return a Tensor with a single element,
2606 2607
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2608
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2609
            output Tensor. The result tensor will have one fewer dimension
2610
            than the `x` unless :attr:`keepdim` is true, default
2611
            value is False.
2612
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2613 2614

    Returns:
2615
        Tensor, results of maximum on the specified axis of input tensor,
2616
        it's data type is the same as `x`.
2617 2618 2619

    Examples:
        .. code-block:: python
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.max(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.max(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.30000000, 0.60000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 1., 0., 1.],
             [0., 0., 1., 0.]])

            >>> x.clear_grad()
            >>> result3 = paddle.max(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> x.clear_grad()
            >>> result4 = paddle.max(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.70000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.max(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [4., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 1.]],
             [[0., 0.],
              [0., 1.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.max(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [7., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 0.]],
             [[0., 0.],
              [1., 1.]]])
2701 2702
    """

2703
    if in_dynamic_mode():
2704
        return _C_ops.max(x, axis, keepdim)
2705 2706 2707 2708
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2709 2710 2711 2712
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2713
        )
2714 2715
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2716

2717 2718 2719 2720 2721 2722 2723 2724
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2725

2726

2727
def min(x, axis=None, keepdim=False, name=None):
2728
    """
S
swtkiwi 已提交
2729

2730
    Computes the minimum of tensor elements over the given axis
2731

T
Tao Luo 已提交
2732 2733
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2734
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2735 2736
        while min propagates gradient to all of them.

2737
    Args:
2738 2739
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2740
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2741
            `x` and return a Tensor with a single element,
2742 2743
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2744
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2745
            output Tensor. The result tensor will have one fewer dimension
2746
            than the `x` unless :attr:`keepdim` is true, default
2747
            value is False.
2748
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2749

2750
    Returns:
2751
        Tensor, results of minimum on the specified axis of input tensor,
2752
        it's data type is the same as input's Tensor.
2753

2754 2755 2756
    Examples:
        .. code-block:: python

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.min(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.min(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.20000000, 0.50000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 1., 0.],
             [1., 1., 0., 1.]])

            >>> x.clear_grad()
            >>> result3 = paddle.min(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result4 = paddle.min(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.20000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                       [[5.0, 6.0], [7.0, 8.0]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.min(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 5.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 0.],
              [0., 0.]],
             [[1., 0.],
              [0., 0.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.min(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 2.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 1.],
              [0., 0.]],
             [[0., 0.],
              [0., 0.]]])
2837
    """
2838

2839
    if in_dynamic_mode():
2840
        return _C_ops.min(x, axis, keepdim)
2841 2842 2843 2844
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2845 2846 2847 2848
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2849
        )
2850

2851 2852 2853 2854 2855 2856 2857 2858
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2859

2860

T
Tao Luo 已提交
2861 2862 2863 2864 2865 2866
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2867
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2868 2869 2870
        while max propagates gradient to all of them.

    Args:
2871
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2872
            the dimension is no more than 4.
2873
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2874 2875 2876 2877
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2878
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2879 2880 2881
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2882
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2883 2884 2885 2886 2887 2888 2889 2890

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
            ...                         [0.9, 0.9, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 maximum elements:
            >>> # 1) amax evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while max propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amax(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_max = paddle.max(x)
            >>> result1_max.backward()
            >>> result1_max
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amax(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000, 0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amax(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amax(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.90000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
            ...                         [[0.9, 0.9], [0.6, 0.7]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amax(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amax(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
2987
    """
2988
    if in_dynamic_mode():
2989
        return _C_ops.amax(x, axis, keepdim)
2990

2991 2992 2993 2994 2995
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2996
        )
T
Tao Luo 已提交
2997

2998 2999 3000 3001 3002 3003 3004 3005
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3006

3007

T
Tao Luo 已提交
3008 3009 3010 3011 3012 3013 3014
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
3015
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
3016 3017 3018
        while min propagates gradient to all of them.

    Args:
3019
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
3020
            the dimension is no more than 4.
3021
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
3022 3023 3024 3025
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
3026
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
3027 3028 3029
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
3030
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
3031 3032 3033 3034 3035 3036 3037 3038

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
            ...                         [0.1, 0.1, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 minimum elements:
            >>> # 1) amin evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while min propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amin(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_min = paddle.min(x)
            >>> result1_min.backward()
            >>> result1_min
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amin(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000, 0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amin(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amin(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.10000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
            ...                       [[0.1, 0.1], [0.6, 0.7]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amin(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amin(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
3135
    """
3136
    if in_dynamic_mode():
3137
        return _C_ops.amin(x, axis, keepdim)
3138

3139 3140 3141 3142 3143
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
3144
        )
T
Tao Luo 已提交
3145

3146 3147 3148 3149 3150 3151 3152 3153
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3154

3155

W
WuHaobo 已提交
3156
def log1p(x, name=None):
3157
    r"""
3158
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
3159

3160
    .. math::
3161
        Out = \ln(x+1)
S
Steffy-zxf 已提交
3162

3163
    Args:
3164
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3165
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3166

3167
    Returns:
S
Steffy-zxf 已提交
3168
        Tensor, the natural log of the input Tensor computed element-wise.
3169

3170 3171
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
3172

3173
            >>> import paddle
S
Steffy-zxf 已提交
3174

3175 3176 3177 3178 3179 3180
            >>> data = paddle.to_tensor([[0], [1]], dtype='float32')
            >>> res = paddle.log1p(data)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        ],
             [0.69314718]])
3181 3182
    """

3183
    if in_dynamic_mode():
W
wanghuancoder 已提交
3184
        return _C_ops.log1p(x)
3185
    else:
3186
        check_variable_and_dtype(
3187 3188 3189 3190
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log1p",
3191
        )
3192 3193 3194 3195 3196 3197
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
3198

3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
@inplace_apis_in_dygraph_only
def log1p_(x, name=None):
    r"""
    Inplace version of ``log1p`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log1p`.
    """

    if in_dynamic_mode():
        return _C_ops.log1p_(x)


J
joejiong 已提交
3211
def log2(x, name=None):
3212
    r"""
J
joejiong 已提交
3213 3214 3215 3216
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

3217
        Out = \log_2x
J
joejiong 已提交
3218 3219

    Args:
3220
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3221
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3222 3223 3224 3225 3226 3227 3228 3229


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3230

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [2.0]])
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3256
    """
3257
    if in_dynamic_mode():
W
wanghuancoder 已提交
3258
        return _C_ops.log2(x)
3259 3260
    else:
        check_variable_and_dtype(
3261 3262 3263 3264
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log2",
3265 3266 3267 3268 3269 3270 3271
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
3272

