math.py 221.6 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36
from ..framework import (
    LayerHelper,
37
    _dygraph_tracer,
38 39
    convert_np_dtype_to_dtype_,
    core,
40
    in_dynamic_mode,
41 42 43 44
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45
from .ops import abs  # noqa: F401
G
GGBond8488 已提交
46
from .ops import abs_  # noqa: F401
47
from .ops import acos  # noqa: F401
G
GGBond8488 已提交
48
from .ops import acos_  # noqa: F401
49
from .ops import acosh  # noqa: F401
G
GGBond8488 已提交
50
from .ops import acosh_  # noqa: F401
51
from .ops import asin  # noqa: F401
G
GGBond8488 已提交
52
from .ops import asin_  # noqa: F401
53
from .ops import asinh  # noqa: F401
G
GGBond8488 已提交
54
from .ops import asinh_  # noqa: F401
55
from .ops import atan  # noqa: F401
G
GGBond8488 已提交
56
from .ops import atan_  # noqa: F401
57
from .ops import atanh  # noqa: F401
G
GGBond8488 已提交
58
from .ops import atanh_  # noqa: F401
59 60 61
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
G
GGBond8488 已提交
62
from .ops import cos_  # noqa: F401
63
from .ops import cosh  # noqa: F401
G
GGBond8488 已提交
64
from .ops import cosh_  # noqa: F401
65
from .ops import erf  # noqa: F401
G
GGBond8488 已提交
66
from .ops import erf_  # noqa: F401
67 68 69
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
G
GGBond8488 已提交
70
from .ops import expm1_  # noqa: F401
71 72 73 74 75 76 77 78
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
79 80
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
81
from .ops import sin  # noqa: F401
G
GGBond8488 已提交
82
from .ops import sin_  # noqa: F401
83
from .ops import sinh  # noqa: F401
G
GGBond8488 已提交
84
from .ops import sinh_  # noqa: F401
85 86
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
87
from .ops import square  # noqa: F401
G
GGBond8488 已提交
88
from .ops import square_  # noqa: F401
89
from .ops import tan  # noqa: F401
G
GGBond8488 已提交
90
from .ops import tan_  # noqa: F401
91

92 93
__all__ = []

94 95 96 97 98 99 100 101 102 103 104 105 106
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
141 142
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
143 144 145
    return reduce_all, axis


146 147
def log(x, name=None):
    r"""
C
Chen Long 已提交
148
    Calculates the natural log of the given input Tensor, element-wise.
149 150 151

    .. math::

152
        Out = \ln(x)
153 154

    Args:
155
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
173
    if in_dynamic_mode():
174
        return _C_ops.log(x)
175
    else:
176
        check_variable_and_dtype(
177 178 179 180
            x,
            'x',
            ['int32', 'int64', 'uint16', 'float16', 'float32', 'float64'],
            "log",
181
        )
182 183 184 185 186 187
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
188 189


190 191 192 193 194 195 196 197 198 199 200
@inplace_apis_in_dygraph_only
def log_(x, name=None):
    r"""
    Inplace version of ``log`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log`.
    """

    if in_dynamic_mode():
        return _C_ops.log_(x)


201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
218
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
219
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
220 221 222 223
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
224 225

    Returns:
C
Chen Long 已提交
226
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
227 228 229

    Examples:
        .. code-block:: python
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

248
    if in_dynamic_mode():
W
Weilong Wu 已提交
249 250
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
251 252
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
253 254
    else:
        check_variable_and_dtype(
255
            x,
256 257 258 259 260 261 262 263 264 265 266 267 268
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
269
        )
270 271 272 273 274 275 276 277 278 279 280
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
281

282 283 284 285
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
286 287 288


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
289 290
    r"""

291 292 293 294
    stanh activation.

    .. math::

295
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
296 297 298 299 300

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
301
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
302 303 304 305 306 307 308 309 310 311 312 313 314 315

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

316
    if in_dynamic_mode():
Z
zyfncg 已提交
317
        return _C_ops.stanh(x, scale_a, scale_b)
318 319
    else:
        check_variable_and_dtype(
320
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
321
        )
322

323 324 325 326 327 328 329 330 331
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
332

333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
365
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
366

367 368 369 370 371 372 373 374
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
375

376 377 378 379
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
380
            res = paddle.multiplex(inputs, index)
381
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
382 383

    """
384
    if in_dynamic_mode():
385
        return _C_ops.multiplex(inputs, index)
386 387
    else:
        helper = LayerHelper('multiplex', **locals())
388

389 390 391 392 393 394 395 396 397 398 399 400
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
401
        check_variable_and_dtype(
402
            index, "index", ['int32', 'int64'], 'multiplex'
403
        )
404

405 406 407 408 409 410 411
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
412

413

414 415 416 417 418 419
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
420
    if in_dynamic_mode():
421
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
422 423


424
def pow(x, y, name=None):
425
    """
C
Chen Long 已提交
426
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
427

428
    .. math::
429
        out = x^{y}
430

431
    Note:
I
Infinity_lee 已提交
432 433 434
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
435 436


437
    Args:
438
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
439
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
440
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
441

442
    Returns:
443
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
444 445 446

    Examples:

447
        ..  code-block:: python
448 449 450

            import paddle

451 452 453 454 455 456 457 458 459 460 461 462
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

463
            # example 2: y is a Tensor
464
            y = paddle.to_tensor([2], dtype='float32')
465
            res = paddle.pow(x, y)
466 467 468
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
469 470

    """
471
    # in dynamic graph mode
472
    if in_dynamic_mode():
473
        if isinstance(y, (int, float)):
474
            return _C_ops.pow(x, y)
475
        elif isinstance(y, (paddle.Tensor, Variable)):
476
            return _C_ops.elementwise_pow(x, y)
477
        else:
478
            raise TypeError(
479 480
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
481 482
    else:
        # in static graph mode
483
        if isinstance(y, (int, float)):
484 485 486 487 488 489
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
490
            )
491 492 493 494 495 496
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
497
        else:
498
            raise TypeError(
499
                'y must be scalar or tensor type, but received: %s ' % (type(y))
500
            )
501 502


503 504 505 506
@inplace_apis_in_dygraph_only
def pow_(x, y, name=None):
    """
    Inplace version of ``pow`` API, the output Tensor will be inplaced with input ``x``.
507
    Please refer to :ref:`api_paddle_pow`.
508 509 510 511
    """
    if isinstance(y, (int, float)):
        return _C_ops.pow_(x, y)
    else:
G
GGBond8488 已提交
512
        raise TypeError('y must be scalar type, but received: %s ' % (type(y)))
513 514


515
OP_NAMEMAPPING = {
516 517 518 519 520 521 522 523
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
524
    'elementwise_mod': 'remainder',
525
}
526

527

528 529 530 531 532 533
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

534 535
    out = helper.kwargs.get('out', None)

536 537
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
538 539 540 541 542
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
543
        "elementwise_max",
544 545 546 547 548 549 550 551 552 553 554 555 556 557
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
558 559 560 561 562 563 564 565 566
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
567
    check_variable_and_dtype(
568 569
        x,
        'x',
570
        data_type,
571 572
        original_op_type,
    )
573
    check_variable_and_dtype(
574 575
        y,
        'y',
576
        data_type,
577 578
        original_op_type,
    )
579 580 581 582

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
583 584 585 586 587

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
588 589 590 591 592 593 594 595 596 597
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
598 599 600
    return helper.append_activation(out)


Y
Yang Zhang 已提交
601
def add(x, y, name=None):
602
    """
603 604 605 606 607 608 609 610
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

611 612
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
613 614

    There are two cases for this operator:
615 616 617 618

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

619
    For case 2:
620 621

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
622
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
623
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
624 625 626 627

        For example:

        ..  code-block:: python
628

629 630 631 632 633 634
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
635

636
    Args:
637 638 639
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
640 641

    Returns:
H
HongyuJia 已提交
642
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
643 644 645 646

    Examples:

        ..  code-block:: python
647

648
            import paddle
649

650 651 652 653
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
654
    """
655

656
    if in_dynamic_mode():
657
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
658
    else:
659
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
660 661


662 663 664 665 666 667 668 669 670
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
671
        raise ValueError(
672 673 674 675
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
676

677
    return _C_ops.add_(x, y)
678 679


Z
zhiboniu 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

        ..  code-block:: python

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
H
Hui Zhang 已提交
716 717
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
Z
zhiboniu 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

        ..  code-block:: python

            import paddle

            x = paddle.to_tensor([-1, -2, -3], 'float64')
            y = paddle.to_tensor([-1], 'float64')
            z = paddle.logaddexp(x, y)
            print(z)  # [-0.30685282, -0.68673831, -0.87307199]
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


