math.py 245.0 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17

18
import numpy as np
19

20
import paddle
21 22
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils
23 24
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

25
from ..common_ops_import import Variable
26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31
    convert_dtype,
)
32 33
from ..framework import (
    LayerHelper,
34
    _dygraph_tracer,
35 36
    convert_np_dtype_to_dtype_,
    core,
37
    in_dynamic_mode,
38 39 40 41
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
42
from .ops import abs  # noqa: F401
G
GGBond8488 已提交
43
from .ops import abs_  # noqa: F401
44
from .ops import acos  # noqa: F401
G
GGBond8488 已提交
45
from .ops import acos_  # noqa: F401
46
from .ops import acosh  # noqa: F401
G
GGBond8488 已提交
47
from .ops import acosh_  # noqa: F401
48
from .ops import asin  # noqa: F401
G
GGBond8488 已提交
49
from .ops import asin_  # noqa: F401
50
from .ops import asinh  # noqa: F401
G
GGBond8488 已提交
51
from .ops import asinh_  # noqa: F401
52
from .ops import atan  # noqa: F401
G
GGBond8488 已提交
53
from .ops import atan_  # noqa: F401
54
from .ops import atanh  # noqa: F401
G
GGBond8488 已提交
55
from .ops import atanh_  # noqa: F401
56 57 58
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
G
GGBond8488 已提交
59
from .ops import cos_  # noqa: F401
60
from .ops import cosh  # noqa: F401
G
GGBond8488 已提交
61
from .ops import cosh_  # noqa: F401
62
from .ops import erf  # noqa: F401
G
GGBond8488 已提交
63
from .ops import erf_  # noqa: F401
64 65 66
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
G
GGBond8488 已提交
67
from .ops import expm1_  # noqa: F401
68 69 70 71 72 73 74 75
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
76 77
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
78
from .ops import sin  # noqa: F401
G
GGBond8488 已提交
79
from .ops import sin_  # noqa: F401
80
from .ops import sinh  # noqa: F401
G
GGBond8488 已提交
81
from .ops import sinh_  # noqa: F401
82 83
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
84
from .ops import square  # noqa: F401
G
GGBond8488 已提交
85
from .ops import square_  # noqa: F401
86
from .ops import tan  # noqa: F401
G
GGBond8488 已提交
87
from .ops import tan_  # noqa: F401
88

89 90
__all__ = []

91 92 93 94 95 96 97 98 99 100 101 102 103
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
138 139
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
140 141 142
    return reduce_all, axis


143 144
def log(x, name=None):
    r"""
C
Chen Long 已提交
145
    Calculates the natural log of the given input Tensor, element-wise.
146 147 148

    .. math::

149
        Out = \ln(x)
150 151

    Args:
152
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
153 154 155 156 157 158 159 160 161 162
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

163
            >>> import paddle
164

165 166 167 168 169 170
            >>> x = [[2, 3, 4], [7, 8, 9]]
            >>> x = paddle.to_tensor(x, dtype='float32')
            >>> print(paddle.log(x))
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.69314718, 1.09861231, 1.38629436],
             [1.94591010, 2.07944155, 2.19722462]])
171
    """
172
    if in_dynamic_mode():
173
        return _C_ops.log(x)
174
    else:
175
        check_variable_and_dtype(
176 177 178 179
            x,
            'x',
            ['int32', 'int64', 'uint16', 'float16', 'float32', 'float64'],
            "log",
180
        )
181 182 183 184 185 186
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
187 188


189 190 191 192 193 194 195 196 197 198 199
@inplace_apis_in_dygraph_only
def log_(x, name=None):
    r"""
    Inplace version of ``log`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log`.
    """

    if in_dynamic_mode():
        return _C_ops.log_(x)


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
217
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
218
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
219 220 221 222
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
223 224

    Returns:
C
Chen Long 已提交
225
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
226 227 228

    Examples:
        .. code-block:: python
229

230 231
            >>> # scale as a float32 number
            >>> import paddle
232

233 234 235 236 237 238 239 240 241 242
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> res = paddle.scale(data, scale=2.0, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
243 244 245

        .. code-block:: python

246 247
            >>> # scale with parameter scale as a Tensor
            >>> import paddle
248

249 250 251 252 253 254 255 256 257 258 259
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> factor = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.scale(data, scale=factor, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
260 261 262

    """

263
    if in_dynamic_mode():
W
Weilong Wu 已提交
264 265
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
266 267
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
268 269
    else:
        check_variable_and_dtype(
270
            x,
271 272 273 274 275 276 277 278 279 280 281 282 283
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
284
        )
285 286 287 288 289 290 291 292 293 294 295
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
296

297 298 299 300
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
301 302 303


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
304 305
    r"""

306 307 308 309
    stanh activation.

    .. math::

310
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
311 312 313 314 315

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
316
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
317 318 319 320 321 322 323

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

324
            >>> import paddle
325

326 327 328 329 330
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = paddle.stanh(x, scale_a=0.67, scale_b=1.72)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00616539, 1.49927628, 1.65933096, 1.70390463])
331 332 333

    """

334
    if in_dynamic_mode():
Z
zyfncg 已提交
335
        return _C_ops.stanh(x, scale_a, scale_b)
336 337
    else:
        check_variable_and_dtype(
338
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
339
        )
340

341 342 343 344 345 346 347 348 349
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
350

351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
383
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
384

385 386 387 388 389 390 391
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

392
            >>> import paddle
393

394 395 396 397 398 399 400 401 402
            >>> img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            >>> img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            >>> inputs = [img1, img2]
            >>> index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
            >>> res = paddle.multiplex(inputs, index)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[5., 6.],
             [3., 4.]])
403 404

    """
405
    if in_dynamic_mode():
406
        return _C_ops.multiplex(inputs, index)
407 408
    else:
        helper = LayerHelper('multiplex', **locals())
409

410 411 412 413 414 415 416 417 418 419 420 421
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
422
        check_variable_and_dtype(
423
            index, "index", ['int32', 'int64'], 'multiplex'
424
        )
425

426 427 428 429 430 431 432
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
433

434

435 436 437 438 439 440
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
441
    if in_dynamic_mode():
442
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
443 444


445
def pow(x, y, name=None):
446
    """
C
Chen Long 已提交
447
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
448

449
    .. math::
450
        out = x^{y}
451

452
    Note:
I
Infinity_lee 已提交
453 454 455
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
456 457


458
    Args:
459
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
460
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
461
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
462

463
    Returns:
464
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
465 466 467

    Examples:

468
        .. code-block:: python
469

470
            >>> import paddle
471

472
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
473

474 475 476 477 478 479 480 481 482
            >>> # example 1: y is a float or int
            >>> res = paddle.pow(x, 2)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
            >>> res = paddle.pow(x, 2.5)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.         , 5.65685415 , 15.58845711])
483

484 485 486 487 488 489
            >>> # example 2: y is a Tensor
            >>> y = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.pow(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
490 491

    """
492
    # in dynamic graph mode
493
    if in_dynamic_mode():
494
        if isinstance(y, (int, float)):
495
            return _C_ops.pow(x, y)
496
        elif isinstance(y, (paddle.Tensor, Variable)):
497
            return _C_ops.elementwise_pow(x, y)
498
        else:
499
            raise TypeError(
500 501
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
502 503
    else:
        # in static graph mode
504
        if isinstance(y, (int, float)):
505 506 507 508 509 510
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
511
            )
512 513 514 515 516 517
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
518
        else:
519
            raise TypeError(
520
                'y must be scalar or tensor type, but received: %s ' % (type(y))
521
            )
522 523


524 525 526 527
@inplace_apis_in_dygraph_only
def pow_(x, y, name=None):
    """
    Inplace version of ``pow`` API, the output Tensor will be inplaced with input ``x``.
528
    Please refer to :ref:`api_paddle_pow`.
529 530 531 532
    """
    if isinstance(y, (int, float)):
        return _C_ops.pow_(x, y)
    else:
G
GGBond8488 已提交
533
        raise TypeError('y must be scalar type, but received: %s ' % (type(y)))
534 535


536
OP_NAMEMAPPING = {
537 538 539 540 541 542 543 544
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
545
    'elementwise_mod': 'remainder',
546
}
547

548

549 550 551 552 553 554
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

555 556
    out = helper.kwargs.get('out', None)

557 558
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
559 560 561 562 563
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
564
        "elementwise_max",
565 566 567 568 569 570 571 572 573 574 575 576 577 578
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
579 580 581 582 583 584 585 586 587
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
588
    check_variable_and_dtype(
589 590
        x,
        'x',
591
        data_type,
592 593
        original_op_type,
    )
594
    check_variable_and_dtype(
595 596
        y,
        'y',
597
        data_type,
598 599
        original_op_type,
    )
600 601 602 603

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
604 605 606 607 608

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
609 610 611 612 613 614 615 616 617 618
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
619 620 621
    return helper.append_activation(out)


Y
Yang Zhang 已提交
622
def add(x, y, name=None):
623
    """
624 625 626 627 628 629 630 631
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

632 633
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
634 635

    There are two cases for this operator:
636 637 638 639

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

640
    For case 2:
641 642

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
643
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
644
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
645 646 647

        For example:

648
        .. code-block:: text
649

650 651 652 653 654 655
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
656

657
    Args:
658 659 660
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
661 662

    Returns:
H
HongyuJia 已提交
663
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
664 665 666

    Examples:

667
        .. code-block:: python
668

669
            >>> import paddle
670

671 672 673 674 675 676
            >>> x = paddle.to_tensor([2, 3, 4], 'float64')
            >>> y = paddle.to_tensor([1, 5, 2], 'float64')
            >>> z = paddle.add(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [3., 8., 6.])
677
    """
678

679
    if in_dynamic_mode():
680
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
681
    else:
682
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
683 684


685 686 687 688 689 690 691 692 693
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
694
        raise ValueError(
695 696 697 698
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
699

700
    return _C_ops.add_(x, y)
701 702


Z
zhiboniu 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

729
        .. code-block:: text
Z
zhiboniu 已提交
730 731 732 733 734 735 736 737 738

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
H
Hui Zhang 已提交
739 740
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
Z
zhiboniu 已提交
741 742 743 744 745 746 747
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

748
        .. code-block:: python
Z
zhiboniu 已提交
749

750
            >>> import paddle
Z
zhiboniu 已提交
751

752 753 754 755 756 757
            >>> x = paddle.to_tensor([-1, -2, -3], 'float64')
            >>> y = paddle.to_tensor([-1], 'float64')
            >>> z = paddle.logaddexp(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-0.30685282, -0.68673831, -0.87307199])
Z
zhiboniu 已提交
758 759 760 761 762
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


763 764
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
765
    Substract two tensors element-wise. The equation is:
766 767 768 769

    .. math::
        out = x - y

770
    Note:
I
Infinity_lee 已提交
771 772 773
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
774 775 776 777 778 779 780 781 782 783 784 785

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[5, 6], [3, 4]])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-4, -4],
             [ 4,  4]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([1, 0, 4])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[ 0,  2, -1],
              [ 0,  2, -1]]])