J
joejiong 已提交
3273

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
@inplace_apis_in_dygraph_only
def log2_(x, name=None):
    r"""
    Inplace version of ``log2`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log2`.
    """

    if in_dynamic_mode():
        return _C_ops.log2_(x)


J
joejiong 已提交
3285
def log10(x, name=None):
3286
    r"""
J
joejiong 已提交
3287 3288 3289 3290
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

3291
        Out = \log_10_x
J
joejiong 已提交
3292 3293

    Args:
3294
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3295
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3296 3297 3298 3299 3300 3301 3302 3303


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3304

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [10.0]])
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3330
    """
3331
    if in_dynamic_mode():
W
wanghuancoder 已提交
3332
        return _C_ops.log10(x)
3333 3334
    else:
        check_variable_and_dtype(
3335 3336 3337 3338
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log10",
3339 3340 3341 3342 3343 3344 3345
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
3346 3347


3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
@inplace_apis_in_dygraph_only
def log10_(x, name=None):
    r"""
    Inplace version of ``log10`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log10`.
    """

    if in_dynamic_mode():
        return _C_ops.log10_(x)


Y
Yang Zhang 已提交
3359
def clip(x, min=None, max=None, name=None):
3360
    """
Y
Yang Zhang 已提交
3361
    This operator clip all elements in input into the range [ min, max ] and return
3362 3363 3364 3365
    a resulting tensor as the following equation:

    .. math::

3366
        Out = MIN(MAX(x, min), max)
3367 3368

    Args:
3369
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
3370 3371 3372 3373
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
3374
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3375 3376

    Returns:
Y
Yang Zhang 已提交
3377
        Tensor: A Tensor with the same data type and data shape as input.
3378 3379 3380 3381

    Examples:
        .. code-block:: python

3382
            >>> import paddle
N
Noel 已提交
3383

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
            >>> x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
            >>> out1 = paddle.clip(x1, min=3.5, max=5.0)
            >>> out1
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[3.50000000, 3.50000000],
             [4.50000000, 5.        ]])
            >>> out2 = paddle.clip(x1, min=2.5)
            >>> out2
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[2.50000000, 3.50000000],
             [4.50000000, 6.40000010]])
3395 3396
    """

3397 3398 3399 3400 3401 3402 3403
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
3404 3405 3406
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
3407 3408 3409
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
3410

3411
    if in_dynamic_mode():
C
chentianyu03 已提交
3412
        if isinstance(min, Variable):
3413
            min = min.item(0)
C
chentianyu03 已提交
3414
        if isinstance(max, Variable):
3415
            max = max.item(0)
C
chentianyu03 已提交
3416 3417
        min = min_ if min is None else min
        max = max_ if max is None else max
3418
        return _C_ops.clip(x, min, max)
3419 3420 3421 3422 3423 3424 3425
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
3426
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3427 3428 3429 3430 3431 3432 3433 3434 3435
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
3436
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3437 3438 3439
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
3440

3441
        check_variable_and_dtype(
3442 3443 3444 3445
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
3446
        )
Y
Yang Zhang 已提交
3447

3448 3449
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
3450

3451 3452 3453 3454 3455
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
3456

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3470

3471
        return output
F
Feiyu Chan 已提交
3472

W
WuHaobo 已提交
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3483
        min = min.item(0)
3484
    if isinstance(max, Variable):
3485
        max = max.item(0)
3486 3487
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3488

3489
    if in_dynamic_mode():
3490
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3491

3492

3493
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3494
    """
S
swtkiwi 已提交
3495

3496
    Computes the sum along diagonals of the input tensor x.
3497 3498

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3499

3500
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3501
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3502
    of the input tensor x.
L
Li Fuchen 已提交
3503

3504
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3505 3506 3507 3508

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3509
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3510

L
Li Fuchen 已提交
3511
    Args:
3512 3513 3514 3515 3516
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3517 3518

    Returns:
3519
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3520 3521 3522 3523

    Examples:
        .. code-block:: python

3524
            >>> import paddle
3525

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
            >>> case1 = paddle.randn([2, 3])
            >>> case2 = paddle.randn([3, 10, 10])
            >>> case3 = paddle.randn([3, 10, 5, 10])
            >>> data1 = paddle.trace(case1)
            >>> data1.shape
            []
            >>> data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2)
            >>> data2.shape
            [3]
            >>> data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1)
            >>> data3.shape
            [3, 5]
L
Li Fuchen 已提交
3538
    """
3539

Z
zyfncg 已提交
3540
    def __check_input(x, offset, axis1, axis2):
3541 3542 3543 3544 3545 3546
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3547

3548
        input_shape = list(x.shape)
3549 3550 3551 3552
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3553

3554 3555
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3556

3557 3558
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3559
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3560
        )
L
Li Fuchen 已提交
3561

3562 3563
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3564
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3565
        )
L
Li Fuchen 已提交
3566

3567 3568 3569 3570
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3571

3572
    if in_dynamic_mode():
3573
        return _C_ops.trace(x, offset, axis1, axis2)
3574 3575
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3576

3577 3578
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3579

3580 3581 3582 3583 3584 3585 3586
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3587

3588

3589 3590
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3591
    Computes the diagonals of the input tensor x.
3592 3593

    If ``x`` is 2D, returns the diagonal.
3594
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3595 3596 3597 3598 3599 3600 3601
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3602

3603
    Args:
3604 3605 3606 3607 3608
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3609 3610 3611 3612 3613 3614 3615

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
            >>> import paddle

            >>> paddle.seed(2023)
            >>> x = paddle.rand([2, 2, 3],'float32')
            >>> print(x)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[0.86583614, 0.52014720, 0.25960937],
              [0.90525323, 0.42400089, 0.40641287]],
             [[0.97020894, 0.74437362, 0.51785129],
              [0.73292869, 0.97786582, 0.04315904]]])

            >>> out1 = paddle.diagonal(x)
            >>> print(out1)
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.73292869],
             [0.52014720, 0.97786582],
             [0.25960937, 0.04315904]])

            >>> out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            >>> print(out2)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])

            >>> out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            >>> print(out3)
            Tensor(shape=[3, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.90525323],
             [0.42400089],
             [0.40641287]])

            >>> out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            >>> print(out4)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])
3652

3653
    """
3654
    if in_dynamic_mode():
3655
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3656
    else:
W
wanghuancoder 已提交
3657

3658 3659 3660 3661
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3662 3663 3664 3665 3666 3667 3668 3669 3670
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3671 3672
                'diagonal',
            )
3673

3674 3675 3676 3677 3678
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3679