738 739
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
740
    Substract two tensors element-wise. The equation is:
741 742 743 744

    .. math::
        out = x - y

745
    Note:
I
Infinity_lee 已提交
746 747 748
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
749 750 751 752 753 754 755 756 757 758 759 760

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
761

762 763 764 765 766 767
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
768 769 770
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
771 772 773 774 775

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
776 777 778
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
779

780 781
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
782 783
            res = paddle.subtract(x, y)
            print(res)
784 785
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
786

787
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
788 789 790
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
791 792
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
793
    """
794
    if in_dynamic_mode():
795
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
796
    else:
797
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
798 799


800 801 802 803 804 805 806 807 808
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
809
        raise ValueError(
810 811 812 813
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
814

815
    return _C_ops.subtract_(x, y)
816 817


818
def divide(x, y, name=None):
819
    """
820
    Divide two tensors element-wise. The equation is:
821

822 823
    .. math::
        out = x / y
824

825
    Note:
I
Infinity_lee 已提交
826 827 828
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
829

830 831 832 833
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
834

835
    Returns:
836
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
837

838
    Examples:
839

840
        ..  code-block:: python
841

842
            import paddle
843

844 845
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
846
            z = paddle.divide(x, y)
847
            print(z)  # [2., 0.6, 2.]
848

849
    """
850
    if in_dynamic_mode():
851
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
852
    else:
853
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
854 855


856 857
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
858
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
859

860
    .. math::
L
Lin Manhui 已提交
861
        out = trunc(x / y)
862

H
hg-1099255210 已提交
863 864 865
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

866
    Note:
I
Infinity_lee 已提交
867 868 869 870
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
871
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
872

873
    Args:
874 875
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
876
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
877

878 879
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
880

881
    Examples:
882

883
        ..  code-block:: python
884

885
            import paddle
886

887 888
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
889
            z = paddle.floor_divide(x, y)
890
            print(z)  # [2, 0, 2, 2]
891

892
    """
893
    if in_dynamic_mode():
894
        return _C_ops.floor_divide(x, y)
895
    else:
896
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
897 898


899
def remainder(x, y, name=None):
900
    r"""
901 902 903
    Mod two tensors element-wise. The equation is:

    .. math::
904

905 906
        out = x \% y

907
    Note:
I
Infinity_lee 已提交
908 909 910
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
911 912

    Args:
913 914
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
915 916 917
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
918
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
919 920 921 922 923 924 925

    Examples:

        ..  code-block:: python

            import paddle

926 927
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
928
            z = paddle.remainder(x, y)
W
WangXi 已提交
929
            print(z)  # [0, 3, 2, 1]
930 931

    """
932
    if in_dynamic_mode():
933
        return _C_ops.remainder(x, y)
934
    else:
935
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
936 937


938 939 940 941 942 943 944 945 946
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
947 948 949 950
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
951
    return _C_ops.remainder_(x, y)
952 953


954 955
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
956 957


958
def multiply(x, y, name=None):
959
    """
960
    multiply two tensors element-wise. The equation is:
961

962 963
    .. math::
        out = x * y
964

965
    Note:
I
Infinity_lee 已提交
966 967 968
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
969

970
    Args:
W
will-jl944 已提交
971 972
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
973
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
974

975
    Returns:
976
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
977

978 979 980 981 982 983
    Examples:

        ..  code-block:: python

            import paddle

984 985
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
986
            res = paddle.multiply(x, y)
987
            print(res) # [[5, 12], [21, 32]]
988

989
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
990 991 992
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
993 994

    """
995
    if in_dynamic_mode():
996
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
997
    else:
998 999
        if x.dtype != y.dtype:
            raise TypeError(
1000
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
1001
            )
1002

1003
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
1004

1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


1028 1029 1030 1031 1032
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
1033 1034
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1055
    if in_dynamic_mode():
1056 1057 1058
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1059
        return _elementwise_op(LayerHelper(op_type, **locals()))
1060 1061 1062 1063


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1064
    if in_dynamic_mode():
1065 1066 1067 1068 1069
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1070
        return _elementwise_op(LayerHelper(op_type, **locals()))
1071 1072 1073 1074


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1075
    if in_dynamic_mode():
1076 1077 1078 1079 1080
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1081
        return _elementwise_op(LayerHelper(op_type, **locals()))
1082 1083 1084 1085


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1086
    if in_dynamic_mode():
1087 1088 1089
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1090
        return _elementwise_op(LayerHelper(op_type, **locals()))
1091 1092


1093
def maximum(x, y, name=None):
1094
    """
W
Wei Shengyu 已提交
1095
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1096

1097 1098
    .. math::
        out = max(x, y)
1099

1100
    Note:
I
Infinity_lee 已提交
1101 1102 1103
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1123 1124 1125
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1126 1127 1128 1129 1130

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1131 1132 1133
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1134 1135

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1136
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1137 1138
            res = paddle.maximum(x, y)
            print(res)
1139 1140
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1141

1142 1143
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1144 1145
            res = paddle.maximum(x, y)
            print(res)
1146 1147
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1148
    """
1149
    if in_dynamic_mode():
1150
        return _C_ops.maximum(x, y)
1151
    else:
1152
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1153

1154

1155
def minimum(x, y, name=None):
1156
    """
C
Chen Long 已提交
1157
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1158

1159 1160
    .. math::
        out = min(x, y)
1161

1162
    Note:
I
Infinity_lee 已提交
1163 1164 1165
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1166 1167 1168 1169 1170 1171 1172

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1173
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1185 1186 1187
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1188 1189 1190 1191 1192

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1193 1194 1195
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1196 1197

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1198
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1199 1200
            res = paddle.minimum(x, y)
            print(res)
1201 1202
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1203

1204 1205
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1206 1207
            res = paddle.minimum(x, y)
            print(res)
1208 1209
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1210
    """
1211
    if in_dynamic_mode():
1212
        return _C_ops.minimum(x, y)
1213
    else:
1214
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1215

1216

L
LJQ❤️ 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1226
    Note:
I
Infinity_lee 已提交
1227 1228 1229
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1230 1231

    Args:
1232 1233
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1249 1250 1251
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1252 1253 1254 1255 1256

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1257 1258 1259
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1260 1261

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1262
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1263 1264
            res = paddle.fmax(x, y)
            print(res)
1265 1266
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1267

1268 1269
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1270 1271
            res = paddle.fmax(x, y)
            print(res)
1272 1273
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1274
    """
1275
    if in_dynamic_mode():
1276
        return _C_ops.fmax(x, y)
1277
    else:
1278
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1279

1280

L
LJQ❤️ 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1290
    Note:
I
Infinity_lee 已提交
1291 1292 1293
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1294 1295

    Args:
1296 1297
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1313 1314 1315
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1316 1317 1318 1319 1320

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1321 1322 1323
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1324 1325

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1326
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1327 1328
            res = paddle.fmin(x, y)
            print(res)
1329 1330
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1331

1332 1333
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1334 1335
            res = paddle.fmin(x, y)
            print(res)
1336 1337
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1338
    """
1339
    if in_dynamic_mode():
1340
        return _C_ops.fmin(x, y)
1341
    else:
1342
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1343

Y
Yang Zhang 已提交
1344

1345
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1346 1347 1348 1349
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1350
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1351 1352
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1353
            Tensor with a single element, otherwise must be in the
1354 1355 1356 1357 1358 1359 1360
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1361
            value is False.
1362
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1363 1364

    Returns:
1365
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1366
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1367
        otherwise it's data type is the same as `x`.
1368 1369 1370 1371 1372

    Examples:
        .. code-block:: python

            import paddle
1373

1374
            # x is a Tensor with following elements:
1375 1376 1377
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1378 1379
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1380
            out1 = paddle.sum(x)          # 3.5
1381
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
1382
            out3 = paddle.sum(x, axis=-1) # [1.9, 1.6]
1383
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1384

1385
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1386 1387 1388
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1389
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1390
                                  [[5, 6], [7, 8]]])
1391 1392
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1393

1394 1395 1396 1397 1398 1399
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
1400
            out7 = paddle.sum(x)          # 4
1401 1402
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1403
    """
1404

1405 1406 1407 1408
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1409

1410
    if in_dynamic_mode():
1411
        return _C_ops.sum(x, axis, dtype, keepdim)
1412 1413 1414
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1415

1416
        if dtype_flag:
1417
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1418

1419 1420 1421 1422 1423
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1424
                'uint16',
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1436