            >>> x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            >>> y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
            >>> y = paddle.to_tensor([1, 4, 5], dtype='float64')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 4.  ,  inf., -inf.])
818
    """
819
    if in_dynamic_mode():
820
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
821
    else:
822
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
823 824


825 826 827 828 829 830 831 832 833
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
834
        raise ValueError(
835 836 837 838
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
839

840
    return _C_ops.subtract_(x, y)
841 842


843
def divide(x, y, name=None):
844
    """
845
    Divide two tensors element-wise. The equation is:
846

847 848
    .. math::
        out = x / y
849

850
    Note:
I
Infinity_lee 已提交
851 852 853
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
854

855 856 857 858
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
859

860
    Returns:
861
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
862

863
    Examples:
864

865
        .. code-block:: python
866

867
            >>> import paddle
868

869 870 871 872 873 874
            >>> x = paddle.to_tensor([2, 3, 4], dtype='float64')
            >>> y = paddle.to_tensor([1, 5, 2], dtype='float64')
            >>> z = paddle.divide(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [2.        , 0.60000000, 2.        ])
875

876
    """
877
    if in_dynamic_mode():
878
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
879
    else:
880 881
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.divide(x, y)
882
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
883 884


885 886
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
887
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
888

889
    .. math::
L
Lin Manhui 已提交
890
        out = trunc(x / y)
891

H
hg-1099255210 已提交
892 893 894
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

895
    Note:
I
Infinity_lee 已提交
896 897 898 899
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
900
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
901

902
    Args:
903 904
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
905
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
906

907 908
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
909

910
    Examples:
911

912
        .. code-block:: python
913

914
            >>> import paddle
915

916 917 918 919 920 921
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.floor_divide(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 0, 2, 2])
922

923
    """
924
    if in_dynamic_mode():
925
        return _C_ops.floor_divide(x, y)
926
    else:
927
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
928 929


930
def remainder(x, y, name=None):
931
    r"""
932 933 934
    Mod two tensors element-wise. The equation is:

    .. math::
935

936 937
        out = x \% y

938
    Note:
I
Infinity_lee 已提交
939 940 941
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
942 943

    Args:
944 945
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
946 947 948
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
949
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
950 951 952

    Examples:

953
        .. code-block:: python
954

955
            >>> import paddle
956

957 958 959 960 961 962
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.remainder(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 3, 2, 1])
963 964

    """
965
    if in_dynamic_mode():
966
        return _C_ops.remainder(x, y)
967
    else:
968
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
969 970


971 972 973 974 975 976 977 978 979
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
980 981 982 983
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
984
    return _C_ops.remainder_(x, y)
985 986


987 988
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
989 990


991
def multiply(x, y, name=None):
992
    """
993
    multiply two tensors element-wise. The equation is:
994

995 996
    .. math::
        out = x * y
997

998
    Note:
I
Infinity_lee 已提交
999 1000 1001
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1002

1003
    Args:
W
will-jl944 已提交
1004 1005
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
1006
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1007

1008
    Returns:
1009
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1010

1011 1012
    Examples:

1013
        .. code-block:: python
1014

1015
            >>> import paddle
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
            >>> x = paddle.to_tensor([[1, 2], [3, 4]])
            >>> y = paddle.to_tensor([[5, 6], [7, 8]])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[5 , 12],
             [21, 32]])
            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([2])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[2, 4, 6],
              [2, 4, 6]]])
1031 1032

    """
1033
    if in_dynamic_mode():
1034
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
1035
    else:
1036 1037
        if x.dtype != y.dtype:
            raise TypeError(
1038
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
1039
            )
1040

1041
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
1042

1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


1066 1067 1068 1069 1070
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
1071 1072
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1093
    if in_dynamic_mode():
1094 1095 1096
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1097
        return _elementwise_op(LayerHelper(op_type, **locals()))
1098 1099 1100 1101


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1102
    if in_dynamic_mode():
1103 1104 1105 1106 1107
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1108
        return _elementwise_op(LayerHelper(op_type, **locals()))
1109 1110 1111 1112


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1113
    if in_dynamic_mode():
1114 1115 1116 1117 1118
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1119
        return _elementwise_op(LayerHelper(op_type, **locals()))
1120 1121 1122 1123


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1124
    if in_dynamic_mode():
1125 1126 1127
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1128
        return _elementwise_op(LayerHelper(op_type, **locals()))
1129 1130


1131
def maximum(x, y, name=None):
1132
    """
W
Wei Shengyu 已提交
1133
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1134

1135 1136
    .. math::
        out = max(x, y)
1137

1138
    Note:
I
Infinity_lee 已提交
1139 1140 1141
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
1186
    """
1187
    if in_dynamic_mode():
1188
        return _C_ops.maximum(x, y)
1189
    else:
1190
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1191

1192

1193
def minimum(x, y, name=None):
1194
    """
C
Chen Long 已提交
1195
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1196

1197 1198
    .. math::
        out = min(x, y)
1199

1200
    Note:
I
Infinity_lee 已提交
1201 1202 1203
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1204 1205 1206 1207 1208 1209 1210

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1211
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1212 1213 1214 1215 1216

    Examples:

        .. code-block:: python

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
1248
    """
1249
    if in_dynamic_mode():
1250
        return _C_ops.minimum(x, y)
1251
    else:
1252
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1253

1254

L
LJQ❤️ 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1264
    Note:
I
Infinity_lee 已提交
1265 1266 1267
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1268 1269

    Args:
1270 1271
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1312
    """
1313
    if in_dynamic_mode():
1314
        return _C_ops.fmax(x, y)
1315
    else:
1316
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1317

1318

L
LJQ❤️ 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1328
    Note:
I
Infinity_lee 已提交
1329 1330 1331
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1332 1333

    Args:
1334 1335
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1376
    """
1377
    if in_dynamic_mode():
1378
        return _C_ops.fmin(x, y)
1379
    else:
1380
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1381

Y
Yang Zhang 已提交
1382

1383
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1384 1385 1386 1387
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1388
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1389 1390
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1391
            Tensor with a single element, otherwise must be in the
1392 1393 1394 1395 1396 1397 1398
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1399
            value is False.
1400
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1401 1402

    Returns:
1403
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1404
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1405
        otherwise it's data type is the same as `x`.
1406 1407 1408 1409

    Examples:
        .. code-block:: python

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            >>> import paddle

            >>> # x is a Tensor with following elements:
            >>> #    [[0.2, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, 0.6, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.sum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.50000000)
            >>> out2 = paddle.sum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.30000001, 0.50000000, 1.10000002, 1.59999990])
            >>> out3 = paddle.sum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.89999998, 1.60000002])
            >>> out4 = paddle.sum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.89999998],
             [1.60000002]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, 2], [3, 4]],
            >>> #      [[5, 6], [7, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, 2], [3, 4]],
            ...                       [[5, 6], [7, 8]]])
            >>> out5 = paddle.sum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [10, 26])
            >>> out6 = paddle.sum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [16, 20])

            >>> # x is a Tensor with following elements:
            >>> #    [[True, True, True, True]
            >>> #     [False, False, False, False]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[True, True, True, True],
            ...                       [False, False, False, False]])
            >>> out7 = paddle.sum(x)
            >>> out7
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
            >>> out8 = paddle.sum(x, axis=0)
            >>> out8
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 1, 1, 1])
            >>> out9 = paddle.sum(x, axis=1)
            >>> out9
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [4, 0])
1469
    """
1470

1471 1472 1473 1474
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1475

1476
    if in_dynamic_mode():
1477
        return _C_ops.sum(x, axis, dtype, keepdim)
1478
    else:
1479 1480
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.sum(x, axis, dtype, keepdim)
1481 1482
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1483

1484
        if dtype_flag:
1485
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1486

1487 1488 1489 1490 1491
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1492
                'uint16',
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1504

1505 1506 1507
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1521

1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
            >>> import paddle

            >>> x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            >>> out1 = paddle.nan_to_num(x)
            >>> out1
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out2 = paddle.nan_to_num(x, nan=1)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out3 = paddle.nan_to_num(x, posinf=5)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              5.                                      ,
             -340282346638528859811704183484516925440.])
            >>> out4 = paddle.nan_to_num(x, nan=10, neginf=-99)
            >>> out4
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 10.                                    ,
              0.30000001                             ,
             340282346638528859811704183484516925440.,
             -99.                                    ])
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1595 1596 1597 1598 1599
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1600
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1612
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1613 1614 1615 1616 1617 1618 1619

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

1620
            >>> import paddle
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

            >>> # x is a Tensor with following elements:
            >>> #    [[nan, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, -nan, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
            >>> out1 = paddle.nansum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.69999981)
            >>> out2 = paddle.nansum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.50000000, 0.50000000, 1.59999990])
            >>> out3 = paddle.nansum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.70000005, 1.        ])
            >>> out4 = paddle.nansum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.70000005],
             [1.        ]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, nan], [3, 4]],
            >>> #       [[5, 6], [-nan, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out5 = paddle.nansum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [8. , 19.])
            >>> out6 = paddle.nansum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [9. , 18.])
W
wangguanqun 已提交
1660
    """
1661
    check_variable_and_dtype(
1662
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1663
    )
W
wangguanqun 已提交
1664 1665 1666 1667 1668 1669 1670
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]])
            >>> out1 = paddle.nanmean(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.44999996)
            >>> out2 = paddle.nanmean(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.25000000, 0.50000000, 0.79999995])
            >>> out3 = paddle.nanmean(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.10000000, 0.25000000, 0.50000000, 0.79999995]])
            >>> out4 = paddle.nanmean(x, axis=1)
            >>> out4
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.56666666, 0.33333334])
            >>> out5 = paddle.nanmean(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.56666666],
             [0.33333334]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out6 = paddle.nanmean(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2.66666675, 6.33333349])
            >>> out7 = paddle.nanmean(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3., 6.])
1739 1740 1741
    """
    if isinstance(axis, int):
        axis = [axis]
1742 1743 1744
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1745 1746 1747
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1748 1749 1750
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1751 1752
        cnt.astype(x.dtype),
    )
1753 1754


1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            >>> out1 = paddle.count_nonzero(x)
            >>> out1
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            3)
            >>> out2 = paddle.count_nonzero(x, axis=0)
            >>> out2
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 2])
            >>> out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 2]])
            >>> out4 = paddle.count_nonzero(x, axis=1)
            >>> out4
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 1, 0])
            >>> out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[2],
             [1],
             [0]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
            ...                         [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            >>> out6 = paddle.count_nonzero(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [3, 6])
            >>> out7 = paddle.count_nonzero(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 3, 5])
1816 1817
    """

1818 1819
    if isinstance(axis, int):
        axis = [axis]
1820 1821 1822 1823 1824 1825

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1826
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1827
def add_n(inputs, name=None):
1828
    """
1829
    Sum one or more Tensor of the input.
1830

S
Steffy-zxf 已提交
1831 1832 1833
    For example:

    .. code-block:: text
1834

S
Steffy-zxf 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1848

S
Steffy-zxf 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1864 1865

    Args:
1866
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1867
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1868
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1869 1870

    Returns:
S
Steffy-zxf 已提交
1871
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1872 1873 1874