3680 3681
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3682

3683 3684 3685 3686
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3687

3688 3689 3690 3691
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3692

3693 3694 3695 3696
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3697

3698 3699 3700
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3701

3702 3703 3704 3705 3706 3707 3708
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3709 3710


W
WuHaobo 已提交
3711
def kron(x, y, name=None):
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3731 3732

    Args:
3733 3734
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3735
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3736 3737

    Returns:
3738
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3739 3740 3741

    Examples:
        .. code-block:: python
3742

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
            >>> import paddle
            >>> x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            >>> y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            >>> out = paddle.kron(x, y)
            >>> out
            Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1 , 2 , 3 , 2 , 4 , 6 ],
             [4 , 5 , 6 , 8 , 10, 12],
             [7 , 8 , 9 , 14, 16, 18],
             [3 , 6 , 9 , 4 , 8 , 12],
             [12, 15, 18, 16, 20, 24],
             [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3755
    """
3756
    if in_dynamic_mode():
3757 3758 3759 3760 3761 3762 3763 3764 3765
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3766

3767 3768 3769 3770 3771
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3772 3773 3774 3775


def cumsum(x, axis=None, dtype=None, name=None):
    """
3776 3777
    The cumulative sum of the elements along a given axis.

3778
    Note:
3779
        The first element of the result is the same as the first element of the input.
3780 3781

    Args:
3782
        x (Tensor): The input tensor needed to be cumsumed.
3783
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3784
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3785 3786 3787
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3788
        Tensor, the result of cumsum operator.
3789 3790 3791

    Examples:
        .. code-block:: python
3792

3793
            >>> import paddle
3794

3795 3796
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
3797

3798 3799 3800 3801
            >>> y = paddle.cumsum(data)
            >>> y
            Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0 , 1 , 3 , 6 , 10, 15, 21, 28, 36, 45, 55, 66])
3802

3803 3804 3805 3806 3807 3808
            >>> y = paddle.cumsum(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 6 , 8 , 10],
             [12, 15, 18, 21]])
3809

3810 3811 3812 3813 3814 3815
            >>> y = paddle.cumsum(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 3 , 6 ],
             [4 , 9 , 15, 22],
             [8 , 17, 27, 38]])
3816

3817 3818
            >>> y = paddle.cumsum(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
3819 3820 3821 3822 3823 3824
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3825
        x = cast(x, dtype)
3826

3827
    if in_dynamic_mode():
3828 3829
        if axis is None:
            axis = -1
3830
        return _C_ops.cumsum(x, axis, flatten, False, False)
3831
    else:
3832 3833 3834
        check_variable_and_dtype(
            x,
            'x',
3835
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3836 3837
            'cumsum',
        )
3838 3839
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3840
        kwargs = {}
3841 3842 3843 3844 3845
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3846

3847

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
def cummax(x, axis=None, dtype='int64', name=None):
    """
    The cumulative max of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummaxed.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.

        indices (Tensor), The corresponding index results of cummax operation.

    Examples:
        .. code-block:: python

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
            >>> import paddle

            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummax(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1,  5,  5,  5,  5,  5])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 1, 1, 1, 1])

            >>> value, indices = paddle.cummax(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-1,  5,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 0, 1]])

            >>> value, indices = paddle.cummax(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  5],
             [-2, -2,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 1],
             [0, 0, 2]])

            >>> value, indices = paddle.cummax(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummax')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummax(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummax',
        )
        check_type(x, 'x', (Variable), 'cummax')
        helper = LayerHelper('cummax', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummax',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


def cummin(x, axis=None, dtype='int64', name=None):
    """
    The cumulative min of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummined.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.

        indices (Tensor), The corresponding index results of cummin operation.

    Examples:
        .. code-block:: python

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
            >>> import paddle
            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummin(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1, -1, -1, -2, -3, -3])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 3, 4, 4])

            >>> value, indices = paddle.cummin(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-2, -3,  0]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [1, 1, 0]])

            >>> value, indices = paddle.cummin(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1, -1, -1],
             [-2, -3, -3]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 1, 1]])

            >>> value, indices = paddle.cummin(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummin')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummin(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummin',
        )
        check_type(x, 'x', (Variable), 'cummin')
        helper = LayerHelper('cummin', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummin',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


4019 4020
def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
4021
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
4022 4023 4024 4025 4026 4027

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
4028

4029 4030 4031 4032 4033 4034
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
4035
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
4036 4037 4038
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4039
        Tensor, the result of logcumsumexp operator.
4040 4041 4042

    Examples:
        .. code-block:: python
4043

4044
            >>> import paddle
4045

4046 4047
            >>> data = paddle.arange(12, dtype='float64')
            >>> data = paddle.reshape(data, (3, 4))
4048

4049 4050 4051 4052 4053 4054
            >>> y = paddle.logcumsumexp(data)
            >>> y
            Tensor(shape=[12], dtype=float64, place=Place(cpu), stop_gradient=True,
            [0.         , 1.31326169 , 2.40760596 , 3.44018970 , 4.45191440 ,
             5.45619332 , 6.45776285 , 7.45833963 , 8.45855173 , 9.45862974 ,
             10.45865844, 11.45866900])
4055

4056 4057 4058 4059 4060 4061
            >>> y = paddle.logcumsumexp(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.         , 2.         , 3.         ],
             [4.01814993 , 5.01814993 , 6.01814993 , 7.01814993 ],
             [8.01847930 , 9.01847930 , 10.01847930, 11.01847930]])
4062

4063 4064 4065 4066 4067 4068
            >>> y = paddle.logcumsumexp(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.31326169 , 2.40760596 , 3.44018970 ],
             [4.         , 5.31326169 , 6.40760596 , 7.44018970 ],
             [8.         , 9.31326169 , 10.40760596, 11.44018970]])
4069

4070 4071
            >>> y = paddle.logcumsumexp(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
4072 4073 4074 4075 4076 4077 4078 4079
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

4080
    if in_dynamic_mode():
4081 4082
        if axis is None:
            axis = -1
4083
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
4084 4085
    else:
        check_variable_and_dtype(
4086
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
4087
        )
4088

4089 4090 4091 4092 4093 4094 4095 4096 4097
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
4098 4099


H
hlygit66666 已提交
4100 4101 4102 4103
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

4104 4105
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
4106 4107 4108

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
4109 4110 4111 4112 4113 4114 4115
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
4116 4117 4118 4119 4120 4121 4122

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

4123
            >>> import paddle
H
hlygit66666 已提交
4124

4125 4126 4127 4128 4129 4130 4131
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
            >>> data
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11]])
H
hlygit66666 已提交
4132