1437 1438 1439
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1453

1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1503 1504 1505 1506 1507
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1508
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1520
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1534 1535
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
1536
            out1 = paddle.nansum(x)          # 2.7
W
wangguanqun 已提交
1537
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
1538
            out3 = paddle.nansum(x, axis=-1) # [1.7, 1.0]
W
wangguanqun 已提交
1539 1540 1541 1542 1543 1544
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1545
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1546 1547 1548 1549
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1550
    check_variable_and_dtype(
1551
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1552
    )
W
wangguanqun 已提交
1553 1554 1555 1556 1557 1558 1559
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
1596
            # 0.44999996
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1617 1618 1619
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1620 1621 1622
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1623 1624 1625
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1626 1627
        cnt.astype(x.dtype),
    )
1628 1629


1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
1658
            # 3
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

1679 1680
    if isinstance(axis, int):
        axis = [axis]
1681 1682 1683 1684 1685 1686

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1687
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1688
def add_n(inputs, name=None):
1689
    """
1690
    Sum one or more Tensor of the input.
1691

S
Steffy-zxf 已提交
1692 1693 1694
    For example:

    .. code-block:: text
1695

S
Steffy-zxf 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1709

S
Steffy-zxf 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1725 1726

    Args:
1727
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1728
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1729
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1730 1731

    Returns:
S
Steffy-zxf 已提交
1732
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1733 1734 1735

    Examples:
        .. code-block:: python
1736

1737 1738
            import paddle

S
Steffy-zxf 已提交
1739 1740 1741
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1742
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1743
            #  [14., 16., 18.]]
1744
    """
1745
    if in_dynamic_mode():
1746 1747
        if isinstance(inputs, Variable):
            inputs = [inputs]
1748
        return _C_ops.add_n(inputs)
1749
    else:
1750 1751
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1752
        if isinstance(inputs, (list, tuple)):
1753 1754 1755 1756 1757
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1758 1759 1760 1761 1762 1763 1764 1765
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1766 1767 1768 1769 1770 1771
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1772
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1773 1774
                'add_n',
            )
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1785

1786
        return out
1787 1788


1789 1790 1791
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1792

1793 1794 1795
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1796

1797 1798
    Returns:
        Tensor: The output Tensor of trunc.
1799

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
1817
    if in_dynamic_mode():
1818
        return _C_ops.trunc(input)
1819
    else:
1820 1821
        inputs = {"X": input}
        attrs = {}
1822

1823 1824 1825 1826 1827
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1828

1829 1830 1831 1832
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1833 1834


1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
@inplace_apis_in_dygraph_only
def trunc_(input, name=None):
    r"""
    Inplace version of ``trunc`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_trunc`.
    """
    if in_dynamic_mode():
        return _C_ops.trunc_(input)


W
WuHaobo 已提交
1845
def mm(input, mat2, name=None):
1846
    """
S
swtkiwi 已提交
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1859
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1860
        mat2 (Tensor): The input tensor which is a Tensor.
1861
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1862 1863

    Returns:
N
Noel 已提交
1864
        Tensor: The product Tensor.
1865

W
wawltor 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1898 1899 1900 1901
    Examples:
        .. code-block:: python

            import paddle
1902 1903 1904 1905 1906 1907 1908 1909
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1910

1911
    """
1912
    if in_dynamic_mode():
1913
        return _C_ops.matmul(input, mat2, False, False)
1914
    else:
1915

1916 1917 1918 1919 1920
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1921
                )
1922 1923 1924 1925 1926 1927
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1928

1929 1930 1931
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1932
                    raise ValueError(
1933 1934
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
1935 1936 1937
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
1938
                    )
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1963

1964

Y
yaoxuefeng 已提交
1965
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1966 1967 1968
    """
    **addmm**

1969
    Perform matrix multiplication for input $x$ and $y$.
1970 1971 1972 1973 1974 1975 1976 1977 1978
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1979 1980 1981
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1982 1983
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1984
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1985 1986

    Returns:
1987
        Tensor: The output Tensor of addmm.
1988 1989 1990

    Examples:
        ..  code-block:: python
1991

1992 1993
            import paddle

Y
yaoxuefeng 已提交
1994 1995 1996
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1997

Y
yaoxuefeng 已提交
1998
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1999

N
Noel 已提交
2000
            print(out)
2001 2002 2003
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
2004 2005 2006
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
2007
    if not len(x_shape) == len(y_shape) == 2:
2008
        raise ValueError(
2009 2010 2011 2012
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
2013
    if x_shape[1] != y_shape[0]:
2014
        raise ValueError(
2015 2016 2017 2018
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
2019 2020 2021
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
2022
                raise ValueError(
2023 2024 2025 2026
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
2027
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
2028
                raise ValueError(
2029 2030 2031 2032
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2033 2034
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
2035
                raise ValueError(
2036 2037 2038 2039
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2040 2041
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2042
            raise ValueError(
2043 2044 2045 2046
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2047
    else:
2048
        raise ValueError(
2049 2050 2051 2052
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2053

2054
    if in_dynamic_mode():
2055
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2056
    else:
2057 2058
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2059

2060 2061
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2062 2063 2064 2065 2066 2067 2068
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2069 2070
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2071

2072 2073 2074 2075
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2076

2077

G
GGBond8488 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
@inplace_apis_in_dygraph_only
def addmm_(input, x, y, beta=1.0, alpha=1.0, name=None):
    """
    Inplace version of ``addmm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_label_addmm`.
    """
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
    if x_shape[1] != y_shape[0]:
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
    else:
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )

    if in_dynamic_mode():
        return _C_ops.addmm_(input, x, y, beta, alpha)


S
seemingwang 已提交
2138 2139 2140 2141 2142 2143 2144
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2145
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
2160

S
seemingwang 已提交
2161 2162 2163 2164
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
2165
            print(y)
S
seemingwang 已提交
2166 2167 2168 2169
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
2170

S
seemingwang 已提交
2171 2172 2173
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2174 2175
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2176 2177 2178
                axis, len(input_shape), input_shape
            )
        )
2179
    if not axis >= 0:
S
seemingwang 已提交
2180
        if not axis >= -1 * len(input_shape):
2181
            raise ValueError(
2182 2183 2184 2185
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2186
        axis = axis + len(input_shape)
2187
    if in_dynamic_mode():
2188
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2189
        return out
2190
    else:
2191
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2192 2193
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2194

2195 2196
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2197

2198 2199 2200 2201
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2202

2203

Z
zhiboniu 已提交
2204 2205 2206 2207
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2208

Z
zhiboniu 已提交
2209 2210 2211 2212 2213
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2214
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2237
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2238

Z
zhiboniu 已提交
2239 2240 2241
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2242
        if in_dynamic_mode():
2243
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2244
        else:
Z
zhiboniu 已提交
2245

2246 2247 2248 2249 2250
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2251
                    )
2252 2253 2254 2255 2256 2257 2258 2259 2260
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2261 2262 2263
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2286 2287
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2288
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2310
    if in_dynamic_mode():
2311
        return _C_ops.matmul(nx, ny, False, False)
2312
    else:
Z
zhiboniu 已提交
2313

2314 2315 2316 2317
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
2318 2319 2320 2321
                    val,
                    name,
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'outer',
2322
                )
Z
zhiboniu 已提交
2323

2324
        __check_input(nx, ny)
Z
zhiboniu 已提交
2325

2326 2327 2328 2329 2330 2331
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2332 2333


2334
def logsumexp(x, axis=None, keepdim=False, name=None):
2335
    r"""
2336
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2337

2338
    .. math::
2339
       logsumexp(x) = \log\sum exp(x)
2340

2341
    Args:
2342
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2343
            have no more than 4 dimensions.
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2360

2361
    Returns:
2362 2363
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2364

2365
    Examples:
2366

2367
    .. code-block:: python
2368

2369 2370
        import paddle

2371
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2372
        out1 = paddle.logsumexp(x)    # 3.4691226
2373
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2374 2375

    """
2376
    reduce_all, axis = _get_reduce_axis(axis, x)
2377

2378
    if in_dynamic_mode():
2379
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2380
    else:
2381
        check_variable_and_dtype(
2382
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2383
        )
2384 2385 2386 2387 2388 2389

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2390
        )
2391
        return out
2392

S
swtkiwi 已提交
2393

2394 2395
def inverse(x, name=None):
    """
2396 2397 2398 2399 2400
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2401
        x (Tensor): The input tensor. The last two
2402 2403 2404
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2405
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2406 2407

    Returns:
2408
        Tensor: A Tensor holds the inverse of x. The shape and data type
2409
                        is the same as x.
2410 2411 2412 2413 2414

    Examples:
        .. code-block:: python

            import paddle
2415 2416

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2417 2418
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2419 2420

    """
2421
    if in_dynamic_mode():
W
wanghuancoder 已提交
2422
        return _C_ops.inverse(x)
2423
    else:
2424

2425 2426 2427 2428 2429 2430 2431 2432
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2433

2434 2435 2436 2437 2438 2439 2440
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2441

2442

2443
def max(x, axis=None, keepdim=False, name=None):
2444
    """
S
swtkiwi 已提交
2445

2446
    Computes the maximum of tensor elements over the given axis.
2447

T
Tao Luo 已提交
2448 2449
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2450
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2451 2452 2453
        while max propagates gradient to all of them.