    Examples:
        .. code-block:: python
1875

1876
            >>> import paddle
1877

1878 1879 1880 1881 1882 1883 1884
            >>> input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            >>> input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            >>> output = paddle.add_n([input0, input1])
            >>> output
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[8. , 10., 12.],
             [14., 16., 18.]])
1885
    """
1886
    if in_dynamic_mode():
1887 1888
        if isinstance(inputs, Variable):
            inputs = [inputs]
1889
        return _C_ops.add_n(inputs)
1890
    else:
1891 1892 1893
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.add_n(inputs)

1894 1895
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1896
        if isinstance(inputs, (list, tuple)):
1897 1898 1899 1900 1901
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1902 1903 1904 1905 1906 1907 1908 1909
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1910 1911 1912 1913 1914 1915
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1916
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1917 1918
                'add_n',
            )
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1929

1930
        return out
1931 1932


1933 1934 1935
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1936

1937 1938 1939
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1940

1941 1942
    Returns:
        Tensor: The output Tensor of trunc.
1943

1944 1945 1946
    Examples:
        .. code-block:: python

1947
            >>> import paddle
1948

1949 1950 1951 1952 1953 1954
            >>> input = paddle.to_tensor([[0.1, 1.5], [-0.2, -2.4]], 'float32')
            >>> output = paddle.trunc(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.,  1.],
             [-0., -2.]])
1955
    '''
1956
    if in_dynamic_mode():
1957
        return _C_ops.trunc(input)
1958
    else:
1959 1960
        inputs = {"X": input}
        attrs = {}
1961

1962 1963 1964 1965 1966
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1967

1968 1969 1970 1971
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1972 1973


1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
@inplace_apis_in_dygraph_only
def trunc_(input, name=None):
    r"""
    Inplace version of ``trunc`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_trunc`.
    """
    if in_dynamic_mode():
        return _C_ops.trunc_(input)


W
WuHaobo 已提交
1984
def mm(input, mat2, name=None):
1985
    """
S
swtkiwi 已提交
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1998
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1999
        mat2 (Tensor): The input tensor which is a Tensor.
2000
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2001 2002

    Returns:
N
Noel 已提交
2003
        Tensor: The product Tensor.
2004

W
wawltor 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

2037 2038 2039
    Examples:
        .. code-block:: python

2040 2041 2042 2043 2044 2045 2046 2047 2048
            >>> import paddle
            >>> input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            >>> mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            >>> out = paddle.mm(input, mat2)
            >>> out
            Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[11., 14., 17., 20.],
             [23., 30., 37., 44.],
             [35., 46., 57., 68.]])
2049

N
Noel 已提交
2050

2051
    """
2052
    if in_dynamic_mode():
2053
        return _C_ops.matmul(input, mat2, False, False)
2054
    else:
2055

2056 2057 2058 2059 2060
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
2061
                )
2062 2063 2064 2065 2066 2067
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
2068

2069 2070 2071
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
2072
                    raise ValueError(
2073 2074
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
2075 2076 2077
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
2078
                    )
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
2103

2104

Y
yaoxuefeng 已提交
2105
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
2106 2107 2108
    """
    **addmm**

2109
    Perform matrix multiplication for input $x$ and $y$.
2110 2111 2112 2113 2114 2115 2116 2117 2118
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
2119 2120 2121
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
2122 2123
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
2124
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2125 2126

    Returns:
2127
        Tensor: The output Tensor of addmm.
2128 2129

    Examples:
2130
        .. code-block:: python
2131

2132
            >>> import paddle
2133

2134 2135 2136
            >>> x = paddle.ones([2, 2])
            >>> y = paddle.ones([2, 2])
            >>> input = paddle.ones([2, 2])
Y
yaoxuefeng 已提交
2137

2138
            >>> out = paddle.addmm(input=input, x=x, y=y, beta=0.5, alpha=5.0)
Y
yaoxuefeng 已提交
2139

2140 2141 2142 2143
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[10.50000000, 10.50000000],
             [10.50000000, 10.50000000]])
2144
    """
Y
yaoxuefeng 已提交
2145 2146 2147
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
2148
    if not len(x_shape) == len(y_shape) == 2:
2149
        raise ValueError(
2150 2151 2152 2153
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
2154
    if x_shape[1] != y_shape[0]:
2155
        raise ValueError(
2156 2157 2158 2159
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
2160 2161 2162
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
2163
                raise ValueError(
2164 2165 2166 2167
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
2168
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
2169
                raise ValueError(
2170 2171 2172 2173
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2174 2175
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
2176
                raise ValueError(
2177 2178 2179 2180
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2181 2182
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2183
            raise ValueError(
2184 2185 2186 2187
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2188
    else:
2189
        raise ValueError(
2190 2191 2192 2193
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2194

2195
    if in_dynamic_mode():
2196
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2197
    else:
2198 2199
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2200

2201 2202
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2203 2204 2205 2206 2207 2208 2209
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2210 2211
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2212

2213 2214 2215 2216
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2217

2218

G
GGBond8488 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
@inplace_apis_in_dygraph_only
def addmm_(input, x, y, beta=1.0, alpha=1.0, name=None):
    """
    Inplace version of ``addmm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_label_addmm`.
    """
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
    if x_shape[1] != y_shape[0]:
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
    else:
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )

    if in_dynamic_mode():
        return _C_ops.addmm_(input, x, y, beta, alpha)


S
seemingwang 已提交
2279 2280 2281 2282 2283 2284 2285
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2286
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
2300
        .. code-block:: python
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
            >>> import paddle
            >>> input = [[[2.0, 2, -2], [3, 0.3, 3]],
            ...          [[2, -8, 2],   [3.1, 3.7, 3]]]
            >>> x = paddle.to_tensor(input,dtype='float32')
            >>> y = paddle.renorm(x, 1.0, 2, 2.05)
            >>> print(y)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[ 0.40594056,  0.29285714, -0.41000000],
              [ 0.60891086,  0.04392857,  0.61500001]],
             [[ 0.40594056, -1.17142856,  0.41000000],
              [ 0.62920785,  0.54178572,  0.61500001]]])
2313

S
seemingwang 已提交
2314 2315 2316
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2317 2318
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2319 2320 2321
                axis, len(input_shape), input_shape
            )
        )
2322
    if not axis >= 0:
S
seemingwang 已提交
2323
        if not axis >= -1 * len(input_shape):
2324
            raise ValueError(
2325 2326 2327 2328
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2329
        axis = axis + len(input_shape)
2330
    if in_dynamic_mode():
2331
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2332
        return out
2333
    else:
2334
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2335 2336
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2337

2338 2339
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2340

2341 2342 2343 2344
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2345

2346

Z
zhiboniu 已提交
2347 2348 2349 2350
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2351

Z
zhiboniu 已提交
2352 2353 2354 2355 2356
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2357
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2358 2359 2360 2361 2362 2363 2364

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

2365 2366 2367 2368 2369 2370 2371 2372
            >>> import paddle
            >>> x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            >>> y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            >>> out = paddle.inner(x, y)
            >>> print(out)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[14. , 32. , 50. ],
             [32. , 77. , 122.]])
Z
zhiboniu 已提交
2373 2374 2375 2376 2377 2378 2379 2380


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2381
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2382

Z
zhiboniu 已提交
2383 2384 2385
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2386
        if in_dynamic_mode():
2387
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2388
        else:
Z
zhiboniu 已提交
2389

2390 2391 2392 2393 2394
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2395
                    )
2396 2397 2398 2399 2400 2401 2402 2403 2404
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2405 2406 2407
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2430 2431
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2432
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2433 2434 2435 2436 2437 2438 2439

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

2440 2441 2442 2443 2444 2445 2446 2447 2448
            >>> import paddle
            >>> x = paddle.arange(1, 4).astype('float32')
            >>> y = paddle.arange(1, 6).astype('float32')
            >>> out = paddle.outer(x, y)
            >>> print(out)
            Tensor(shape=[3, 5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 2. , 3. , 4. , 5. ],
             [2. , 4. , 6. , 8. , 10.],
             [3. , 6. , 9. , 12., 15.]])
Z
zhiboniu 已提交
2449 2450 2451 2452 2453 2454


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2455
    if in_dynamic_mode():
2456
        return _C_ops.matmul(nx, ny, False, False)
2457
    else:
Z
zhiboniu 已提交
2458

2459 2460 2461 2462
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
2463 2464 2465 2466
                    val,
                    name,
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'outer',
2467
                )
Z
zhiboniu 已提交
2468

2469
        __check_input(nx, ny)
Z
zhiboniu 已提交
2470

2471 2472 2473 2474 2475 2476
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2477 2478


2479
def logsumexp(x, axis=None, keepdim=False, name=None):
2480
    r"""
2481
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2482

2483
    .. math::
2484
       logsumexp(x) = \log\sum exp(x)
2485

2486
    Args:
2487
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2488
            have no more than 4 dimensions.
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2505

2506
    Returns:
2507 2508
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2509

2510
    Examples:
2511

2512
    .. code-block:: python
2513

2514
        >>> import paddle
2515

2516 2517 2518 2519 2520 2521 2522 2523 2524
        >>> x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        >>> out1 = paddle.logsumexp(x)
        >>> out1
        Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
        3.46912265)
        >>> out2 = paddle.logsumexp(x, 1)
        >>> out2
        Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
        [2.15317822, 3.15684605])
2525 2526

    """
2527
    reduce_all, axis = _get_reduce_axis(axis, x)
2528

2529
    if in_dynamic_mode():
2530
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2531
    else:
2532
        check_variable_and_dtype(
2533
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2534
        )
2535 2536 2537 2538 2539 2540

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2541
        )
2542
        return out
2543

S
swtkiwi 已提交
2544

2545 2546
def inverse(x, name=None):
    """
2547 2548 2549 2550 2551
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2552
        x (Tensor): The input tensor. The last two
2553 2554 2555
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2556
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2557 2558

    Returns:
2559
        Tensor: A Tensor holds the inverse of x. The shape and data type
2560
                        is the same as x.
2561 2562 2563 2564

    Examples:
        .. code-block:: python

2565
            >>> import paddle
2566

2567 2568 2569 2570 2571 2572
            >>> mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
            >>> inv = paddle.inverse(mat)
            >>> print(inv)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.        ],
             [0.        , 0.50000000]])
2573 2574

    """
2575
    if in_dynamic_mode():
W
wanghuancoder 已提交
2576
        return _C_ops.inverse(x)
2577
    else:
2578

2579 2580 2581 2582 2583 2584 2585 2586
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2587

2588 2589 2590 2591 2592 2593 2594
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2595

2596

2597
def max(x, axis=None, keepdim=False, name=None):
2598
    """
S
swtkiwi 已提交
2599

2600
    Computes the maximum of tensor elements over the given axis.
2601

T
Tao Luo 已提交
2602 2603
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2604
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2605 2606 2607
        while max propagates gradient to all of them.