4133 4134 4135 4136 4137 4138
            >>> y = paddle.cumprod(data, dim=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0  , 1  , 2  , 3  ],
             [0  , 5  , 12 , 21 ],
             [0  , 45 , 120, 231]])
H
hlygit66666 已提交
4139

4140 4141 4142 4143 4144 4145
            >>> y = paddle.cumprod(data, dim=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0   , 0   , 0   , 0   ],
             [4   , 20  , 120 , 840 ],
             [8   , 72  , 720 , 7920]])
H
hlygit66666 已提交
4146

4147 4148 4149 4150 4151 4152
            >>> y = paddle.cumprod(data, dim=1, dtype='float64')
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.   , 0.   , 0.   , 0.   ],
             [4.   , 20.  , 120. , 840. ],
             [8.   , 72.  , 720. , 7920.]])
H
hlygit66666 已提交
4153

4154
            >>> assert y.dtype == paddle.float64
H
hlygit66666 已提交
4155 4156 4157 4158

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4159
        x = cast(x, dtype)
H
hlygit66666 已提交
4160

4161
    if in_dynamic_mode():
4162
        return _C_ops.cumprod(x, dim)
4163 4164 4165 4166
    else:
        check_variable_and_dtype(
            x,
            "x",
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4177 4178 4179
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
4190

4191

J
Jack Zhou 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

4207
            >>> import paddle
N
Noel 已提交
4208

4209 4210 4211 4212 4213
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isfinite(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True , True , False, True , False, False])
J
Jack Zhou 已提交
4214
    """
4215
    if in_dynamic_mode():
4216
        return _C_ops.isfinite(x)
4217 4218 4219 4220 4221
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
4222 4223 4224 4225 4226 4227 4228 4229
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
4230 4231 4232 4233 4234 4235 4236
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
4237

4238

J
Jack Zhou 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

4254
            >>> import paddle
C
Chen Long 已提交
4255

4256 4257 4258 4259 4260
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isinf(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False, False, True , False, False, False])
J
Jack Zhou 已提交
4261
    """
4262
    if in_dynamic_mode():
4263
        return _C_ops.isinf(x)
4264 4265 4266
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
4278 4279 4280 4281
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4282

4283

J
Jack Zhou 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

4299
            >>> import paddle
4300

4301 4302 4303 4304 4305
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isnan(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, False, False, False, False, True , True ])
J
Jack Zhou 已提交
4306
    """
4307
    if in_dynamic_mode():
4308
        return _C_ops.isnan(x)
4309 4310 4311
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
4323 4324 4325 4326
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4327 4328


G
guofei 已提交
4329 4330 4331 4332 4333
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
4334
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
4335 4336 4337
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
4338
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
4339
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
4340
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
4341 4342 4343
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
4344
            of output is the same as input Tensor `x`.
4345
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
4346 4347 4348

    Returns:
        Tensor, result of product on the specified dim of input tensor.
4349

G
guofei 已提交
4350 4351 4352
    Examples:
        .. code-block:: python

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
            >>> import paddle

            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.prod(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.00022680)

            >>> out2 = paddle.prod(x, -1)
            >>> out2
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02700000, 0.00840000])

            >>> out3 = paddle.prod(x, 0)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02000000, 0.06000000, 0.30000001, 0.63000000])

            >>> out4 = paddle.prod(x, 0, keepdim=True)
            >>> out4
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.02000000, 0.06000000, 0.30000001, 0.63000000]])

            >>> out5 = paddle.prod(x, 0, dtype='int64')
            >>> out5
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 0])

            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]])
            >>> out6 = paddle.prod(y, [0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [105., 384.])

            >>> out7 = paddle.prod(y, (1, 2))
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [24.  , 1680.])
G
guofei 已提交
4395 4396 4397

    """
    if dtype is not None:
4398
        check_dtype(
4399 4400 4401 4402
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
4403
        )
G
guofei 已提交
4404
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4405
            x = cast(x, dtype)
G
guofei 已提交
4406

4407
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
4408
    if in_dynamic_mode():
4409
        return _C_ops.prod(x, axis, keepdim, reduce_all)
4410 4411 4412 4413 4414
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
4415
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
4416
            'reduce_prod',
4417
        )
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
4428 4429 4430 4431


def sign(x, name=None):
    """
4432
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
4433 4434

    Args:
4435 4436
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
4437 4438 4439 4440 4441 4442 4443

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

4444
            >>> import paddle
W
WangXi 已提交
4445

4446 4447 4448 4449 4450
            >>> x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
            >>> out = paddle.sign(x=x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.,  0., -1.,  1.])
W
WangXi 已提交
4451
    """
4452
    if in_dynamic_mode():
4453
        return _C_ops.sign(x)
4454 4455
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4456
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
4457 4458 4459
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
4460

4461
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
4462

4463
        return out
W
WangXi 已提交
4464 4465 4466


def tanh(x, name=None):
4467
    r"""
W
WangXi 已提交
4468 4469 4470
    Tanh Activation Operator.

    .. math::
4471
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
4472 4473

    Args:
4474
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
4475 4476 4477 4478 4479 4480 4481 4482 4483
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

4484
            >>> import paddle
W
WangXi 已提交
4485

4486 4487 4488 4489 4490
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.tanh(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.37994900, -0.19737528,  0.09966799,  0.29131261])
W
WangXi 已提交
4491
    """
4492
    if in_dynamic_mode():
4493
        return _C_ops.tanh(x)
4494 4495
    else:
        check_variable_and_dtype(
4496
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
4497 4498 4499 4500 4501 4502
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
4503

4504

4505
@inplace_apis_in_dygraph_only
4506 4507 4508 4509 4510
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
4511
    return _C_ops.tanh_(x)
4512 4513


S
Steffy-zxf 已提交
4514 4515
def increment(x, value=1.0, name=None):
    """
4516
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
4517 4518 4519 4520
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
4521
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
4522 4523 4524 4525 4526 4527 4528 4529
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

4530
            >>> import paddle
S
Steffy-zxf 已提交
4531

4532 4533 4534 4535 4536
            >>> data = paddle.zeros(shape=[1], dtype='float32')
            >>> counter = paddle.increment(data)
            >>> counter
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])
S
Steffy-zxf 已提交
4537 4538

    """
4539
    if in_dynamic_mode():
4540
        return _C_ops.increment_(x, value)
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
4553 4554 4555 4556


def all(x, axis=None, keepdim=False, name=None):
    """
4557
    Computes the ``logical and`` of tensor elements over the given dimension.
4558 4559 4560 4561 4562

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4563
            Tensor with a single element, otherwise must be in the
4564 4565 4566 4567 4568 4569
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4570
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4571 4572 4573 4574 4575 4576 4577

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
            >>> import paddle

            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]
            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')