2454
    Args:
2455 2456
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2457
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2458
            `x` and return a Tensor with a single element,
2459 2460
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2461
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2462
            output Tensor. The result tensor will have one fewer dimension
2463
            than the `x` unless :attr:`keepdim` is true, default
2464
            value is False.
2465
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2466 2467

    Returns:
2468
        Tensor, results of maximum on the specified axis of input tensor,
2469
        it's data type is the same as `x`.
2470 2471 2472

    Examples:
        .. code-block:: python
2473

2474
            import paddle
2475

N
Noel 已提交
2476
            # data_x is a Tensor with shape [2, 4]
2477
            # the axis is a int element
2478
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2479
                                  [0.1, 0.2, 0.6, 0.7]],
2480
                                 dtype='float64', stop_gradient=False)
2481
            result1 = paddle.max(x)
2482
            result1.backward()
2483
            print(result1, x.grad)
2484
            # 0.9, [[0., 0., 0., 1.], [0., 0., 0., 0.]]
2485 2486

            x.clear_grad()
2487
            result2 = paddle.max(x, axis=0)
2488
            result2.backward()
2489
            print(result2, x.grad)
2490 2491 2492
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2493
            result3 = paddle.max(x, axis=-1)
2494
            result3.backward()
2495
            print(result3, x.grad)
2496 2497 2498
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2499
            result4 = paddle.max(x, axis=1, keepdim=True)
2500
            result4.backward()
2501
            print(result4, x.grad)
2502
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2503

N
Noel 已提交
2504
            # data_y is a Tensor with shape [2, 2, 2]
2505
            # the axis is list
2506
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2507 2508
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2509
            result5 = paddle.max(y, axis=[1, 2])
2510
            result5.backward()
2511
            print(result5, y.grad)
2512 2513 2514
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2515
            result6 = paddle.max(y, axis=[0, 1])
2516
            result6.backward()
2517
            print(result6, y.grad)
2518
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2519 2520
    """

2521
    if in_dynamic_mode():
2522
        return _C_ops.max(x, axis, keepdim)
2523 2524 2525 2526
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2527 2528 2529 2530
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2531
        )
2532 2533
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2534

2535 2536 2537 2538 2539 2540 2541 2542
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2543

2544

2545
def min(x, axis=None, keepdim=False, name=None):
2546
    """
S
swtkiwi 已提交
2547

2548
    Computes the minimum of tensor elements over the given axis
2549

T
Tao Luo 已提交
2550 2551
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2552
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2553 2554
        while min propagates gradient to all of them.

2555
    Args:
2556 2557
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2558
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2559
            `x` and return a Tensor with a single element,
2560 2561
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2562
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2563
            output Tensor. The result tensor will have one fewer dimension
2564
            than the `x` unless :attr:`keepdim` is true, default
2565
            value is False.
2566
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2567

2568
    Returns:
2569
        Tensor, results of minimum on the specified axis of input tensor,
2570
        it's data type is the same as input's Tensor.
2571

2572 2573 2574
    Examples:
        .. code-block:: python

2575
            import paddle
2576

2577
            # data_x is a Tensor with shape [2, 4]
2578
            # the axis is a int element
2579
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2580
                                  [0.1, 0.2, 0.6, 0.7]],
2581
                                 dtype='float64', stop_gradient=False)
2582
            result1 = paddle.min(x)
2583
            result1.backward()
2584
            print(result1, x.grad)
2585
            # 0.1, [[0., 0., 0., 0.], [1., 0., 0., 0.]]
2586 2587

            x.clear_grad()
2588
            result2 = paddle.min(x, axis=0)
2589
            result2.backward()
2590
            print(result2, x.grad)
2591 2592 2593
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2594
            result3 = paddle.min(x, axis=-1)
2595
            result3.backward()
2596
            print(result3, x.grad)
2597 2598 2599
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2600
            result4 = paddle.min(x, axis=1, keepdim=True)
2601
            result4.backward()
2602
            print(result4, x.grad)
2603
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2604

2605
            # data_y is a Tensor with shape [2, 2, 2]
2606
            # the axis is list
2607
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2608 2609
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2610
            result5 = paddle.min(y, axis=[1, 2])
2611
            result5.backward()
2612
            print(result5, y.grad)
2613 2614 2615
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2616
            result6 = paddle.min(y, axis=[0, 1])
2617
            result6.backward()
2618
            print(result6, y.grad)
2619
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2620
    """
2621

2622
    if in_dynamic_mode():
2623
        return _C_ops.min(x, axis, keepdim)
2624 2625 2626 2627
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2628 2629 2630 2631
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2632
        )
2633

2634 2635 2636 2637 2638 2639 2640 2641
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2642

2643

T
Tao Luo 已提交
2644 2645 2646 2647 2648 2649
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2650
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2651 2652 2653
        while max propagates gradient to all of them.

    Args:
2654
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2655
            the dimension is no more than 4.
2656
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2657 2658 2659 2660
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2661
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2662 2663 2664
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2665
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2679
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2680
                                 dtype='float64', stop_gradient=False)
2681 2682
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2683
            #    thus the corresponding gradients are 1/5=0.2;
2684
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2685
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2686 2687
            result1 = paddle.amax(x)
            result1.backward()
2688
            print(result1, x.grad)
2689
            # 0.9, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
T
Tao Luo 已提交
2690

T
Tao Luo 已提交
2691 2692 2693
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2694
            print(result1_max, x.grad)
2695
            # 0.9, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]
T
Tao Luo 已提交
2696 2697 2698

            ###############################

T
Tao Luo 已提交
2699 2700 2701
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2702
            print(result2, x.grad)
T
Tao Luo 已提交
2703 2704 2705 2706 2707
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2708
            print(result3, x.grad)
T
Tao Luo 已提交
2709 2710 2711 2712 2713
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2714
            print(result4, x.grad)
T
Tao Luo 已提交
2715 2716 2717
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2718
            # the axis is list
T
Tao Luo 已提交
2719 2720 2721 2722 2723
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2724
            print(result5, y.grad)
T
Tao Luo 已提交
2725 2726 2727 2728 2729
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2730
            print(result6, y.grad)
T
Tao Luo 已提交
2731 2732
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2733
    if in_dynamic_mode():
2734
        return _C_ops.amax(x, axis, keepdim)
2735

2736 2737 2738 2739 2740
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2741
        )
T
Tao Luo 已提交
2742

2743 2744 2745 2746 2747 2748 2749 2750
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2751

2752

T
Tao Luo 已提交
2753 2754 2755 2756 2757 2758 2759
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2760
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2761 2762 2763
        while min propagates gradient to all of them.

    Args:
2764
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2765
            the dimension is no more than 4.
2766
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2767 2768 2769 2770
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2771
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2772 2773 2774
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2775
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2789
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2790
                                 dtype='float64', stop_gradient=False)
2791 2792
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2793
            #    thus the corresponding gradients are 1/5=0.2;
2794
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2795
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2796 2797
            result1 = paddle.amin(x)
            result1.backward()
2798
            print(result1, x.grad)
2799
            # 0.1, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
T
Tao Luo 已提交
2800

T
Tao Luo 已提交
2801 2802 2803
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2804
            print(result1_min, x.grad)
2805
            # 0.1, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]
T
Tao Luo 已提交
2806 2807 2808

            ###############################

T
Tao Luo 已提交
2809 2810 2811
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2812
            print(result2, x.grad)
T
Tao Luo 已提交
2813 2814 2815 2816 2817
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2818
            print(result3, x.grad)
T
Tao Luo 已提交
2819 2820 2821 2822 2823
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2824
            print(result4, x.grad)
T
Tao Luo 已提交
2825 2826 2827
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2828
            # the axis is list
T
Tao Luo 已提交
2829 2830 2831 2832 2833
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2834
            print(result5, y.grad)
T
Tao Luo 已提交
2835 2836 2837 2838 2839
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2840
            print(result6, y.grad)
T
Tao Luo 已提交
2841 2842
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2843
    if in_dynamic_mode():
2844
        return _C_ops.amin(x, axis, keepdim)
2845

2846 2847 2848 2849 2850
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2851
        )
T
Tao Luo 已提交
2852

2853 2854 2855 2856 2857 2858 2859 2860
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2861

2862

W
WuHaobo 已提交
2863
def log1p(x, name=None):
2864
    r"""
2865
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2866