2608
    Args:
2609 2610
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2611
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2612
            `x` and return a Tensor with a single element,
2613 2614
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2615
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2616
            output Tensor. The result tensor will have one fewer dimension
2617
            than the `x` unless :attr:`keepdim` is true, default
2618
            value is False.
2619
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2620 2621

    Returns:
2622
        Tensor, results of maximum on the specified axis of input tensor,
2623
        it's data type is the same as `x`.
2624 2625 2626

    Examples:
        .. code-block:: python
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.max(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.max(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.30000000, 0.60000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 1., 0., 1.],
             [0., 0., 1., 0.]])

            >>> x.clear_grad()
            >>> result3 = paddle.max(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> x.clear_grad()
            >>> result4 = paddle.max(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.70000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.max(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [4., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 1.]],
             [[0., 0.],
              [0., 1.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.max(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [7., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 0.]],
             [[0., 0.],
              [1., 1.]]])
2708 2709
    """

2710
    if in_dynamic_mode():
2711
        return _C_ops.max(x, axis, keepdim)
2712 2713 2714 2715
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2716 2717 2718 2719
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2720
        )
2721 2722
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2723

2724 2725 2726 2727 2728 2729 2730 2731
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2732

2733

2734
def min(x, axis=None, keepdim=False, name=None):
2735
    """
S
swtkiwi 已提交
2736

2737
    Computes the minimum of tensor elements over the given axis
2738

T
Tao Luo 已提交
2739 2740
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2741
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2742 2743
        while min propagates gradient to all of them.

2744
    Args:
2745 2746
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2747
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2748
            `x` and return a Tensor with a single element,
2749 2750
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2751
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2752
            output Tensor. The result tensor will have one fewer dimension
2753
            than the `x` unless :attr:`keepdim` is true, default
2754
            value is False.
2755
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2756

2757
    Returns:
2758
        Tensor, results of minimum on the specified axis of input tensor,
2759
        it's data type is the same as input's Tensor.
2760

2761 2762 2763
    Examples:
        .. code-block:: python

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.min(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.min(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.20000000, 0.50000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 1., 0.],
             [1., 1., 0., 1.]])

            >>> x.clear_grad()
            >>> result3 = paddle.min(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result4 = paddle.min(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.20000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                       [[5.0, 6.0], [7.0, 8.0]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.min(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 5.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 0.],
              [0., 0.]],
             [[1., 0.],
              [0., 0.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.min(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 2.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 1.],
              [0., 0.]],
             [[0., 0.],
              [0., 0.]]])
2844
    """
2845

2846
    if in_dynamic_mode():
2847
        return _C_ops.min(x, axis, keepdim)
2848 2849 2850 2851
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2852 2853 2854 2855
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2856
        )
2857

2858 2859 2860 2861 2862 2863 2864 2865
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2866

2867

T
Tao Luo 已提交
2868 2869 2870 2871 2872 2873
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2874
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2875 2876 2877
        while max propagates gradient to all of them.

    Args:
2878
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2879
            the dimension is no more than 4.
2880
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2881 2882 2883 2884
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2885
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2886 2887 2888
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2889
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2890 2891 2892 2893 2894 2895 2896 2897

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
            ...                         [0.9, 0.9, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 maximum elements:
            >>> # 1) amax evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while max propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amax(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_max = paddle.max(x)
            >>> result1_max.backward()
            >>> result1_max
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amax(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000, 0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amax(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amax(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.90000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
            ...                         [[0.9, 0.9], [0.6, 0.7]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amax(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amax(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
2994
    """
2995
    if in_dynamic_mode():
2996
        return _C_ops.amax(x, axis, keepdim)
2997

2998 2999 3000 3001 3002
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
3003
        )
T
Tao Luo 已提交
3004

3005 3006 3007 3008 3009 3010 3011 3012
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3013

3014

T
Tao Luo 已提交
3015 3016 3017 3018 3019 3020 3021
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
3022
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
3023 3024 3025
        while min propagates gradient to all of them.

    Args:
3026
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
3027
            the dimension is no more than 4.
3028
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
3029 3030 3031 3032
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
3033
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
3034 3035 3036
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
3037
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
3038 3039 3040 3041 3042 3043 3044 3045

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
            ...                         [0.1, 0.1, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 minimum elements:
            >>> # 1) amin evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while min propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amin(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_min = paddle.min(x)
            >>> result1_min.backward()
            >>> result1_min
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amin(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000, 0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amin(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amin(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.10000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
            ...                       [[0.1, 0.1], [0.6, 0.7]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amin(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amin(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
3142
    """
3143
    if in_dynamic_mode():
3144
        return _C_ops.amin(x, axis, keepdim)
3145

3146 3147 3148 3149 3150
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
3151
        )
T
Tao Luo 已提交
3152

3153 3154 3155 3156 3157 3158 3159 3160
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3161

3162

W
WuHaobo 已提交
3163
def log1p(x, name=None):
3164
    r"""
3165
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
3166

3167
    .. math::
3168
        Out = \ln(x+1)
S
Steffy-zxf 已提交
3169

3170
    Args:
3171
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3172
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3173

3174
    Returns:
S
Steffy-zxf 已提交
3175
        Tensor, the natural log of the input Tensor computed element-wise.
3176

3177 3178
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
3179

3180
            >>> import paddle
S
Steffy-zxf 已提交
3181

3182 3183 3184 3185 3186 3187
            >>> data = paddle.to_tensor([[0], [1]], dtype='float32')
            >>> res = paddle.log1p(data)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        ],
             [0.69314718]])
3188 3189
    """

3190
    if in_dynamic_mode():
W
wanghuancoder 已提交
3191
        return _C_ops.log1p(x)
3192
    else:
3193
        check_variable_and_dtype(
3194 3195 3196 3197
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log1p",
3198
        )
3199 3200 3201 3202 3203 3204
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
3205

3206

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
@inplace_apis_in_dygraph_only
def log1p_(x, name=None):
    r"""
    Inplace version of ``log1p`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log1p`.
    """

    if in_dynamic_mode():
        return _C_ops.log1p_(x)


J
joejiong 已提交
3218
def log2(x, name=None):
3219
    r"""
J
joejiong 已提交
3220 3221 3222 3223
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

3224
        Out = \log_2x
J
joejiong 已提交
3225 3226

    Args:
3227
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3228
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3229 3230 3231 3232 3233 3234 3235 3236


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3237

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [2.0]])
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3263
    """
3264
    if in_dynamic_mode():
W
wanghuancoder 已提交
3265
        return _C_ops.log2(x)
3266 3267
    else:
        check_variable_and_dtype(
3268 3269 3270 3271
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log2",
3272 3273 3274 3275 3276 3277 3278
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
3279

J
joejiong 已提交
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
@inplace_apis_in_dygraph_only
def log2_(x, name=None):
    r"""
    Inplace version of ``log2`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log2`.
    """

    if in_dynamic_mode():
        return _C_ops.log2_(x)


J
joejiong 已提交
3292
def log10(x, name=None):
3293
    r"""
J
joejiong 已提交
3294 3295 3296 3297
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

3298
        Out = \log_10_x
J
joejiong 已提交
3299 3300

    Args:
3301
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3302
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3303 3304 3305 3306 3307 3308 3309 3310


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3311

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [10.0]])
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3337
    """
3338
    if in_dynamic_mode():
W
wanghuancoder 已提交
3339
        return _C_ops.log10(x)
3340 3341
    else:
        check_variable_and_dtype(
3342 3343 3344 3345
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log10",
3346 3347 3348 3349 3350 3351 3352
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
3353 3354


3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
@inplace_apis_in_dygraph_only
def log10_(x, name=None):
    r"""
    Inplace version of ``log10`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log10`.
    """

    if in_dynamic_mode():
        return _C_ops.log10_(x)


Y
Yang Zhang 已提交
3366
def clip(x, min=None, max=None, name=None):
3367
    """
Y
Yang Zhang 已提交
3368
    This operator clip all elements in input into the range [ min, max ] and return
3369 3370 3371 3372
    a resulting tensor as the following equation:

    .. math::

3373
        Out = MIN(MAX(x, min), max)
3374 3375

    Args:
3376
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
3377 3378 3379 3380
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
3381
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3382 3383

    Returns:
Y
Yang Zhang 已提交
3384
        Tensor: A Tensor with the same data type and data shape as input.
3385 3386 3387 3388

    Examples:
        .. code-block:: python

3389
            >>> import paddle
N
Noel 已提交
3390

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
            >>> x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
            >>> out1 = paddle.clip(x1, min=3.5, max=5.0)
            >>> out1
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[3.50000000, 3.50000000],
             [4.50000000, 5.        ]])
            >>> out2 = paddle.clip(x1, min=2.5)
            >>> out2
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[2.50000000, 3.50000000],
             [4.50000000, 6.40000010]])
3402 3403
    """

3404 3405 3406 3407 3408 3409 3410
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
3411 3412 3413
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
3414 3415 3416
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
3417

3418
    if in_dynamic_mode():
C
chentianyu03 已提交
3419
        if isinstance(min, Variable):
3420
            min = min.item(0)
C
chentianyu03 已提交
3421
        if isinstance(max, Variable):
3422
            max = max.item(0)
C
chentianyu03 已提交
3423 3424
        min = min_ if min is None else min
        max = max_ if max is None else max
3425
        return _C_ops.clip(x, min, max)
3426 3427 3428 3429 3430 3431 3432
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
3433
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3434 3435 3436 3437 3438 3439 3440 3441 3442
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
3443
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3444 3445 3446
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
3447

3448
        check_variable_and_dtype(
3449 3450 3451 3452
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
3453
        )
Y
Yang Zhang 已提交
3454

3455 3456
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
3457

3458 3459 3460 3461 3462
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
3463

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3477

3478
        return output
F
Feiyu Chan 已提交
3479

W
WuHaobo 已提交
3480

3481 3482 3483 3484 3485 3486 3487 3488 3489
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3490
        min = min.item(0)
3491
    if isinstance(max, Variable):
3492
        max = max.item(0)
3493 3494
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3495

3496
    if in_dynamic_mode():
3497
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3498

3499

3500
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3501
    """
S
swtkiwi 已提交
3502

3503
    Computes the sum along diagonals of the input tensor x.
3504 3505

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3506

3507
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3508
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3509
    of the input tensor x.
L
Li Fuchen 已提交
3510

3511
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3512 3513 3514 3515

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3516
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3517

L
Li Fuchen 已提交
3518
    Args:
3519 3520 3521 3522 3523
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3524 3525

    Returns:
3526
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3527 3528 3529 3530

    Examples:
        .. code-block:: python

3531
            >>> import paddle
3532

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
            >>> case1 = paddle.randn([2, 3])
            >>> case2 = paddle.randn([3, 10, 10])
            >>> case3 = paddle.randn([3, 10, 5, 10])
            >>> data1 = paddle.trace(case1)
            >>> data1.shape
            []
            >>> data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2)
            >>> data2.shape
            [3]
            >>> data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1)
            >>> data3.shape
            [3, 5]
L
Li Fuchen 已提交
3545
    """
3546

Z
zyfncg 已提交
3547
    def __check_input(x, offset, axis1, axis2):
3548 3549 3550 3551 3552 3553
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3554

3555
        input_shape = list(x.shape)
3556 3557 3558 3559
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3560

3561 3562
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3563

3564 3565
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3566
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3567
        )
L
Li Fuchen 已提交
3568