            >>> # out1 should be False
            >>> out1 = paddle.all(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            False)

            >>> # out2 should be [True, False]
            >>> out2 = paddle.all(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False])

            >>> # keepdim=False, out3 should be [False, True], out.shape should be (2,)
            >>> out3 = paddle.all(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True ])

            >>> # keepdim=True, out4 should be [[False], [True]], out.shape should be (2, 1)
            >>> out4 = paddle.all(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[False],
             [True ]])
4614

4615
    """
4616
    if in_dynamic_mode():
4617
        return _C_ops.all(x, axis, keepdim)
4618 4619 4620 4621 4622 4623 4624
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4625 4626 4627
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'all'
        )
4628
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
4629

4630
        helper = LayerHelper('all', **locals())
4631
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4632 4633 4634 4635 4636 4637 4638
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
4639 4640 4641 4642


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
4643
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
4644 4645 4646 4647 4648

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4649
            Tensor with a single element, otherwise must be in the
4650 4651 4652 4653 4654 4655
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4656
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4657 4658 4659 4660 4661 4662 4663

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x = paddle.assign(x)
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')
            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]

            >>> # out1 should be True
            >>> out1 = paddle.any(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            True)

            >>> # out2 should be [True, True]
            >>> out2 = paddle.any(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=False, out3 should be [True, True], out.shape should be (2,)
            >>> out3 = paddle.any(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            >>> out4 = paddle.any(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[True],
             [True]])
4701

4702
    """
4703
    if in_dynamic_mode():
4704
        return _C_ops.any(x, axis, keepdim)
4705 4706 4707 4708 4709 4710 4711
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4712 4713 4714
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'any'
        )
4715
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4716

4717
        helper = LayerHelper('any', **locals())
4718
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4719 4720 4721 4722 4723 4724 4725
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4726

4727

L
Leo Chen 已提交
4728 4729
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4730 4731 4732 4733 4734 4735
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4736 4737 4738 4739

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4740

L
Leo Chen 已提交
4741 4742 4743 4744 4745 4746 4747

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

4748
            >>> import paddle
L
Leo Chen 已提交
4749

4750 4751 4752
            >>> shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            >>> shape
            [2, 3, 3]
4753

4754 4755
            >>> # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            >>> # ValueError (terminated with error message).
L
Leo Chen 已提交
4756 4757 4758 4759

    """

    return core.broadcast_shape(x_shape, y_shape)
4760

4761

4762 4763 4764 4765 4766
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4767
        x (Tensor): The input Tensor which hold the complex numbers.
4768
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4769
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4770 4771

    Returns:
C
Chen Long 已提交
4772
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4773 4774 4775 4776

    Examples:
        .. code-block:: python

4777
            >>> import paddle
4778

4779 4780 4781 4782 4783
            >>> data = paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
            >>> data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1+1j), (2+2j), (3+3j)],
             [(4+4j), (5+5j), (6+6j)]])
4784

4785 4786 4787 4788 4789
            >>> conj_data = paddle.conj(data)
            >>> conj_data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1-1j), (2-2j), (3-3j)],
             [(4-4j), (5-5j), (6-6j)]])
4790 4791

    """
4792
    if in_dynamic_mode():
4793
        return _C_ops.conj(x)
4794 4795 4796 4797
    else:
        check_variable_and_dtype(
            x,
            "x",
4798 4799 4800 4801
            [
                'complex64',
                'complex128',
                'float16',
4802
                'uint16',
4803 4804 4805 4806 4807
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4808 4809
            'conj',
        )
H
hong 已提交
4810

4811 4812 4813 4814
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4815

4816 4817
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4818

4819

Z
zyfncg 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4829
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4830 4831 4832 4833 4834 4835
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

4836
            >>> import paddle
Z
zyfncg 已提交
4837

4838 4839 4840 4841 4842 4843
            >>> data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            >>> res = paddle.digamma(data)
            >>> res
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.57721591,  0.03648996],
             [ nan       ,  5.32286835]])
Z
zyfncg 已提交
4844 4845
    """

4846
    if in_dynamic_mode():
4847
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4848
    else:
4849 4850 4851
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4852 4853 4854 4855
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4856

4857

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
@inplace_apis_in_dygraph_only
def digamma_(x, name=None):
    r"""
    Inplace version of ``digamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_digamma`.
    """
    if in_dynamic_mode():
        return _C_ops.digamma_(x)


4868 4869 4870 4871 4872 4873 4874 4875 4876
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4877
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4878 4879 4880 4881 4882 4883 4884 4885
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

4886
            >>> import paddle
4887

4888 4889 4890 4891 4892
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.lgamma(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.31452453, 1.76149762, 2.25271273, 1.09579790])
4893
    """
4894
    if in_dynamic_mode():
4895
        return _C_ops.lgamma(x)
4896
    else:
4897 4898 4899
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4900 4901 4902 4903
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4904 4905


4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
@inplace_apis_in_dygraph_only
def lgamma_(x, name=None):
    r"""
    Inplace version of ``lgamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_lgamma`.
    """
    if in_dynamic_mode():
        return _C_ops.lgamma_(x)


4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

4930
            >>> import paddle
4931

4932 4933 4934 4935 4936
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.neg(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.40000001,  0.20000000, -0.10000000, -0.30000001])
4937 4938
    """

4939 4940 4941
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4942

R
ronnywang 已提交
4943

4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
@inplace_apis_in_dygraph_only
def neg_(x, name=None):
    r"""
    Inplace version of ``neg`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_neg`.
    """
    return x.scale_(
        scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )


4955
def atan2(x, y, name=None):
R
ronnywang 已提交
4956
    r"""
4957
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4958 4959 4960 4961

    Equation:
        .. math::

4962 4963 4964 4965 4966 4967 4968 4969
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4970 4971

    Args:
4972 4973
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4974 4975 4976 4977 4978 4979 4980 4981
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4982
            >>> import paddle
R
ronnywang 已提交
4983

4984 4985 4986 4987
            >>> x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            >>> x
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  1,  1, -1])
R
ronnywang 已提交
4988

4989 4990 4991 4992
            >>> y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            >>> y
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  -1,  1, 1])
R
ronnywang 已提交
4993

4994 4995 4996 4997
            >>> out = paddle.atan2(x, y)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4998 4999 5000

    """

5001
    if in_dynamic_mode():
5002
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
5003
    else:
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
5016

5017 5018 5019 5020 5021
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
5022

5023

W
wangzhen38 已提交
5024 5025 5026 5027 5028
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
5029

W
wangzhen38 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
5045
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
W
wangzhen38 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