2867
    .. math::
2868
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2869

2870
    Args:
2871
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2872
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2873

2874
    Returns:
S
Steffy-zxf 已提交
2875
        Tensor, the natural log of the input Tensor computed element-wise.
2876

2877 2878
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2879

2880
            import paddle
S
Steffy-zxf 已提交
2881 2882 2883 2884

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2885 2886
    """

2887
    if in_dynamic_mode():
W
wanghuancoder 已提交
2888
        return _C_ops.log1p(x)
2889
    else:
2890
        check_variable_and_dtype(
2891 2892 2893 2894
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log1p",
2895
        )
2896 2897 2898 2899 2900 2901
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2902

2903

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
@inplace_apis_in_dygraph_only
def log1p_(x, name=None):
    r"""
    Inplace version of ``log1p`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log1p`.
    """

    if in_dynamic_mode():
        return _C_ops.log1p_(x)


J
joejiong 已提交
2915
def log2(x, name=None):
2916
    r"""
J
joejiong 已提交
2917 2918 2919 2920
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2921
        Out = \log_2x
J
joejiong 已提交
2922 2923

    Args:
2924
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2925
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2926 2927 2928 2929 2930 2931 2932 2933


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2934

J
joejiong 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2953
    if in_dynamic_mode():
W
wanghuancoder 已提交
2954
        return _C_ops.log2(x)
2955 2956
    else:
        check_variable_and_dtype(
2957 2958 2959 2960
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log2",
2961 2962 2963 2964 2965 2966 2967
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2968

J
joejiong 已提交
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
@inplace_apis_in_dygraph_only
def log2_(x, name=None):
    r"""
    Inplace version of ``log2`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log2`.
    """

    if in_dynamic_mode():
        return _C_ops.log2_(x)


J
joejiong 已提交
2981
def log10(x, name=None):
2982
    r"""
J
joejiong 已提交
2983 2984 2985 2986
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2987
        Out = \log_10_x
J
joejiong 已提交
2988 2989

    Args:
2990
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
2991
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2992 2993 2994 2995 2996 2997 2998 2999


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3000

J
joejiong 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
3019
    if in_dynamic_mode():
W
wanghuancoder 已提交
3020
        return _C_ops.log10(x)
3021 3022
    else:
        check_variable_and_dtype(
3023 3024 3025 3026
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log10",
3027 3028 3029 3030 3031 3032 3033
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
3034 3035


3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
@inplace_apis_in_dygraph_only
def log10_(x, name=None):
    r"""
    Inplace version of ``log10`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log10`.
    """

    if in_dynamic_mode():
        return _C_ops.log10_(x)


Y
Yang Zhang 已提交
3047
def clip(x, min=None, max=None, name=None):
3048
    """
Y
Yang Zhang 已提交
3049
    This operator clip all elements in input into the range [ min, max ] and return
3050 3051 3052 3053
    a resulting tensor as the following equation:

    .. math::

3054
        Out = MIN(MAX(x, min), max)
3055 3056

    Args:
3057
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
3058 3059 3060 3061
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
3062
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3063 3064

    Returns:
Y
Yang Zhang 已提交
3065
        Tensor: A Tensor with the same data type and data shape as input.
3066 3067 3068 3069 3070

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3071

3072
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
3073 3074
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
3075
            print(out1)
Y
Yang Zhang 已提交
3076 3077
            # [[3.5, 3.5]
            # [4.5, 5.0]]
3078
            print(out2)
Y
Yang Zhang 已提交
3079 3080
            # [[2.5, 3.5]
            # [[4.5, 6.4]
3081 3082
    """

3083 3084 3085 3086 3087 3088 3089
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
3090 3091 3092
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
3093 3094 3095
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
3096

3097
    if in_dynamic_mode():
C
chentianyu03 已提交
3098
        if isinstance(min, Variable):
3099
            min = min.item(0)
C
chentianyu03 已提交
3100
        if isinstance(max, Variable):
3101
            max = max.item(0)
C
chentianyu03 已提交
3102 3103
        min = min_ if min is None else min
        max = max_ if max is None else max
3104
        return _C_ops.clip(x, min, max)
3105 3106 3107 3108 3109 3110 3111
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
3112
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3113 3114 3115 3116 3117 3118 3119 3120 3121
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
3122
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3123 3124 3125
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
3126

3127
        check_variable_and_dtype(
3128 3129 3130 3131
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
3132
        )
Y
Yang Zhang 已提交
3133

3134 3135
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
3136

3137 3138 3139 3140 3141
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
3142

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3156

3157
        return output
F
Feiyu Chan 已提交
3158

W
WuHaobo 已提交
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3169
        min = min.item(0)
3170
    if isinstance(max, Variable):
3171
        max = max.item(0)
3172 3173
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3174

3175
    if in_dynamic_mode():
3176
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3177

3178

3179
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3180
    """
S
swtkiwi 已提交
3181

3182
    Computes the sum along diagonals of the input tensor x.
3183 3184

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3185

3186
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3187
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3188
    of the input tensor x.
L
Li Fuchen 已提交
3189

3190
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3191 3192 3193 3194

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3195
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3196

L
Li Fuchen 已提交
3197
    Args:
3198 3199 3200 3201 3202
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3203 3204

    Returns:
3205
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3206 3207 3208 3209 3210

    Examples:
        .. code-block:: python

            import paddle
3211

3212 3213 3214
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
3215
            data1 = paddle.trace(case1) # data1.shape = []
3216 3217
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
3218
    """
3219

Z
zyfncg 已提交
3220
    def __check_input(x, offset, axis1, axis2):
3221 3222 3223 3224 3225 3226
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3227

3228
        input_shape = list(x.shape)
3229 3230 3231 3232
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3233

3234 3235
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3236

3237 3238
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3239
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3240
        )
L
Li Fuchen 已提交
3241

3242 3243
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3244
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3245
        )
L
Li Fuchen 已提交
3246

3247 3248 3249 3250
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3251

3252
    if in_dynamic_mode():
3253
        return _C_ops.trace(x, offset, axis1, axis2)
3254 3255
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3256

3257 3258
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3259

3260 3261 3262 3263 3264 3265 3266
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3267

3268

3269 3270
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3271
    Computes the diagonals of the input tensor x.
3272 3273

    If ``x`` is 2D, returns the diagonal.
3274
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3275 3276 3277 3278 3279 3280 3281
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3282

3283
    Args:
3284 3285 3286 3287 3288
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3332

3333
    """
3334
    if in_dynamic_mode():
3335
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3336
    else:
W
wanghuancoder 已提交
3337

3338 3339 3340 3341
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3342 3343 3344 3345 3346 3347 3348 3349 3350
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3351 3352
                'diagonal',
            )
3353

3354 3355 3356 3357 3358
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3359

3360 3361
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3362

3363 3364 3365 3366
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3367

3368 3369 3370 3371
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3372

3373 3374 3375 3376
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3377

3378 3379 3380
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3381

3382 3383 3384 3385 3386 3387 3388
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3389 3390


W
WuHaobo 已提交
3391
def kron(x, y, name=None):
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3411 3412

    Args:
3413 3414
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3415
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3416 3417

    Returns:
3418
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3419 3420 3421

    Examples:
        .. code-block:: python
3422

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3434
    """
3435
    if in_dynamic_mode():
3436 3437 3438 3439 3440 3441 3442 3443 3444
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3445

3446 3447 3448 3449 3450
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3451 3452 3453 3454


def cumsum(x, axis=None, dtype=None, name=None):
    """
3455 3456
    The cumulative sum of the elements along a given axis.

3457
    Note:
3458
        The first element of the result is the same as the first element of the input.
3459 3460

    Args:
3461
        x (Tensor): The input tensor needed to be cumsumed.
3462
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3463
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3464 3465 3466
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3467
        Tensor, the result of cumsum operator.
3468 3469 3470

    Examples:
        .. code-block:: python
3471

3472
            import paddle
3473

3474 3475
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3476 3477 3478 3479 3480 3481 3482 3483

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3484

3485 3486 3487 3488 3489 3490 3491
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3492
            # paddle.float64
3493 3494 3495 3496 3497 3498
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3499
        x = cast(x, dtype)
3500

3501
    if in_dynamic_mode():
3502 3503
        if axis is None:
            axis = -1
3504
        return _C_ops.cumsum(x, axis, flatten, False, False)
3505
    else:
3506 3507 3508
        check_variable_and_dtype(
            x,
            'x',
3509
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3510 3511
            'cumsum',
        )
3512 3513
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3514
        kwargs = {}
3515 3516 3517 3518 3519
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3520

3521

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
def cummax(x, axis=None, dtype='int64', name=None):
    """
    The cumulative max of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummaxed.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.

        indices (Tensor), The corresponding index results of cummax operation.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            data = paddle.reshape(data, (2, 3))

            y = paddle.cummax(data)
            # value: [-1, 5, 5, 5, 5, 5]
            # indcies: [0, 1, 1, 1, 1, 1]

            y = paddle.cummax(data, axis=0)
            # value: [[-1, 5, 0]
            #         [-1, 5, 2]]
            # indcies: [[0, 0, 0]
            #           [0, 0, 1]]

            y = paddle.cummax(data, axis=-1)
            # value: [[-1, 5, 5]
            #         [-2, -2, 2]]
            # indcies: [[0, 1, 1]
            #           [0, 0, 2]]

            y = paddle.cummax(data, dtype='int64')
            print(y[1].dtype)
            # indcies type: paddle.int64
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummax')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummax(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummax',
        )
        check_type(x, 'x', (Variable), 'cummax')
        helper = LayerHelper('cummax', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummax',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


def cummin(x, axis=None, dtype='int64', name=None):
    """
    The cumulative min of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummined.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.

        indices (Tensor), The corresponding index results of cummin operation.