3569 3570
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3571
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3572
        )
L
Li Fuchen 已提交
3573

3574 3575 3576 3577
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3578

3579
    if in_dynamic_mode():
3580
        return _C_ops.trace(x, offset, axis1, axis2)
3581 3582
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3583

3584 3585
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3586

3587 3588 3589 3590 3591 3592 3593
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3594

3595

3596 3597
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3598
    Computes the diagonals of the input tensor x.
3599 3600

    If ``x`` is 2D, returns the diagonal.
3601
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3602 3603 3604 3605 3606 3607 3608
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3609

3610
    Args:
3611 3612 3613 3614 3615
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3616 3617 3618 3619 3620 3621 3622

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
            >>> import paddle

            >>> paddle.seed(2023)
            >>> x = paddle.rand([2, 2, 3],'float32')
            >>> print(x)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[0.86583614, 0.52014720, 0.25960937],
              [0.90525323, 0.42400089, 0.40641287]],
             [[0.97020894, 0.74437362, 0.51785129],
              [0.73292869, 0.97786582, 0.04315904]]])

            >>> out1 = paddle.diagonal(x)
            >>> print(out1)
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.73292869],
             [0.52014720, 0.97786582],
             [0.25960937, 0.04315904]])

            >>> out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            >>> print(out2)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])

            >>> out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            >>> print(out3)
            Tensor(shape=[3, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.90525323],
             [0.42400089],
             [0.40641287]])

            >>> out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            >>> print(out4)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])
3659

3660
    """
3661
    if in_dynamic_mode():
3662
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3663
    else:
W
wanghuancoder 已提交
3664

3665 3666 3667 3668
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3669 3670 3671 3672 3673 3674 3675 3676 3677
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3678 3679
                'diagonal',
            )
3680

3681 3682 3683 3684 3685
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3686

3687 3688
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3689

3690 3691 3692 3693
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3694

3695 3696 3697 3698
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3699

3700 3701 3702 3703
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3704

3705 3706 3707
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3708

3709 3710 3711 3712 3713 3714 3715
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3716 3717


W
WuHaobo 已提交
3718
def kron(x, y, name=None):
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3738 3739

    Args:
3740 3741
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3742
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3743 3744

    Returns:
3745
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3746 3747 3748

    Examples:
        .. code-block:: python
3749

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
            >>> import paddle
            >>> x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            >>> y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            >>> out = paddle.kron(x, y)
            >>> out
            Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1 , 2 , 3 , 2 , 4 , 6 ],
             [4 , 5 , 6 , 8 , 10, 12],
             [7 , 8 , 9 , 14, 16, 18],
             [3 , 6 , 9 , 4 , 8 , 12],
             [12, 15, 18, 16, 20, 24],
             [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3762
    """
3763
    if in_dynamic_mode():
3764 3765 3766 3767 3768 3769 3770 3771 3772
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3773

3774 3775 3776 3777 3778
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3779 3780 3781 3782


def cumsum(x, axis=None, dtype=None, name=None):
    """
3783 3784
    The cumulative sum of the elements along a given axis.

3785
    Note:
3786
        The first element of the result is the same as the first element of the input.
3787 3788

    Args:
3789
        x (Tensor): The input tensor needed to be cumsumed.
3790
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3791
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3792 3793 3794
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3795
        Tensor, the result of cumsum operator.
3796 3797 3798

    Examples:
        .. code-block:: python
3799

3800
            >>> import paddle
3801

3802 3803
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
3804

3805 3806 3807 3808
            >>> y = paddle.cumsum(data)
            >>> y
            Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0 , 1 , 3 , 6 , 10, 15, 21, 28, 36, 45, 55, 66])
3809

3810 3811 3812 3813 3814 3815
            >>> y = paddle.cumsum(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 6 , 8 , 10],
             [12, 15, 18, 21]])
3816

3817 3818 3819 3820 3821 3822
            >>> y = paddle.cumsum(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 3 , 6 ],
             [4 , 9 , 15, 22],
             [8 , 17, 27, 38]])
3823

3824 3825
            >>> y = paddle.cumsum(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
3826 3827 3828 3829 3830 3831
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3832
        x = cast(x, dtype)
3833

3834
    if in_dynamic_mode():
3835 3836
        if axis is None:
            axis = -1
3837
        return _C_ops.cumsum(x, axis, flatten, False, False)
3838
    else:
3839 3840 3841
        check_variable_and_dtype(
            x,
            'x',
3842
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3843 3844
            'cumsum',
        )
3845 3846
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3847
        kwargs = {}
3848 3849 3850 3851 3852
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3853

3854

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
def cummax(x, axis=None, dtype='int64', name=None):
    """
    The cumulative max of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummaxed.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.

        indices (Tensor), The corresponding index results of cummax operation.

    Examples:
        .. code-block:: python

3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
            >>> import paddle

            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummax(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1,  5,  5,  5,  5,  5])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 1, 1, 1, 1])

            >>> value, indices = paddle.cummax(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-1,  5,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 0, 1]])

            >>> value, indices = paddle.cummax(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  5],
             [-2, -2,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 1],
             [0, 0, 2]])

            >>> value, indices = paddle.cummax(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummax')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummax(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummax',
        )
        check_type(x, 'x', (Variable), 'cummax')
        helper = LayerHelper('cummax', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummax',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


def cummin(x, axis=None, dtype='int64', name=None):
    """
    The cumulative min of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummined.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.

        indices (Tensor), The corresponding index results of cummin operation.

    Examples:
        .. code-block:: python

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
            >>> import paddle
            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummin(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1, -1, -1, -2, -3, -3])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 3, 4, 4])

            >>> value, indices = paddle.cummin(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-2, -3,  0]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [1, 1, 0]])

            >>> value, indices = paddle.cummin(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1, -1, -1],
             [-2, -3, -3]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 1, 1]])

            >>> value, indices = paddle.cummin(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummin')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummin(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummin',
        )
        check_type(x, 'x', (Variable), 'cummin')
        helper = LayerHelper('cummin', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummin',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


4026 4027
def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
4028
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
4029 4030 4031 4032 4033 4034

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
4035

4036 4037 4038 4039 4040 4041
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
4042
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
4043 4044 4045
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4046
        Tensor, the result of logcumsumexp operator.
4047 4048 4049

    Examples:
        .. code-block:: python
4050

4051
            >>> import paddle
4052

4053 4054
            >>> data = paddle.arange(12, dtype='float64')
            >>> data = paddle.reshape(data, (3, 4))
4055

4056 4057 4058 4059 4060 4061
            >>> y = paddle.logcumsumexp(data)
            >>> y
            Tensor(shape=[12], dtype=float64, place=Place(cpu), stop_gradient=True,
            [0.         , 1.31326169 , 2.40760596 , 3.44018970 , 4.45191440 ,
             5.45619332 , 6.45776285 , 7.45833963 , 8.45855173 , 9.45862974 ,
             10.45865844, 11.45866900])
4062

4063 4064 4065 4066 4067 4068
            >>> y = paddle.logcumsumexp(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.         , 2.         , 3.         ],
             [4.01814993 , 5.01814993 , 6.01814993 , 7.01814993 ],
             [8.01847930 , 9.01847930 , 10.01847930, 11.01847930]])
4069

4070 4071 4072 4073 4074 4075
            >>> y = paddle.logcumsumexp(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.31326169 , 2.40760596 , 3.44018970 ],
             [4.         , 5.31326169 , 6.40760596 , 7.44018970 ],
             [8.         , 9.31326169 , 10.40760596, 11.44018970]])
4076

4077 4078
            >>> y = paddle.logcumsumexp(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
4079 4080 4081 4082 4083 4084 4085 4086
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

4087
    if in_dynamic_mode():
4088 4089
        if axis is None:
            axis = -1
4090
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
4091 4092
    else:
        check_variable_and_dtype(
4093
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
4094
        )
4095

4096 4097 4098 4099 4100 4101 4102 4103 4104
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
4105 4106


H
hlygit66666 已提交
4107 4108 4109 4110
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

4111 4112
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
4113 4114 4115

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
4116 4117 4118 4119 4120 4121 4122
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
4123 4124 4125 4126 4127 4128 4129

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

4130
            >>> import paddle
H
hlygit66666 已提交
4131

4132 4133 4134 4135 4136 4137 4138
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
            >>> data
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11]])
H
hlygit66666 已提交
4139

4140 4141 4142 4143 4144 4145
            >>> y = paddle.cumprod(data, dim=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0  , 1  , 2  , 3  ],
             [0  , 5  , 12 , 21 ],
             [0  , 45 , 120, 231]])
H
hlygit66666 已提交
4146

4147 4148 4149 4150 4151 4152
            >>> y = paddle.cumprod(data, dim=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0   , 0   , 0   , 0   ],
             [4   , 20  , 120 , 840 ],
             [8   , 72  , 720 , 7920]])
H
hlygit66666 已提交
4153

4154 4155 4156 4157 4158 4159
            >>> y = paddle.cumprod(data, dim=1, dtype='float64')
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.   , 0.   , 0.   , 0.   ],
             [4.   , 20.  , 120. , 840. ],
             [8.   , 72.  , 720. , 7920.]])
H
hlygit66666 已提交
4160

4161
            >>> assert y.dtype == paddle.float64
H
hlygit66666 已提交
4162 4163 4164 4165

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4166
        x = cast(x, dtype)
H
hlygit66666 已提交
4167

4168
    if in_dynamic_mode():
4169
        return _C_ops.cumprod(x, dim)
4170 4171 4172 4173
    else:
        check_variable_and_dtype(
            x,
            "x",
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4184 4185 4186
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
4187

4188 4189 4190 4191 4192 4193 4194 4195 4196
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
4197

4198

J
Jack Zhou 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

4214
            >>> import paddle
N
Noel 已提交
4215

4216 4217 4218 4219 4220
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isfinite(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True , True , False, True , False, False])
J
Jack Zhou 已提交
4221
    """
4222
    if in_dynamic_mode():
4223
        return _C_ops.isfinite(x)
4224 4225 4226 4227 4228
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
4229 4230 4231 4232 4233 4234 4235 4236
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
4237 4238 4239 4240 4241 4242 4243
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
4244

4245

J
Jack Zhou 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

4261
            >>> import paddle
C
Chen Long 已提交
4262

4263 4264 4265 4266 4267
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isinf(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False, False, True , False, False, False])
J
Jack Zhou 已提交
4268
    """
4269
    if in_dynamic_mode():
4270
        return _C_ops.isinf(x)
4271 4272 4273
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
4285 4286 4287 4288
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4289

4290

J
Jack Zhou 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

4306
            >>> import paddle
4307

4308 4309 4310 4311 4312
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isnan(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, False, False, False, False, True , True ])
J
Jack Zhou 已提交
4313
    """
4314
    if in_dynamic_mode():
4315
        return _C_ops.isnan(x)
4316 4317 4318
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
4330 4331 4332 4333
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4334 4335


G
guofei 已提交
4336 4337 4338 4339 4340
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
4341
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
4342 4343 4344
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
4345
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
4346
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
4347
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
4348 4349 4350
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
4351
            of output is the same as input Tensor `x`.
4352
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
4353 4354 4355

    Returns:
        Tensor, result of product on the specified dim of input tensor.
4356

G
guofei 已提交
4357 4358 4359
    Examples:
        .. code-block:: python

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
            >>> import paddle

            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.prod(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.00022680)

            >>> out2 = paddle.prod(x, -1)
            >>> out2
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02700000, 0.00840000])

            >>> out3 = paddle.prod(x, 0)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02000000, 0.06000000, 0.30000001, 0.63000000])

            >>> out4 = paddle.prod(x, 0, keepdim=True)
            >>> out4
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.02000000, 0.06000000, 0.30000001, 0.63000000]])

            >>> out5 = paddle.prod(x, 0, dtype='int64')
            >>> out5
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 0])

            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]])
            >>> out6 = paddle.prod(y, [0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [105., 384.])