5056
            >>> import paddle
W
wangzhen38 已提交
5057

5058 5059 5060 5061 5062
            >>> x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            >>> out1 = paddle.logit(x)
            >>> out1
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.02785587, -4.53624487, -0.95440406, -1.32673466,  1.44676447])
W
wangzhen38 已提交
5063 5064

    """
5065
    if eps is None:
W
wangzhen38 已提交
5066
        eps = 0.0
5067
    if in_dynamic_mode():
5068
        return _C_ops.logit(x, eps)
5069 5070
    else:
        check_variable_and_dtype(
5071
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
5082

5083

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
@inplace_apis_in_dygraph_only
def logit_(x, eps=None, name=None):
    r"""
    Inplace version of ``logit`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_logit`.
    """
    if eps is None:
        eps = 0.0
    if in_dynamic_mode():
        return _C_ops.logit_(x, eps)


5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
5106 5107 5108
        x (Tensor): An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
5109 5110 5111 5112 5113 5114 5115 5116
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

5117
            >>> import paddle
5118

5119 5120 5121 5122 5123 5124 5125
            >>> x = paddle.arange(1., 5., dtype='float32')
            >>> y = paddle.empty([4], dtype='float32')
            >>> y.fill_(10.)
            >>> out = paddle.lerp(x, y, 0.5)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.50000000, 6.        , 6.50000000, 7.        ])
5126 5127

    """
5128 5129
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
5130

5131
    if in_dynamic_mode():
5132
        return _C_ops.lerp(x, y, weight)
5133 5134
    else:
        check_variable_and_dtype(
5135
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5136 5137
        )
        check_variable_and_dtype(
5138
            y, 'y', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5139 5140
        )
        check_variable_and_dtype(
5141 5142 5143 5144
            weight,
            'weight',
            ['uint16', 'float16', 'float32', 'float64'],
            'lerp',
5145
        )
5146

5147 5148 5149 5150 5151
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
5152

5153

5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
5167
        raise ValueError(
5168 5169 5170 5171
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
5172
    return _C_ops.lerp_(x, y, weight)
5173

5174

W
wuhuanzhou 已提交
5175 5176
def erfinv(x, name=None):
    r"""
5177
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
5178 5179 5180 5181 5182 5183

        .. math::

            erfinv(erf(x)) = x.

    Args:
5184
        x (Tensor): An N-D Tensor, the data type is float16, bfloat16, float32, float64.
W
wuhuanzhou 已提交
5185 5186 5187
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5188
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
5189 5190 5191 5192

    Example:
        .. code-block:: python

5193
            >>> import paddle
5194

5195 5196 5197 5198 5199
            >>> x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            >>> out = paddle.erfinv(x)
            >>> out
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.       , 0.47693631, -inf.     ])
W
wuhuanzhou 已提交
5200 5201

    """
5202
    if in_dynamic_mode():
5203
        return _C_ops.erfinv(x)
5204
    else:
5205 5206 5207
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'float16', 'uint16'], 'erfinv'
        )
5208 5209 5210 5211
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
5212

5213

W
wuhuanzhou 已提交
5214 5215 5216 5217 5218 5219 5220
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
5221
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
5222

5223

5224
def rad2deg(x, name=None):
5225
    r"""
5226
    Convert each of the elements of input x from angles in radians to degrees.
5227

5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5243 5244
            >>> import paddle
            >>> import math
5245

5246 5247 5248 5249 5250 5251
            >>> x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            >>> result1 = paddle.rad2deg(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 180.02334595, -180.02334595,  359.98937988, -359.98937988,
              89.95437622 , -89.95437622 ])
5252

5253 5254 5255 5256 5257
            >>> x2 = paddle.to_tensor(math.pi/2)
            >>> result2 = paddle.rad2deg(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            90.)
5258

5259 5260 5261 5262 5263
            >>> x3 = paddle.to_tensor(1)
            >>> result3 = paddle.rad2deg(x3)
            >>> result3
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            57.29578018)
5264 5265
    """
    rad2deg_scale = 180 / np.pi
5266
    if in_dynamic_mode():
5267 5268
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5269
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
5270
    else:
5271 5272 5273
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
5274 5275 5276
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5277
            out_cast = helper.create_variable_for_type_inference(
5278 5279 5280 5281 5282 5283 5284 5285
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5286
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5287 5288 5289 5290 5291 5292
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
5293 5294
        return out

5295

5296
def deg2rad(x, name=None):
5297
    r"""
5298
    Convert each of the elements of input x from degrees to angles in radians.
5299

5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5314
            >>> import paddle
5315

5316 5317 5318 5319 5320 5321
            >>> x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            >>> result1 = paddle.deg2rad(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            -1.57079637])
5322

5323 5324 5325 5326 5327
            >>> x2 = paddle.to_tensor(180)
            >>> result2 = paddle.deg2rad(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.14159274)
5328 5329
    """
    deg2rad_scale = np.pi / 180.0
5330
    if in_dynamic_mode():
5331 5332
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5333
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
5334
    else:
5335 5336 5337
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
5338 5339 5340
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5341
            out_cast = helper.create_variable_for_type_inference(
5342 5343 5344 5345 5346 5347 5348 5349
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5350
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5351 5352 5353 5354 5355 5356
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
5357
        return out
A
andyjpaddle 已提交
5358

5359

T
Tao Luo 已提交
5360 5361 5362 5363
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
5364

T
Tao Luo 已提交
5365 5366 5367
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
5368 5369
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5370
    Args:
C
cyberslack_lee 已提交
5371 5372
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5373 5374 5375 5376 5377 5378 5379 5380
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5381
            >>> import paddle
5382

5383 5384 5385 5386 5387
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.gcd(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5388

5389 5390 5391 5392
            >>> x3 = paddle.arange(6)
            >>> paddle.gcd(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [20, 1 , 2 , 1 , 4 , 5])
T
Tao Luo 已提交
5393

5394 5395 5396 5397
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.gcd(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            20)
T
Tao Luo 已提交
5398

5399 5400 5401
            >>> paddle.gcd(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5402

5403 5404 5405 5406
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.gcd(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5407 5408 5409 5410 5411 5412 5413 5414
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
5415
        return paddle.any(y != 0)
T
Tao Luo 已提交
5416 5417 5418 5419 5420

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
5421
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
5422
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
5423 5424 5425 5426 5427 5428 5429 5430
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
5431 5432
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

5433
    if in_dynamic_mode():
T
Tao Luo 已提交
5434 5435 5436 5437 5438
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
5439 5440
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
5441 5442 5443
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

5444

T
Tao Luo 已提交
5445 5446 5447 5448
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
5449

T
Tao Luo 已提交
5450 5451 5452
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
5453 5454
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5455
    Args:
C
cyberslack_lee 已提交
5456 5457
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5458 5459 5460 5461 5462 5463 5464 5465
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5466
            >>> import paddle
5467

5468 5469 5470 5471 5472
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.lcm(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5473

5474 5475 5476 5477
            >>> x3 = paddle.arange(6)
            >>> paddle.lcm(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 20, 20, 60, 20, 20])
T
Tao Luo 已提交
5478

5479 5480 5481 5482
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.lcm(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
T
Tao Luo 已提交
5483

5484 5485 5486
            >>> paddle.lcm(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5487

5488 5489 5490 5491
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.lcm(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5492 5493 5494 5495 5496 5497 5498
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
5499 5500 5501
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
5502 5503
    return out

5504

A
andyjpaddle 已提交
5505 5506 5507
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
5508
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
5509 5510 5511 5512

    .. math::

        out[i] = x[i+1] - x[i]
5513 5514

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
5515 5516 5517
    Only n=1 is currently supported.