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            data = paddle.reshape(data, (2, 3))

            y = paddle.cummin(data)
            # value: [-1, -1, -1, -2, -3, -3]
            # indcies: [0, 0, 0, 3, 4, 4]

            y = paddle.cummin(data, axis=0)
            # value: [[-1, 5, 0]
            #         [-2, -3, 0]]
            # indcies: [[0, 0, 0]
            #           [1, 1, 0]]

            y = paddle.cummin(data, axis=-1)
            # value: [[-1, -1, -1]
            #         [-2, -3, -3]]
            # indcies: [[0, 0, 0]
            #           [0, 1, 1]]

            y = paddle.cummin(data, dtype='int64')
            print(y[1].dtype)
            # indcies type: paddle.int64
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummin')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummin(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummin',
        )
        check_type(x, 'x', (Variable), 'cummin')
        helper = LayerHelper('cummin', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummin',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


3671 3672
def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3673
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3674 3675 3676 3677 3678 3679

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3680

3681 3682 3683 3684 3685 3686
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3687
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3688 3689 3690
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3691
        Tensor, the result of logcumsumexp operator.
3692 3693 3694

    Examples:
        .. code-block:: python
3695

3696
            import paddle
3697

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3709

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

3726
    if in_dynamic_mode():
3727 3728
        if axis is None:
            axis = -1
3729
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3730 3731
    else:
        check_variable_and_dtype(
3732
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
3733
        )
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3744 3745


H
hlygit66666 已提交
3746 3747 3748 3749
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3750 3751
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3752 3753 3754

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3755 3756 3757 3758 3759 3760 3761
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3798
        x = cast(x, dtype)
H
hlygit66666 已提交
3799

3800
    if in_dynamic_mode():
3801
        return _C_ops.cumprod(x, dim)
3802 3803 3804 3805
    else:
        check_variable_and_dtype(
            x,
            "x",
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3816 3817 3818
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3829

3830

J
Jack Zhou 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3847

3848
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3849
            out = paddle.isfinite(x)
N
Noel 已提交
3850
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3851
    """
3852
    if in_dynamic_mode():
3853
        return _C_ops.isfinite(x)
3854 3855 3856 3857 3858
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
3859 3860 3861 3862 3863 3864 3865 3866
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3867 3868 3869 3870 3871 3872 3873
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3874

3875

J
Jack Zhou 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3892

3893
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3894
            out = paddle.isinf(x)
N
Noel 已提交
3895
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3896
    """
3897
    if in_dynamic_mode():
3898
        return _C_ops.isinf(x)
3899 3900 3901
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
3913 3914 3915 3916
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3917

3918

J
Jack Zhou 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3935

3936
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3937
            out = paddle.isnan(x)
N
Noel 已提交
3938
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3939
    """
3940
    if in_dynamic_mode():
3941
        return _C_ops.isnan(x)
3942 3943 3944
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
3956 3957 3958 3959
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3960 3961


G
guofei 已提交
3962 3963 3964 3965 3966
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3967
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3968 3969 3970
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3971
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3972
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3973
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3974 3975 3976
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3977
            of output is the same as input Tensor `x`.
3978
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3979 3980 3981

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3982

G
guofei 已提交
3983 3984 3985 3986 3987 3988
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3989 3990
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3991
            out1 = paddle.prod(x)
3992
            # 0.0002268
G
guofei 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
4007 4008
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
4009 4010 4011 4012 4013 4014 4015 4016
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
4017
        check_dtype(
4018 4019 4020 4021
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
4022
        )
G
guofei 已提交
4023
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4024
            x = cast(x, dtype)
G
guofei 已提交
4025

4026
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
4027
    if in_dynamic_mode():
4028
        return _C_ops.prod(x, axis, keepdim, reduce_all)
4029 4030 4031 4032 4033
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
4034
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
4035
            'reduce_prod',
4036
        )
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
4047 4048 4049 4050


def sign(x, name=None):
    """
4051
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
4052 4053

    Args:
4054 4055
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

4065
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
4066 4067 4068
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
4069
    if in_dynamic_mode():
4070
        return _C_ops.sign(x)
4071 4072
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4073
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
4074 4075 4076
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
4077

4078
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
4079

4080
        return out
W
WangXi 已提交
4081 4082 4083


def tanh(x, name=None):
4084
    r"""
W
WangXi 已提交
4085 4086 4087
    Tanh Activation Operator.

    .. math::
4088
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
4089 4090

    Args:
4091
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

4103
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
4104
            out = paddle.tanh(x)
N
Noel 已提交
4105
            print(out)
W
WangXi 已提交
4106 4107
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
4108
    if in_dynamic_mode():
4109
        return _C_ops.tanh(x)
4110 4111
    else:
        check_variable_and_dtype(
4112
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
4113 4114 4115 4116 4117 4118
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
4119

4120

4121
@inplace_apis_in_dygraph_only
4122 4123 4124 4125 4126
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
4127
    return _C_ops.tanh_(x)
4128 4129


S
Steffy-zxf 已提交
4130 4131
def increment(x, value=1.0, name=None):
    """
4132
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
4133 4134 4135 4136
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
4137
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
4153
    if in_dynamic_mode():
4154
        return _C_ops.increment_(x, value)
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
4167 4168 4169 4170


def all(x, axis=None, keepdim=False, name=None):
    """
4171
    Computes the ``logical and`` of tensor elements over the given dimension.
4172 4173 4174 4175 4176

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4177
            Tensor with a single element, otherwise must be in the
4178 4179 4180 4181 4182 4183
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4184
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4185 4186 4187 4188 4189 4190 4191 4192

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
4193

N
Noel 已提交
4194
            # x is a bool Tensor with following elements:
4195 4196
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
4197
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
4198
            print(x)
S
syyxsxx 已提交
4199
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
4200

4201 4202
            # out1 should be False
            out1 = paddle.all(x)          # False
4203
            print(out1)
C
Chen Long 已提交
4204

4205 4206 4207
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
4208 4209

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
4210
            out3 = paddle.all(x, axis=-1) # [False, True]
4211
            print(out3)
C
Chen Long 已提交
4212 4213 4214

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
4215
            print(out4)
4216

4217
    """
4218
    if in_dynamic_mode():
4219
        return _C_ops.all(x, axis, keepdim)
4220 4221 4222 4223 4224 4225 4226
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4227 4228 4229
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'all'
        )
4230
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
4231

4232
        helper = LayerHelper('all', **locals())
4233
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4234 4235 4236 4237 4238 4239 4240
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
4241 4242 4243 4244


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
4245
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
4246 4247 4248 4249 4250

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4251
            Tensor with a single element, otherwise must be in the
4252 4253 4254 4255 4256 4257
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4258
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4259 4260 4261 4262 4263 4264 4265 4266

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
4267 4268 4269

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
4270
            print(x)
S
syyxsxx 已提交
4271
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
4272 4273 4274 4275
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

4276 4277
            # out1 should be True
            out1 = paddle.any(x)           # True
4278
            print(out1)
C
Chen Long 已提交
4279

4280
            # out2 should be [True, True]
4281
            out2 = paddle.any(x, axis=0)   # [True, True]
4282
            print(out2)
C
Chen Long 已提交
4283 4284

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
4285
            out3 = paddle.any(x, axis=-1)  # [True, True]
4286
            print(out3)
C
Chen Long 已提交
4287 4288 4289

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
4290 4291
            print(out4)

4292
    """
4293
    if in_dynamic_mode():
4294
        return _C_ops.any(x, axis, keepdim)
4295 4296 4297 4298 4299 4300 4301
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4302 4303 4304
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'any'
        )
4305
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4306