            >>> out7 = paddle.prod(y, (1, 2))
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [24.  , 1680.])
G
guofei 已提交
4402 4403 4404

    """
    if dtype is not None:
4405
        check_dtype(
4406 4407 4408 4409
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
4410
        )
G
guofei 已提交
4411
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4412
            x = cast(x, dtype)
G
guofei 已提交
4413

4414
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
4415
    if in_dynamic_mode():
4416
        return _C_ops.prod(x, axis, keepdim, reduce_all)
4417 4418 4419 4420 4421
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
4422
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
4423
            'reduce_prod',
4424
        )
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
4435 4436 4437 4438


def sign(x, name=None):
    """
4439
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
4440 4441

    Args:
4442 4443
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
4444 4445 4446 4447 4448 4449 4450

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

4451
            >>> import paddle
W
WangXi 已提交
4452

4453 4454 4455 4456 4457
            >>> x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
            >>> out = paddle.sign(x=x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.,  0., -1.,  1.])
W
WangXi 已提交
4458
    """
4459
    if in_dynamic_mode():
4460
        return _C_ops.sign(x)
4461 4462
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4463
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
4464 4465 4466
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
4467

4468
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
4469

4470
        return out
W
WangXi 已提交
4471 4472 4473


def tanh(x, name=None):
4474
    r"""
W
WangXi 已提交
4475 4476 4477
    Tanh Activation Operator.

    .. math::
4478
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
4479 4480

    Args:
4481
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

4491
            >>> import paddle
W
WangXi 已提交
4492

4493 4494 4495 4496 4497
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.tanh(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.37994900, -0.19737528,  0.09966799,  0.29131261])
W
WangXi 已提交
4498
    """
4499
    if in_dynamic_mode():
4500
        return _C_ops.tanh(x)
4501 4502
    else:
        check_variable_and_dtype(
4503
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
4504 4505 4506 4507 4508 4509
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
4510

4511

4512
@inplace_apis_in_dygraph_only
4513 4514 4515 4516 4517
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
4518
    return _C_ops.tanh_(x)
4519 4520


S
Steffy-zxf 已提交
4521 4522
def increment(x, value=1.0, name=None):
    """
4523
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
4524 4525 4526 4527
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
4528
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
4529 4530 4531 4532 4533 4534 4535 4536
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

4537
            >>> import paddle
S
Steffy-zxf 已提交
4538

4539 4540 4541 4542 4543
            >>> data = paddle.zeros(shape=[1], dtype='float32')
            >>> counter = paddle.increment(data)
            >>> counter
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])
S
Steffy-zxf 已提交
4544 4545

    """
4546
    if in_dynamic_mode():
4547
        return _C_ops.increment_(x, value)
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
4560 4561 4562 4563


def all(x, axis=None, keepdim=False, name=None):
    """
4564
    Computes the ``logical and`` of tensor elements over the given dimension.
4565 4566 4567 4568 4569

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4570
            Tensor with a single element, otherwise must be in the
4571 4572 4573 4574 4575 4576
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4577
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4578 4579 4580 4581 4582 4583 4584

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
            >>> import paddle

            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]
            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')

            >>> # out1 should be False
            >>> out1 = paddle.all(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            False)

            >>> # out2 should be [True, False]
            >>> out2 = paddle.all(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False])

            >>> # keepdim=False, out3 should be [False, True], out.shape should be (2,)
            >>> out3 = paddle.all(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True ])

            >>> # keepdim=True, out4 should be [[False], [True]], out.shape should be (2, 1)
            >>> out4 = paddle.all(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[False],
             [True ]])
4621

4622
    """
4623
    if in_dynamic_mode():
4624
        return _C_ops.all(x, axis, keepdim)
4625 4626 4627 4628 4629 4630 4631
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4632 4633 4634
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'all'
        )
4635
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
4636

4637
        helper = LayerHelper('all', **locals())
4638
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4639 4640 4641 4642 4643 4644 4645
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
4646 4647 4648 4649


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
4650
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
4651 4652 4653 4654 4655

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4656
            Tensor with a single element, otherwise must be in the
4657 4658 4659 4660 4661 4662
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4663
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4664 4665 4666 4667 4668 4669 4670

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x = paddle.assign(x)
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')
            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]

            >>> # out1 should be True
            >>> out1 = paddle.any(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            True)

            >>> # out2 should be [True, True]
            >>> out2 = paddle.any(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=False, out3 should be [True, True], out.shape should be (2,)
            >>> out3 = paddle.any(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            >>> out4 = paddle.any(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[True],
             [True]])
4708

4709
    """
4710
    if in_dynamic_mode():
4711
        return _C_ops.any(x, axis, keepdim)
4712 4713 4714 4715 4716 4717 4718
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4719 4720 4721
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'any'
        )
4722
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4723

4724
        helper = LayerHelper('any', **locals())
4725
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4726 4727 4728 4729 4730 4731 4732
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4733

4734

L
Leo Chen 已提交
4735 4736
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4737 4738 4739 4740 4741 4742
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4743 4744 4745 4746

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4747

L
Leo Chen 已提交
4748 4749 4750 4751 4752 4753 4754

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

4755
            >>> import paddle
L
Leo Chen 已提交
4756

4757 4758 4759
            >>> shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            >>> shape
            [2, 3, 3]
4760

4761 4762
            >>> # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            >>> # ValueError (terminated with error message).
L
Leo Chen 已提交
4763 4764 4765 4766

    """

    return core.broadcast_shape(x_shape, y_shape)
4767

4768

4769 4770 4771 4772 4773
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4774
        x (Tensor): The input Tensor which hold the complex numbers.
4775
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4776
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4777 4778

    Returns:
C
Chen Long 已提交
4779
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4780 4781 4782 4783

    Examples:
        .. code-block:: python

4784
            >>> import paddle
4785

4786 4787 4788 4789 4790
            >>> data = paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
            >>> data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1+1j), (2+2j), (3+3j)],
             [(4+4j), (5+5j), (6+6j)]])
4791

4792 4793 4794 4795 4796
            >>> conj_data = paddle.conj(data)
            >>> conj_data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1-1j), (2-2j), (3-3j)],
             [(4-4j), (5-5j), (6-6j)]])
4797 4798

    """
4799
    if in_dynamic_mode():
4800
        return _C_ops.conj(x)
4801 4802 4803 4804
    else:
        check_variable_and_dtype(
            x,
            "x",
4805 4806 4807 4808
            [
                'complex64',
                'complex128',
                'float16',
4809
                'uint16',
4810 4811 4812 4813 4814
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4815 4816
            'conj',
        )
H
hong 已提交
4817

4818 4819 4820 4821
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4822

4823 4824
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4825

4826

Z
zyfncg 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4836
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4837 4838 4839 4840 4841 4842
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

4843
            >>> import paddle
Z
zyfncg 已提交
4844

4845 4846 4847 4848 4849 4850
            >>> data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            >>> res = paddle.digamma(data)
            >>> res
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.57721591,  0.03648996],
             [ nan       ,  5.32286835]])
Z
zyfncg 已提交
4851 4852
    """

4853
    if in_dynamic_mode():
4854
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4855
    else:
4856 4857 4858
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4859 4860 4861 4862
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4863

4864

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
@inplace_apis_in_dygraph_only
def digamma_(x, name=None):
    r"""
    Inplace version of ``digamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_digamma`.
    """
    if in_dynamic_mode():
        return _C_ops.digamma_(x)


4875 4876 4877 4878 4879 4880 4881 4882 4883
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4884
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4885 4886 4887 4888 4889 4890 4891 4892
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

4893
            >>> import paddle
4894

4895 4896 4897 4898 4899
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.lgamma(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.31452453, 1.76149762, 2.25271273, 1.09579790])
4900
    """
4901
    if in_dynamic_mode():
4902
        return _C_ops.lgamma(x)
4903
    else:
4904 4905 4906
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4907 4908 4909 4910
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4911 4912


4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
@inplace_apis_in_dygraph_only
def lgamma_(x, name=None):
    r"""
    Inplace version of ``lgamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_lgamma`.
    """
    if in_dynamic_mode():
        return _C_ops.lgamma_(x)


4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

4937
            >>> import paddle
4938

4939 4940 4941 4942 4943
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.neg(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.40000001,  0.20000000, -0.10000000, -0.30000001])
4944 4945
    """

4946 4947 4948
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4949

R
ronnywang 已提交
4950

4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
@inplace_apis_in_dygraph_only
def neg_(x, name=None):
    r"""
    Inplace version of ``neg`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_neg`.
    """
    return x.scale_(
        scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )


4962
def atan2(x, y, name=None):
R
ronnywang 已提交
4963
    r"""
4964
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4965 4966 4967 4968

    Equation:
        .. math::

4969 4970 4971 4972 4973 4974 4975 4976
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4977 4978

    Args:
4979 4980
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4981 4982 4983 4984 4985 4986 4987 4988
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4989
            >>> import paddle
R
ronnywang 已提交
4990

4991 4992 4993 4994
            >>> x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            >>> x
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  1,  1, -1])
R
ronnywang 已提交
4995

4996 4997 4998 4999
            >>> y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            >>> y
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  -1,  1, 1])
R
ronnywang 已提交
5000

5001 5002 5003 5004
            >>> out = paddle.atan2(x, y)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
5005 5006 5007

    """

5008
    if in_dynamic_mode():
5009
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
5010
    else:
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
5023

5024 5025 5026 5027 5028
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
5029

5030

W
wangzhen38 已提交
5031 5032 5033 5034 5035
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
5036

W
wangzhen38 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
5052
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
W
wangzhen38 已提交
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

5063
            >>> import paddle
W
wangzhen38 已提交
5064

5065 5066 5067 5068 5069
            >>> x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            >>> out1 = paddle.logit(x)
            >>> out1
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.02785587, -4.53624487, -0.95440406, -1.32673466,  1.44676447])
W
wangzhen38 已提交
5070 5071

    """
5072
    if eps is None:
W
wangzhen38 已提交
5073
        eps = 0.0
5074
    if in_dynamic_mode():
5075
        return _C_ops.logit(x, eps)
5076 5077
    else:
        check_variable_and_dtype(
5078
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
5089

5090

5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
@inplace_apis_in_dygraph_only
def logit_(x, eps=None, name=None):
    r"""
    Inplace version of ``logit`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_logit`.
    """
    if eps is None:
        eps = 0.0
    if in_dynamic_mode():
        return _C_ops.logit_(x, eps)


5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
5113 5114 5115
        x (Tensor): An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
5116 5117 5118 5119 5120 5121 5122 5123
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

5124
            >>> import paddle
5125

5126 5127 5128 5129 5130 5131 5132
            >>> x = paddle.arange(1., 5., dtype='float32')
            >>> y = paddle.empty([4], dtype='float32')
            >>> y.fill_(10.)
            >>> out = paddle.lerp(x, y, 0.5)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.50000000, 6.        , 6.50000000, 7.        ])
5133 5134

    """
5135 5136
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
5137

5138
    if in_dynamic_mode():
5139
        return _C_ops.lerp(x, y, weight)
5140 5141
    else:
        check_variable_and_dtype(
5142
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5143 5144
        )
        check_variable_and_dtype(
5145
            y, 'y', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5146 5147
        )
        check_variable_and_dtype(
5148 5149 5150 5151
            weight,
            'weight',
            ['uint16', 'float16', 'float32', 'float64'],
            'lerp',
5152
        )
5153

5154 5155 5156 5157 5158
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
5159

5160

5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
5174
        raise ValueError(
5175 5176 5177 5178
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
5179
    return _C_ops.lerp_(x, y, weight)
5180

5181

W
wuhuanzhou 已提交
5182 5183
def erfinv(x, name=None):
    r"""
5184
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
5185 5186 5187 5188 5189 5190

        .. math::

            erfinv(erf(x)) = x.