    Args:
5518
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
5519
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
5520
                          Only support n=1. Default:1
5521 5522
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
5523
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5524
                                   and its shapes must match x's shape except on axis.
5525 5526
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5527
                                   and its shapes must match x's shape except on axis.
5528
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5529

A
andyjpaddle 已提交
5530 5531 5532 5533 5534 5535
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

5536
            >>> import paddle
5537

5538 5539 5540 5541 5542
            >>> x = paddle.to_tensor([1, 4, 5, 2])
            >>> out = paddle.diff(x)
            >>> out
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3])
A
andyjpaddle 已提交
5543

5544 5545 5546 5547 5548
            >>> y = paddle.to_tensor([7, 9])
            >>> out = paddle.diff(x, append=y)
            >>> out
            Tensor(shape=[5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3,  5,  2])
A
andyjpaddle 已提交
5549

5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
            >>> z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            >>> out = paddle.diff(z, axis=0)
            >>> out
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 3, 3]])
            >>> out = paddle.diff(z, axis=1)
            >>> out
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 1],
             [1, 1]])
A
andyjpaddle 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
5570
    infer_flags = [1 for i in range(len(axes))]
5571
    if in_dynamic_mode():
A
andyjpaddle 已提交
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
5584
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
5597 5598 5599
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
5600 5601 5602 5603
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
5604 5605 5606
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
5607 5608

        if x.dtype == paddle.bool:
5609
            return _C_ops.logical_xor(input_back, input_front)
5610
        else:
5611
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
5612
    else:
5613
        check_variable_and_dtype(
5614 5615 5616 5617
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
5618
        )
A
andyjpaddle 已提交
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
5635 5636 5637 5638 5639 5640
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
5651 5652 5653 5654 5655 5656
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
5657 5658 5659 5660 5661 5662
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
5663 5664 5665 5666 5667 5668
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
5669 5670 5671

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
5672 5673 5674 5675 5676
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
5677
        else:
Z
zyfncg 已提交
5678
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
5679
        return out
F
Feiyu Chan 已提交
5680

5681

F
Feiyu Chan 已提交
5682 5683
def angle(x, name=None):
    r"""
5684
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5697
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5698 5699 5700 5701

    Examples:
        .. code-block:: python

5702
            >>> import paddle
F
Feiyu Chan 已提交
5703

5704 5705 5706 5707 5708 5709 5710 5711 5712
            >>> x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            >>> y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            >>> z = x + 1j * y
            >>> z
            Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
             [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
             [-2j    , -1j    ,  0j    ,  1j    ],
             [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5713

5714 5715 5716 5717 5718 5719 5720
            >>> theta = paddle.angle(z)
            >>> theta
            Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
             [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
             [-1.57079637, -1.57079637,  0.        ,  1.57079637],
             [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5721 5722
    """

5723
    if in_dynamic_mode():
F
Feiyu Chan 已提交
5724
        return _C_ops.angle(x)
5725 5726
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
5748

5749

5750
def heaviside(x, y, name=None):
5751
    r"""
5752 5753 5754 5755 5756
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5757 5758 5759 5760
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5761
                \end{array}
5762
            \right.
5763

5764
    Note:
I
Infinity_lee 已提交
5765 5766 5767
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
5768 5769

    Args:
5770 5771
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5772 5773 5774 5775 5776 5777 5778 5779
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
            >>> import paddle
            >>> x = paddle.to_tensor([-0.5, 0, 0.5])
            >>> y = paddle.to_tensor([0.1])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.10000000, 1.        ])
            >>> x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            >>> y = paddle.to_tensor([0.1, 0.2, 0.3])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        , 0.20000000, 1.        ],
             [0.        , 1.        , 0.30000001]])
5792
    """
5793
    if in_dynamic_mode():
5794
        return _C_ops.heaviside(x, y)
5795
    else:
W
Weilong Wu 已提交
5796
        op_type = 'elementwise_heaviside'
5797
        return _elementwise_op(LayerHelper(op_type, **locals()))
5798

5799

5800 5801 5802 5803 5804 5805
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
5806
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5807 5808 5809 5810 5811

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
5812
        .. code-block:: python
5813

5814
            >>> import paddle
5815

5816 5817 5818 5819 5820 5821 5822
            >>> input = paddle.to_tensor([[12.22000003, -1.02999997],
            ...                           [-0.54999995, 0.66000003]])
            >>> output = paddle.frac(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.22000003, -0.02999997],
             [-0.54999995,  0.66000003]])
5823
    """
5824
    if x.dtype not in [
5825 5826 5827 5828
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
5829
    ]:
5830
        raise TypeError(
5831 5832 5833 5834
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5835
    if in_dynamic_mode():
5836 5837
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5838
    else:
5839 5840
        inputs = {"X": x}
        attrs = {}
5841

5842 5843 5844 5845 5846 5847 5848 5849
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5850
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5851

5852

5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
@inplace_apis_in_dygraph_only
def frac_(x, name=None):
    r"""
    Inplace version of ``frac`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_frac`.
    """

    if x.dtype not in [
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
    ]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
    if in_dynamic_mode():
        y = _C_ops.trunc(x)
        return _C_ops.subtract_(x, y)


5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
5891
        .. code-block:: python
5892

5893
            >>> import paddle
5894

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
            >>> x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            >>> paddle.sgn(x)
            Tensor(shape=[2, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[ (0.6000000238418579+0.800000011920929j),
              (0.2800000011920929-0.9599999785423279j),
               0j                                     ,
              (0.4472135901451111+0.8944271802902222j)],
             [ (0.6000000238418579+0.800000011920929j),
               (1+0j)                                 ,
               0j                                     ,
              (-1+0j)                                 ]])
5906 5907