4307
        helper = LayerHelper('any', **locals())
4308
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4309 4310 4311 4312 4313 4314 4315
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4316

4317

L
Leo Chen 已提交
4318 4319
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4320 4321 4322 4323 4324 4325
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4326 4327 4328 4329

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4330

L
Leo Chen 已提交
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
4342

L
Leo Chen 已提交
4343 4344 4345 4346 4347 4348
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
4349

4350

4351 4352 4353 4354 4355
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4356
        x (Tensor): The input Tensor which hold the complex numbers.
4357
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4358
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4359 4360

    Returns:
C
Chen Long 已提交
4361
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4362 4363 4364 4365 4366

    Examples:
        .. code-block:: python

          import paddle
4367

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
4379
    if in_dynamic_mode():
4380
        return _C_ops.conj(x)
4381 4382 4383 4384
    else:
        check_variable_and_dtype(
            x,
            "x",
4385 4386 4387 4388
            [
                'complex64',
                'complex128',
                'float16',
4389
                'uint16',
4390 4391 4392 4393 4394
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4395 4396
            'conj',
        )
H
hong 已提交
4397

4398 4399 4400 4401
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4402

4403 4404
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4405

4406

Z
zyfncg 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4416
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

4433
    if in_dynamic_mode():
4434
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4435
    else:
4436 4437 4438
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4439 4440 4441 4442
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4443

4444

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
@inplace_apis_in_dygraph_only
def digamma_(x, name=None):
    r"""
    Inplace version of ``digamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_digamma`.
    """
    if in_dynamic_mode():
        return _C_ops.digamma_(x)


4455 4456 4457 4458 4459 4460 4461 4462 4463
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4464
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
4480
    if in_dynamic_mode():
4481
        return _C_ops.lgamma(x)
4482
    else:
4483 4484 4485
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4486 4487 4488 4489
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4490 4491


4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
@inplace_apis_in_dygraph_only
def lgamma_(x, name=None):
    r"""
    Inplace version of ``lgamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_lgamma`.
    """
    if in_dynamic_mode():
        return _C_ops.lgamma_(x)


4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4524 4525 4526
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4527

R
ronnywang 已提交
4528

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
@inplace_apis_in_dygraph_only
def neg_(x, name=None):
    r"""
    Inplace version of ``neg`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_neg`.
    """
    return x.scale_(
        scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )


4540
def atan2(x, y, name=None):
R
ronnywang 已提交
4541
    r"""
4542
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4543 4544 4545 4546

    Equation:
        .. math::

4547 4548 4549 4550 4551 4552 4553 4554
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4555 4556

    Args:
4557 4558
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4559 4560 4561 4562 4563 4564 4565 4566
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4567
            import paddle
R
ronnywang 已提交
4568

4569 4570 4571
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4572

4573 4574 4575
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4576

4577 4578 4579
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4580 4581 4582

    """

4583
    if in_dynamic_mode():
4584
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4585
    else:
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4598

4599 4600 4601 4602 4603
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4604

4605

W
wangzhen38 已提交
4606 4607 4608 4609 4610
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4611

W
wangzhen38 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
4627
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
W
wangzhen38 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4643
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4644 4645

    """
4646
    if eps is None:
W
wangzhen38 已提交
4647
        eps = 0.0
4648
    if in_dynamic_mode():
4649
        return _C_ops.logit(x, eps)
4650 4651
    else:
        check_variable_and_dtype(
4652
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4663

4664

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
@inplace_apis_in_dygraph_only
def logit_(x, eps=None, name=None):
    r"""
    Inplace version of ``logit`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_logit`.
    """
    if eps is None:
        eps = 0.0
    if in_dynamic_mode():
        return _C_ops.logit_(x, eps)


4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4687 4688 4689
        x (Tensor): An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
4690 4691 4692 4693 4694 4695 4696 4697 4698
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4699

4700 4701 4702
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4703
            out = paddle.lerp(x, y, 0.5)
4704
            # out: [5.5, 6., 6.5, 7.]
4705 4706

    """
4707 4708
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4709

4710
    if in_dynamic_mode():
4711
        return _C_ops.lerp(x, y, weight)
4712 4713
    else:
        check_variable_and_dtype(
4714
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
4715 4716
        )
        check_variable_and_dtype(
4717
            y, 'y', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
4718 4719
        )
        check_variable_and_dtype(
4720 4721 4722 4723
            weight,
            'weight',
            ['uint16', 'float16', 'float32', 'float64'],
            'lerp',
4724
        )
4725

4726 4727 4728 4729 4730
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4731

4732

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4746
        raise ValueError(
4747 4748 4749 4750
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4751
    return _C_ops.lerp_(x, y, weight)
4752

4753

W
wuhuanzhou 已提交
4754 4755
def erfinv(x, name=None):
    r"""
4756
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4757 4758 4759 4760 4761 4762

        .. math::

            erfinv(erf(x)) = x.

    Args:
4763
        x (Tensor): An N-D Tensor, the data type is float16, bfloat16, float32, float64.
W
wuhuanzhou 已提交
4764 4765 4766
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4767
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4768 4769 4770 4771 4772

    Example:
        .. code-block:: python

            import paddle
4773

W
wuhuanzhou 已提交
4774 4775 4776 4777 4778
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
4779
    if in_dynamic_mode():
4780
        return _C_ops.erfinv(x)
4781
    else:
4782 4783 4784
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'float16', 'uint16'], 'erfinv'
        )
4785 4786 4787 4788
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4789

4790

W
wuhuanzhou 已提交
4791 4792 4793 4794 4795 4796 4797
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4798
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4799

4800

4801
def rad2deg(x, name=None):
4802
    r"""
4803
    Convert each of the elements of input x from angles in radians to degrees.
4804

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4821
            import math
4822

4823 4824 4825 4826 4827 4828 4829
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4830
            x2 = paddle.to_tensor(math.pi/2)
4831 4832
            result2 = paddle.rad2deg(x2)
            print(result2)
4833 4834
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         90.)
4835

4836 4837 4838
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
4839 4840
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        57.29578018)
4841 4842
    """
    rad2deg_scale = 180 / np.pi
4843
    if in_dynamic_mode():
4844 4845
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4846
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4847
    else:
4848 4849 4850
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4851 4852 4853
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4854
            out_cast = helper.create_variable_for_type_inference(
4855 4856 4857 4858 4859 4860 4861 4862
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4863
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4864 4865 4866 4867 4868 4869
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4870 4871
        return out

4872

4873
def deg2rad(x, name=None):
4874
    r"""
4875
    Convert each of the elements of input x from degrees to angles in radians.
4876

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4892

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
4903 4904
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        3.14159274)
4905 4906
    """
    deg2rad_scale = np.pi / 180.0
4907
    if in_dynamic_mode():
4908 4909
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4910
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4911
    else:
4912 4913 4914
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4915 4916 4917
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4918
            out_cast = helper.create_variable_for_type_inference(
4919 4920 4921 4922 4923 4924 4925 4926
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4927
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4928 4929 4930 4931 4932 4933
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4934
        return out
A
andyjpaddle 已提交
4935

4936

T
Tao Luo 已提交
4937 4938 4939 4940
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4941

T
Tao Luo 已提交
4942 4943 4944
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4945 4946
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4947
    Args:
C
cyberslack_lee 已提交
4948 4949
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4959

T
Tao Luo 已提交
4960 4961 4962
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
4963 4964
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4965

T
Tao Luo 已提交
4966
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4967 4968 4969 4970 4971 4972
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
4973 4974
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        20)
T
Tao Luo 已提交
4975 4976

            paddle.gcd(x4, x4)
4977 4978
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4979

T
Tao Luo 已提交
4980 4981
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
4982 4983
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4984 4985 4986 4987 4988 4989 4990 4991
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4992
        return paddle.any(y != 0)
T
Tao Luo 已提交
4993 4994 4995 4996 4997

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4998
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4999
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
5000 5001 5002 5003 5004 5005 5006 5007
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
5008 5009
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

5010
    if in_dynamic_mode():
T
Tao Luo 已提交
5011 5012 5013 5014 5015
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
5016 5017
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
5018 5019 5020
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

5021

T
Tao Luo 已提交
5022 5023 5024 5025
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
5026

T
Tao Luo 已提交
5027 5028 5029
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
5030 5031
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5032
    Args:
C
cyberslack_lee 已提交
5033 5034
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
5044

T
Tao Luo 已提交
5045 5046 5047
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
5048 5049
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
5050

T
Tao Luo 已提交
5051
            x3 = paddle.arange(6)
T
Tao Luo 已提交
5052 5053 5054 5055 5056 5057
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
5058 5059
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
T
Tao Luo 已提交
5060 5061

            paddle.lcm(x4, x4)
5062 5063
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
5064

T
Tao Luo 已提交
5065 5066
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
5067 5068
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
5069 5070 5071 5072 5073 5074 5075
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
5076 5077 5078
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
5079 5080
    return out

5081

A
andyjpaddle 已提交
5082 5083 5084
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
5085
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
5086 5087 5088 5089

    .. math::

        out[i] = x[i+1] - x[i]
5090 5091

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
5092 5093 5094
    Only n=1 is currently supported.