    Args:
5191
        x (Tensor): An N-D Tensor, the data type is float16, bfloat16, float32, float64.
W
wuhuanzhou 已提交
5192 5193 5194
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5195
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
5196 5197 5198 5199

    Example:
        .. code-block:: python

5200
            >>> import paddle
5201

5202 5203 5204 5205 5206
            >>> x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            >>> out = paddle.erfinv(x)
            >>> out
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.       , 0.47693631, -inf.     ])
W
wuhuanzhou 已提交
5207 5208

    """
5209
    if in_dynamic_mode():
5210
        return _C_ops.erfinv(x)
5211
    else:
5212 5213 5214
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'float16', 'uint16'], 'erfinv'
        )
5215 5216 5217 5218
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
5219

5220

W
wuhuanzhou 已提交
5221 5222 5223 5224 5225 5226 5227
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
5228
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
5229

5230

5231
def rad2deg(x, name=None):
5232
    r"""
5233
    Convert each of the elements of input x from angles in radians to degrees.
5234

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5250 5251
            >>> import paddle
            >>> import math
5252

5253 5254 5255 5256 5257 5258
            >>> x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            >>> result1 = paddle.rad2deg(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 180.02334595, -180.02334595,  359.98937988, -359.98937988,
              89.95437622 , -89.95437622 ])
5259

5260 5261 5262 5263 5264
            >>> x2 = paddle.to_tensor(math.pi/2)
            >>> result2 = paddle.rad2deg(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            90.)
5265

5266 5267 5268 5269 5270
            >>> x3 = paddle.to_tensor(1)
            >>> result3 = paddle.rad2deg(x3)
            >>> result3
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            57.29578018)
5271 5272
    """
    rad2deg_scale = 180 / np.pi
5273
    if in_dynamic_mode():
5274 5275
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5276
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
5277
    else:
5278 5279 5280
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
5281 5282 5283
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5284
            out_cast = helper.create_variable_for_type_inference(
5285 5286 5287 5288 5289 5290 5291 5292
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5293
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5294 5295 5296 5297 5298 5299
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
5300 5301
        return out

5302

5303
def deg2rad(x, name=None):
5304
    r"""
5305
    Convert each of the elements of input x from degrees to angles in radians.
5306

5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5321
            >>> import paddle
5322

5323 5324 5325 5326 5327 5328
            >>> x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            >>> result1 = paddle.deg2rad(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            -1.57079637])
5329

5330 5331 5332 5333 5334
            >>> x2 = paddle.to_tensor(180)
            >>> result2 = paddle.deg2rad(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.14159274)
5335 5336
    """
    deg2rad_scale = np.pi / 180.0
5337
    if in_dynamic_mode():
5338 5339
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5340
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
5341
    else:
5342 5343 5344
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
5345 5346 5347
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5348
            out_cast = helper.create_variable_for_type_inference(
5349 5350 5351 5352 5353 5354 5355 5356
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5357
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5358 5359 5360 5361 5362 5363
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
5364
        return out
A
andyjpaddle 已提交
5365

5366

T
Tao Luo 已提交
5367 5368 5369 5370
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
5371

T
Tao Luo 已提交
5372 5373 5374
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
5375 5376
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5377
    Args:
C
cyberslack_lee 已提交
5378 5379
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5380 5381 5382 5383 5384 5385 5386 5387
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5388
            >>> import paddle
5389

5390 5391 5392 5393 5394
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.gcd(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5395

5396 5397 5398 5399
            >>> x3 = paddle.arange(6)
            >>> paddle.gcd(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [20, 1 , 2 , 1 , 4 , 5])
T
Tao Luo 已提交
5400

5401 5402 5403 5404
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.gcd(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            20)
T
Tao Luo 已提交
5405

5406 5407 5408
            >>> paddle.gcd(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5409

5410 5411 5412 5413
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.gcd(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5414 5415 5416 5417 5418 5419 5420 5421
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
5422
        return paddle.any(y != 0)
T
Tao Luo 已提交
5423 5424 5425 5426 5427

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
5428
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
5429
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
5430 5431 5432 5433 5434 5435 5436 5437
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
5438 5439
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

5440
    if in_dynamic_mode():
T
Tao Luo 已提交
5441 5442 5443 5444 5445
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
5446 5447
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
5448 5449 5450
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

5451

T
Tao Luo 已提交
5452 5453 5454 5455
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
5456

T
Tao Luo 已提交
5457 5458 5459
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
5460 5461
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5462
    Args:
C
cyberslack_lee 已提交
5463 5464
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5465 5466 5467 5468 5469 5470 5471 5472
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5473
            >>> import paddle
5474

5475 5476 5477 5478 5479
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.lcm(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5480

5481 5482 5483 5484
            >>> x3 = paddle.arange(6)
            >>> paddle.lcm(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 20, 20, 60, 20, 20])
T
Tao Luo 已提交
5485

5486 5487 5488 5489
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.lcm(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
T
Tao Luo 已提交
5490

5491 5492 5493
            >>> paddle.lcm(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5494

5495 5496 5497 5498
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.lcm(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5499 5500 5501 5502 5503 5504 5505
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
5506 5507 5508
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
5509 5510
    return out

5511

A
andyjpaddle 已提交
5512 5513 5514
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
5515
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
5516 5517 5518 5519

    .. math::

        out[i] = x[i+1] - x[i]
5520 5521

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
5522 5523 5524
    Only n=1 is currently supported.

    Args:
5525
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
5526
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
5527
                          Only support n=1. Default:1
5528 5529
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
5530
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5531
                                   and its shapes must match x's shape except on axis.
5532 5533
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5534
                                   and its shapes must match x's shape except on axis.
5535
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5536

A
andyjpaddle 已提交
5537 5538 5539 5540 5541 5542
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

5543
            >>> import paddle
5544

5545 5546 5547 5548 5549
            >>> x = paddle.to_tensor([1, 4, 5, 2])
            >>> out = paddle.diff(x)
            >>> out
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3])
A
andyjpaddle 已提交
5550

5551 5552 5553 5554 5555
            >>> y = paddle.to_tensor([7, 9])
            >>> out = paddle.diff(x, append=y)
            >>> out
            Tensor(shape=[5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3,  5,  2])
A
andyjpaddle 已提交
5556

5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
            >>> z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            >>> out = paddle.diff(z, axis=0)
            >>> out
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 3, 3]])
            >>> out = paddle.diff(z, axis=1)
            >>> out
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 1],
             [1, 1]])
A
andyjpaddle 已提交
5567
    """
5568 5569 5570 5571 5572
    if n < 1:
        raise ValueError(
            "Diff expects input to be at least one-dimensional but got {}".format(
                n
            )
5573
        )
5574

5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
    def _diff_handler(x, n=1, axis=-1, prepend=None, append=None, name=None):
        if axis < 0:
            axis = axis + len(x.shape)
        if axis > len(x.shape):
            axis = len(x.shape)
        if axis < 0:
            axis = 0
        dtype = x.dtype
        axes = [axis]
        infer_flags = [1 for i in range(len(axes))]
        if in_dynamic_mode():
            has_pend = False
            input_list = []
            if prepend is not None and append is not None:
                input_list = [prepend, x, append]
                has_pend = True
            elif prepend is not None:
                input_list = [prepend, x]
                has_pend = True
            elif append is not None:
                input_list = [x, append]
                has_pend = True
            if has_pend:
                new_input = _C_ops.concat(input_list, axis)
            else:
                new_input = x

            attrs_1 = ()
            attrs_2 = ()

            dim_len = new_input.shape[axis]

            starts_1 = [0]
            attrs_1 += ('starts', starts_1)
            ends_1 = [dim_len - 1]
            attrs_1 += ('ends', ends_1)
            input_front = _C_ops.slice(
                new_input, axes, starts_1, ends_1, infer_flags, []
            )
            starts_2 = [1]
            attrs_2 += ('starts', starts_2)
            ends_2 = [dim_len]
            attrs_2 += ('ends', ends_2)
            input_back = _C_ops.slice(
                new_input, axes, starts_2, ends_2, infer_flags, []
            )

            if x.dtype == paddle.bool:
                return _C_ops.logical_xor(input_back, input_front)
            else:
                return _C_ops.subtract(input_back, input_front)
5626
        else:
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
            check_variable_and_dtype(
                x,
                'x',
                ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
                'diff',
            )
            check_type(axis, 'axis', (int), 'diff')
            helper = LayerHelper('diff', **locals())
            has_pend = False
            input_list = []
            if prepend is not None and append is not None:
                input_list = [prepend, x, append]
                has_pend = True
            elif prepend is not None:
                input_list = [prepend, x]
                has_pend = True
            elif append is not None:
                input_list = [x, append]
                has_pend = True

            if has_pend:
                new_input = helper.create_variable_for_type_inference(dtype)
                helper.append_op(
                    type='concat',
                    inputs={'X': input_list},
                    outputs={'Out': [new_input]},
                    attrs={'axis': axis},
                )
            else:
                new_input = x

            dim_len = new_input.shape[axis]
            attrs_1 = {'axes': axes}
            starts_1 = [0]
            ends_1 = [dim_len - 1]
            attrs_1['starts'] = starts_1
            attrs_1['ends'] = ends_1
            input_front = helper.create_variable_for_type_inference(dtype)
5665
            helper.append_op(
5666 5667 5668 5669
                type='slice',
                inputs={'Input': new_input},
                attrs=attrs_1,
                outputs={'Out': input_front},
5670
            )
5671 5672 5673 5674 5675 5676
            attrs_2 = {'axes': axes}
            starts_2 = [1]
            ends_2 = [dim_len]
            attrs_2['starts'] = starts_2
            attrs_2['ends'] = ends_2
            input_back = helper.create_variable_for_type_inference(dtype)
5677
            helper.append_op(
5678 5679 5680 5681
                type='slice',
                inputs={'Input': new_input},
                attrs=attrs_2,
                outputs={'Out': input_back},
5682
            )
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703

            if dtype == paddle.bool:
                out = helper.create_variable_for_type_inference(dtype)
                helper.append_op(
                    type='logical_xor',
                    inputs={"X": input_back, "Y": input_front},
                    outputs={"Out": out},
                )
            else:
                out = paddle.tensor.math.subtract(input_back, input_front)
            return out

    out = _diff_handler(
        x, n=1, axis=axis, prepend=prepend, append=append, name=name
    )
    if n > 1:
        for _ in range(n - 1):
            out = _diff_handler(
                out, n=1, axis=axis, prepend=prepend, append=append, name=name
            )
    return out
F
Feiyu Chan 已提交
5704