    """
5908
    if x.dtype not in [
5909 5910 5911 5912 5913
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5914
    ]:
5915
        raise TypeError(
5916 5917 5918 5919
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5931

5932

5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

5956
            >>> import paddle
5957

5958 5959
            >>> x_int = paddle.arange(0, 12).reshape([3, 4])
            >>> x_float = x_int.astype(paddle.float64)
5960

5961 5962 5963
            >>> idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            >>> idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            >>> idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range
5964

5965 5966 5967 5968
            >>> paddle.take(x_int, idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
5969

5970 5971 5972 5973
            >>> paddle.take(x_int, idx_neg)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 ],
             [1 , 2 , 3 ]])
5974

5975 5976 5977 5978
            >>> paddle.take(x_float, idx_pos)
            Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[4., 5., 6.],
             [7., 8., 9.]])
5979

5980 5981 5982 5983
            >>> x_int.take(idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
5984

5985 5986 5987 5988 5989
            >>> paddle.take(x_int, idx_err, mode='wrap')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 0 ]])
5990

5991 5992 5993 5994 5995
            >>> paddle.take(x_int, idx_err, mode='clip')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 0 , 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 11]])
5996 5997 5998 5999

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
6000 6001 6002 6003
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
6004

6005
    if in_dynamic_mode():
6006 6007
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
6008
                "The type of 'index' must be Tensor, but got {}".format(
6009 6010 6011
                    type(index)
                )
            )
6012 6013
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
6014 6015 6016 6017
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
6031
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
6032 6033 6034
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
6035 6036 6037 6038 6039 6040 6041
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
6042 6043 6044 6045 6046 6047 6048 6049 6050


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
6051

6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

6063
            >>> import paddle
6064

6065 6066 6067 6068 6069 6070 6071 6072
            >>> x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            >>> mantissa, exponent = paddle.tensor.math.frexp(x)
            >>> mantissa
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.50000000, 0.75000000, 0.50000000]])
            >>> exponent
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 2., 2., 3.]])
6073
    """
6074 6075
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
6076 6077 6078 6079
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
6080 6081
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
6082 6083 6084
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
6085 6086 6087 6088

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
6099 6100 6101

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
6144
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

6190
            >>> import paddle
6191

6192
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6193

6194 6195 6196
            >>> paddle.trapezoid(y)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6197

6198 6199 6200
            >>> paddle.trapezoid(y, dx=2.)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            20.)
6201

6202 6203
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6204

6205 6206 6207
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6208

6209 6210
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6211

6212 6213 6214 6215
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            -8.)
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6216

6217 6218 6219 6220 6221 6222
            >>> paddle.trapezoid(y, axis=0)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.50000000, 2.50000000, 3.50000000])
            >>> paddle.trapezoid(y, axis=1)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 8.])
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

6247
            >>> import paddle
6248

6249
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6250

6251 6252 6253
            >>> paddle.cumulative_trapezoid(y)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6254

6255 6256 6257
            >>> paddle.cumulative_trapezoid(y, dx=2.)
            >>> # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            >>> #        [9. , 20.])
6258

6259 6260
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6261

6262 6263 6264
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6265

6266 6267
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6268

6269 6270 6271
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-3., -8.])
6272

6273
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6274

6275 6276 6277 6278 6279 6280 6281
            >>> paddle.cumulative_trapezoid(y, axis=0)
            Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.50000000, 2.50000000, 3.50000000]])
            >>> paddle.cumulative_trapezoid(y, axis=1)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 2.        ],
             [3.50000000, 8.        ]])
6282 6283
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
            >>> import paddle
            >>> x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            >>> out = paddle.vander(x)
            >>> out
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [4., 2., 1.],
             [9., 3., 1.]])
            >>> out1 = paddle.vander(x,2)
            >>> out1
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1.],
             [2., 1.],
             [3., 1.]])
            >>> out2 = paddle.vander(x, increasing = True)
            >>> out2
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [1., 2., 4.],
             [1., 3., 9.]])
            >>> real = paddle.to_tensor([2., 4.])
            >>> imag = paddle.to_tensor([1., 3.])
            >>> complex = paddle.complex(real, imag)
            >>> out3 = paddle.vander(complex)
            >>> out3
            Tensor(shape=[2, 2], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(2+1j), (1+0j)],
             [(4+3j), (1+0j)]])
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
    if paddle.in_dynamic_mode():
        if n > 0:
            res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
        if n > 1:
            res[:, 1:] = x[:, None]
            res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    else:
        if n > 0:
            res = paddle.static.setitem(
                res, (slice(None), 0), paddle.to_tensor([1], dtype=x.dtype)
            )
        if n > 1:
            res = paddle.static.setitem(
                res, (slice(None), slice(1, None)), x[:, None]
            )
            res = paddle.static.setitem(
                res,
                (slice(None), slice(1, None)),
                paddle.cumprod(res[:, 1:], dim=-1),
            )
6377 6378
    res = res[:, ::-1] if not increasing else res
    return res
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6397 6398 6399 6400 6401
            >>> import paddle
            >>> out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            >>> out
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00000012, 1.99999988])
6402
    """
6403
    if in_dynamic_mode():
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6436
            >>> import paddle
6437

6438 6439 6440 6441
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> paddle.i0(x)
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089])
6442
    """
6443
    if in_dynamic_mode():
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
@inplace_apis_in_dygraph_only
def i0_(x, name=None):
    r"""
    Inplace version of ``i0`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_i0`.
    """

    if in_dynamic_mode():
        return _C_ops.i0_(x)


6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6485
            >>> import paddle
6486

6487 6488 6489 6490
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i0e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994, 0.46575963, 0.30850831, 0.24300036, 0.20700191])
6491
    """
6492
    if in_dynamic_mode():
6493 6494 6495 6496 6497 6498 6499 6500
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6517
            >>> import paddle
6518

6519 6520 6521 6522
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.56515908, 1.59063685, 3.95337057, 9.75946712])
6523
    """
6524
    if in_dynamic_mode():
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6552
            >>> import paddle
6553

6554 6555 6556 6557
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.20791042, 0.21526928, 0.19682673, 0.17875087])
6558
    """
6559
    if in_dynamic_mode():
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6592
            >>> import paddle
6593

6594 6595 6596 6597 6598
            >>> data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            >>> res = paddle.polygamma(data, 1)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.64493412,  0.39493406,  0.03999467])
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
6628 6629


6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
def polygamma_(x, n, name=None):
    r"""
    Inplace version of ``polygamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_polygamma`.
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma_(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma_(x, n)


6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
        .. code-block:: python

            >>> import paddle

            >>> # example1
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2, 3, 4], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 16., 48.])

            >>> # example2
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 8. , 12.])
6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))