    Args:
5095
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
5096
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
5097
                          Only support n=1. Default:1
5098 5099
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
5100
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5101
                                   and its shapes must match x's shape except on axis.
5102 5103
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5104
                                   and its shapes must match x's shape except on axis.
5105
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5106

A
andyjpaddle 已提交
5107 5108 5109 5110 5111 5112 5113
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
5114

A
andyjpaddle 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
5124
            # out:
A
andyjpaddle 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
5146
    infer_flags = [1 for i in range(len(axes))]
5147
    if in_dynamic_mode():
A
andyjpaddle 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
5160
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
5173 5174 5175
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
5176 5177 5178 5179
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
5180 5181 5182
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
5183 5184

        if x.dtype == paddle.bool:
5185
            return _C_ops.logical_xor(input_back, input_front)
5186
        else:
5187
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
5188
    else:
5189
        check_variable_and_dtype(
5190 5191 5192 5193
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
5194
        )
A
andyjpaddle 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
5211 5212 5213 5214 5215 5216
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
5227 5228 5229 5230 5231 5232
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
5233 5234 5235 5236 5237 5238
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
5239 5240 5241 5242 5243 5244
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
5245 5246 5247

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
5248 5249 5250 5251 5252
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
5253
        else:
Z
zyfncg 已提交
5254
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
5255
        return out
F
Feiyu Chan 已提交
5256

5257

F
Feiyu Chan 已提交
5258 5259
def angle(x, name=None):
    r"""
5260
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5273
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
5283 5284 5285 5286 5287 5288
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5289 5290

            theta = paddle.angle(z)
5291 5292 5293 5294 5295 5296
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5297 5298
    """

5299
    if in_dynamic_mode():
F
Feiyu Chan 已提交
5300
        return _C_ops.angle(x)
5301 5302
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
5324

5325

5326
def heaviside(x, y, name=None):
5327
    r"""
5328 5329 5330 5331 5332
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5333 5334 5335 5336
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5337
                \end{array}
5338
            \right.
5339

5340
    Note:
I
Infinity_lee 已提交
5341 5342 5343
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
5344 5345

    Args:
5346 5347
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
5366
    """
5367
    if in_dynamic_mode():
5368
        return _C_ops.heaviside(x, y)
5369
    else:
W
Weilong Wu 已提交
5370
        op_type = 'elementwise_heaviside'
5371
        return _elementwise_op(LayerHelper(op_type, **locals()))
5372

5373

5374 5375 5376 5377 5378 5379
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
5380
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5381 5382 5383 5384 5385

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
5386
        .. code-block:: python
5387 5388 5389

            import paddle

5390 5391
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
5392
            output = paddle.frac(input)
5393 5394 5395 5396
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
5397
    """
5398
    if x.dtype not in [
5399 5400 5401 5402
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
5403
    ]:
5404
        raise TypeError(
5405 5406 5407 5408
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5409
    if in_dynamic_mode():
5410 5411
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5412
    else:
5413 5414
        inputs = {"X": x}
        attrs = {}
5415

5416 5417 5418 5419 5420 5421 5422 5423
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5424
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5425

5426

5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
@inplace_apis_in_dygraph_only
def frac_(x, name=None):
    r"""
    Inplace version of ``frac`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_frac`.
    """

    if x.dtype not in [
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
    ]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
    if in_dynamic_mode():
        y = _C_ops.trunc(x)
        return _C_ops.subtract_(x, y)


5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
5475
    if x.dtype not in [
5476 5477 5478 5479 5480
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5481
    ]:
5482
        raise TypeError(
5483 5484 5485 5486
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5498

5499

5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5567 5568 5569 5570
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5571

5572
    if in_dynamic_mode():
5573 5574
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5575
                "The type of 'index' must be Tensor, but got {}".format(
5576 5577 5578
                    type(index)
                )
            )
5579 5580
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5581 5582 5583 5584
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5598
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5599 5600 5601
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5602 5603 5604 5605 5606 5607 5608
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5635
    """
5636 5637
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5638 5639 5640 5641
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5642 5643
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5644 5645 5646
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5647 5648 5649 5650

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5661 5662 5663

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
5706
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.trapezoid(y))
5757 5758
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        10.)
5759 5760

            print(paddle.trapezoid(y, dx=2.))
5761 5762
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        20.)
5763 5764 5765 5766 5767

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.trapezoid(y, x))
5768 5769
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        10.)
5770 5771 5772 5773 5774 5775


            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.trapezoid(y, x))
5776 5777
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        -8.)
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.trapezoid(y, axis=0))
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 2.50000000, 3.50000000])
            print(paddle.trapezoid(y, axis=1))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 8.])
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.cumulative_trapezoid(y))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            print(paddle.cumulative_trapezoid(y, dx=2.))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [9. , 20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-3., -8.])

            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.cumulative_trapezoid(y, axis=0))
            # Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1.50000000, 2.50000000, 3.50000000]])
            print(paddle.cumulative_trapezoid(y, axis=1))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.50000000, 2.        ],
            #         [3.50000000, 8.        ]])
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            out = paddle.vander(x)
            print(out.numpy())
            # [[1., 1., 1.],
            #  [4., 2., 1.],
            #  [9., 3., 1.]]
            out1 = paddle.vander(x,2)
            print(out1.numpy())
            # [[1., 1.],
            #  [2., 1.],
            #  [3., 1.]]
            out2 = paddle.vander(x, increasing = True)
            print(out2.numpy())
            # [[1., 1., 1.],
            #  [1., 2., 4.],
            #  [1., 3., 9.]]
            real = paddle.to_tensor([2., 4.])
            imag = paddle.to_tensor([1., 3.])
            complex = paddle.complex(real, imag)
            out3 = paddle.vander(complex)
            print(out3.numpy())
            # [[2.+1.j, 1.+0.j],
            #  [4.+3.j, 1.+0.j]]
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
    if paddle.in_dynamic_mode():
        if n > 0:
            res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
        if n > 1:
            res[:, 1:] = x[:, None]
            res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    else:
        if n > 0:
            res = paddle.static.setitem(
                res, (slice(None), 0), paddle.to_tensor([1], dtype=x.dtype)
            )
        if n > 1:
            res = paddle.static.setitem(
                res, (slice(None), slice(1, None)), x[:, None]
            )
            res = paddle.static.setitem(
                res,
                (slice(None), slice(1, None)),
                paddle.cumprod(res[:, 1:], dim=-1),
            )
5936 5937
    res = res[:, ::-1] if not increasing else res
    return res
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            print(out)
            #Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #       [1.00000012, 1.99999988])
    """
5962
    if in_dynamic_mode():
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i0(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089]),
    """
6001
    if in_dynamic_mode():
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
@inplace_apis_in_dygraph_only
def i0_(x, name=None):
    r"""
    Inplace version of ``i0`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_i0`.
    """

    if in_dynamic_mode():
        return _C_ops.i0_(x)


6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i0e(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 0.46575961, 0.30850832, 0.24300035, 0.20700192]),
    """
6049
    if in_dynamic_mode():
6050 6051 6052 6053 6054 6055 6056 6057
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i1(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0., 0.5651591 , 1.59063685 , 3.95337022 , 9.75946515]),
    """
6080
    if in_dynamic_mode():
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i1e(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0., 0.20791042, 0.21526929, 0.24300035, 0.17875084]),
    """
6114
    if in_dynamic_mode():
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            res = paddle.polygamma(data, 1)
            print(res)
            # Tensor(shape=[2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [0.64493407,  0.39493407,  0.03999467])
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
6183 6184


6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
def polygamma_(x, n, name=None):
    r"""
    Inplace version of ``polygamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_polygamma`.
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma_(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma_(x, n)


6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

        ..  code-block:: python

            import paddle

            #example1
            x = paddle.to_tensor([1, 2, 3], dtype='float32')
            y = paddle.to_tensor([2, 3, 4], dtype='int32')
            res = paddle.ldexp(x, y)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [4., 16., 48.])

            #example2
            x = paddle.to_tensor([1, 2, 3], dtype='float32')
            y = paddle.to_tensor([2], dtype='int32')
            res = paddle.ldexp(x, y)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [4., 8., 12.])

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))