5705

F
Feiyu Chan 已提交
5706 5707
def angle(x, name=None):
    r"""
5708
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5721
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5722 5723 5724 5725

    Examples:
        .. code-block:: python

5726
            >>> import paddle
F
Feiyu Chan 已提交
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736
            >>> x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            >>> y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            >>> z = x + 1j * y
            >>> z
            Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
             [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
             [-2j    , -1j    ,  0j    ,  1j    ],
             [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5737

5738 5739 5740 5741 5742 5743 5744
            >>> theta = paddle.angle(z)
            >>> theta
            Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
             [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
             [-1.57079637, -1.57079637,  0.        ,  1.57079637],
             [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5745 5746
    """

5747
    if in_dynamic_mode():
F
Feiyu Chan 已提交
5748
        return _C_ops.angle(x)
5749 5750
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
5772

5773

5774
def heaviside(x, y, name=None):
5775
    r"""
5776 5777 5778 5779 5780
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5781 5782 5783 5784
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5785
                \end{array}
5786
            \right.
5787

5788
    Note:
I
Infinity_lee 已提交
5789 5790 5791
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
5792 5793

    Args:
5794 5795
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5796 5797 5798 5799 5800 5801 5802 5803
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
            >>> import paddle
            >>> x = paddle.to_tensor([-0.5, 0, 0.5])
            >>> y = paddle.to_tensor([0.1])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.10000000, 1.        ])
            >>> x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            >>> y = paddle.to_tensor([0.1, 0.2, 0.3])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        , 0.20000000, 1.        ],
             [0.        , 1.        , 0.30000001]])
5816
    """
5817
    if in_dynamic_mode():
5818
        return _C_ops.heaviside(x, y)
5819
    else:
W
Weilong Wu 已提交
5820
        op_type = 'elementwise_heaviside'
5821
        return _elementwise_op(LayerHelper(op_type, **locals()))
5822

5823

5824 5825 5826 5827 5828 5829
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
5830
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5831 5832 5833 5834 5835

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
5836
        .. code-block:: python
5837

5838
            >>> import paddle
5839

5840 5841 5842 5843 5844 5845 5846
            >>> input = paddle.to_tensor([[12.22000003, -1.02999997],
            ...                           [-0.54999995, 0.66000003]])
            >>> output = paddle.frac(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.22000003, -0.02999997],
             [-0.54999995,  0.66000003]])
5847
    """
5848
    if x.dtype not in [
5849 5850 5851 5852
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
5853
    ]:
5854
        raise TypeError(
5855 5856 5857 5858
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5859
    if in_dynamic_mode():
5860 5861
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5862
    else:
5863 5864
        inputs = {"X": x}
        attrs = {}
5865

5866 5867 5868 5869 5870 5871 5872 5873
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5874
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5875

5876

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
@inplace_apis_in_dygraph_only
def frac_(x, name=None):
    r"""
    Inplace version of ``frac`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_frac`.
    """

    if x.dtype not in [
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
    ]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
    if in_dynamic_mode():
        y = _C_ops.trunc(x)
        return _C_ops.subtract_(x, y)


5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
5915
        .. code-block:: python
5916

5917
            >>> import paddle
5918

5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
            >>> x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            >>> paddle.sgn(x)
            Tensor(shape=[2, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[ (0.6000000238418579+0.800000011920929j),
              (0.2800000011920929-0.9599999785423279j),
               0j                                     ,
              (0.4472135901451111+0.8944271802902222j)],
             [ (0.6000000238418579+0.800000011920929j),
               (1+0j)                                 ,
               0j                                     ,
              (-1+0j)                                 ]])
5930 5931

    """
5932
    if x.dtype not in [
5933 5934 5935 5936 5937
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5938
    ]:
5939
        raise TypeError(
5940 5941 5942 5943
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5955

5956

5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

5980
            >>> import paddle
5981

5982 5983
            >>> x_int = paddle.arange(0, 12).reshape([3, 4])
            >>> x_float = x_int.astype(paddle.float64)
5984

5985 5986 5987
            >>> idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            >>> idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            >>> idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range
5988

5989 5990 5991 5992
            >>> paddle.take(x_int, idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
5993

5994 5995 5996 5997
            >>> paddle.take(x_int, idx_neg)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 ],
             [1 , 2 , 3 ]])
5998

5999 6000 6001 6002
            >>> paddle.take(x_float, idx_pos)
            Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[4., 5., 6.],
             [7., 8., 9.]])
6003

6004 6005 6006 6007
            >>> x_int.take(idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
6008

6009 6010 6011 6012 6013
            >>> paddle.take(x_int, idx_err, mode='wrap')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 0 ]])
6014

6015 6016 6017 6018 6019
            >>> paddle.take(x_int, idx_err, mode='clip')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 0 , 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 11]])
6020 6021 6022 6023

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
6024 6025 6026 6027
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
6028

6029
    if in_dynamic_mode():
6030 6031
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
6032
                "The type of 'index' must be Tensor, but got {}".format(
6033 6034 6035
                    type(index)
                )
            )
6036 6037
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
6038 6039 6040 6041
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
6055
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
6056 6057 6058
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
6059 6060 6061 6062 6063 6064 6065
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
6066 6067 6068 6069 6070 6071 6072 6073 6074


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
6075

6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

6087
            >>> import paddle
6088

6089 6090 6091 6092 6093 6094 6095 6096
            >>> x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            >>> mantissa, exponent = paddle.tensor.math.frexp(x)
            >>> mantissa
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.50000000, 0.75000000, 0.50000000]])
            >>> exponent
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 2., 2., 3.]])
6097
    """
6098 6099
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
6100 6101 6102 6103
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
6104 6105
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
6106 6107 6108
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
6109 6110 6111 6112

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
6123 6124 6125

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
6168
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

6214
            >>> import paddle
6215

6216
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6217

6218 6219 6220
            >>> paddle.trapezoid(y)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6221

6222 6223 6224
            >>> paddle.trapezoid(y, dx=2.)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            20.)
6225

6226 6227
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6228

6229 6230 6231
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6232

6233 6234
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6235

6236 6237 6238 6239
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            -8.)
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6240

6241 6242 6243 6244 6245 6246
            >>> paddle.trapezoid(y, axis=0)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.50000000, 2.50000000, 3.50000000])
            >>> paddle.trapezoid(y, axis=1)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 8.])
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

6271
            >>> import paddle
6272

6273
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6274

6275 6276 6277
            >>> paddle.cumulative_trapezoid(y)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6278

6279 6280 6281
            >>> paddle.cumulative_trapezoid(y, dx=2.)
            >>> # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            >>> #        [9. , 20.])
6282

6283 6284
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6285

6286 6287 6288
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6289

6290 6291
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6292

6293 6294 6295
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-3., -8.])
6296

6297
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6298

6299 6300 6301 6302 6303 6304 6305
            >>> paddle.cumulative_trapezoid(y, axis=0)
            Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.50000000, 2.50000000, 3.50000000]])
            >>> paddle.cumulative_trapezoid(y, axis=1)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 2.        ],
             [3.50000000, 8.        ]])
6306 6307
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
            >>> import paddle
            >>> x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            >>> out = paddle.vander(x)
            >>> out
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [4., 2., 1.],
             [9., 3., 1.]])
            >>> out1 = paddle.vander(x,2)
            >>> out1
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1.],
             [2., 1.],
             [3., 1.]])
            >>> out2 = paddle.vander(x, increasing = True)
            >>> out2
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [1., 2., 4.],
             [1., 3., 9.]])
            >>> real = paddle.to_tensor([2., 4.])
            >>> imag = paddle.to_tensor([1., 3.])
            >>> complex = paddle.complex(real, imag)
            >>> out3 = paddle.vander(complex)
            >>> out3
            Tensor(shape=[2, 2], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(2+1j), (1+0j)],
             [(4+3j), (1+0j)]])
6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
    if paddle.in_dynamic_mode():
        if n > 0:
            res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
        if n > 1:
            res[:, 1:] = x[:, None]
            res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    else:
        if n > 0:
            res = paddle.static.setitem(
                res, (slice(None), 0), paddle.to_tensor([1], dtype=x.dtype)
            )
        if n > 1:
            res = paddle.static.setitem(
                res, (slice(None), slice(1, None)), x[:, None]
            )
            res = paddle.static.setitem(
                res,
                (slice(None), slice(1, None)),
                paddle.cumprod(res[:, 1:], dim=-1),
            )
6401 6402
    res = res[:, ::-1] if not increasing else res
    return res
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6421 6422 6423 6424 6425
            >>> import paddle
            >>> out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            >>> out
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00000012, 1.99999988])
6426
    """
6427
    if in_dynamic_mode():
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6460
            >>> import paddle
6461

6462 6463 6464 6465
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> paddle.i0(x)
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089])
6466
    """
6467
    if in_dynamic_mode():
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
@inplace_apis_in_dygraph_only
def i0_(x, name=None):
    r"""
    Inplace version of ``i0`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_i0`.
    """

    if in_dynamic_mode():
        return _C_ops.i0_(x)


6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6509
            >>> import paddle
6510

6511 6512 6513 6514
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i0e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994, 0.46575963, 0.30850831, 0.24300036, 0.20700191])
6515
    """
6516
    if in_dynamic_mode():
6517 6518 6519 6520 6521 6522 6523 6524
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6541
            >>> import paddle
6542

6543 6544 6545 6546
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.56515908, 1.59063685, 3.95337057, 9.75946712])
6547
    """
6548
    if in_dynamic_mode():
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6576
            >>> import paddle
6577

6578 6579 6580 6581
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.20791042, 0.21526928, 0.19682673, 0.17875087])
6582
    """
6583
    if in_dynamic_mode():
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6616
            >>> import paddle
6617

6618 6619 6620 6621 6622
            >>> data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            >>> res = paddle.polygamma(data, 1)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.64493412,  0.39493406,  0.03999467])
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
6652 6653


6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
def polygamma_(x, n, name=None):
    r"""
    Inplace version of ``polygamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_polygamma`.
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma_(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma_(x, n)


6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
        .. code-block:: python

            >>> import paddle

            >>> # example1
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2, 3, 4], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 16., 48.])

            >>> # example2
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 8. , 12.])
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))