math.py 208.5 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36
from ..framework import (
    LayerHelper,
37
    _dygraph_tracer,
38 39
    convert_np_dtype_to_dtype_,
    core,
40
    in_dynamic_mode,
41 42 43 44
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45 46
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
47
from .ops import acosh  # noqa: F401
48
from .ops import asin  # noqa: F401
49 50 51
from .ops import asinh  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import atanh  # noqa: F401
52 53 54 55
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import cosh  # noqa: F401
56
from .ops import erf  # noqa: F401
57 58 59 60 61 62 63 64 65 66 67
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
68 69
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
70 71
from .ops import sin  # noqa: F401
from .ops import sinh  # noqa: F401
72 73
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
74 75
from .ops import square  # noqa: F401
from .ops import tan  # noqa: F401
76

77 78
__all__ = []

79 80 81 82 83 84 85 86 87 88 89 90 91
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
126 127
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
128 129 130
    return reduce_all, axis


131 132
def log(x, name=None):
    r"""
C
Chen Long 已提交
133
    Calculates the natural log of the given input Tensor, element-wise.
134 135 136

    .. math::

137
        Out = \ln(x)
138 139

    Args:
140
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
158
    if in_dynamic_mode():
159
        return _C_ops.log(x)
160
    else:
161
        check_variable_and_dtype(
162
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], "log"
163
        )
164 165 166 167 168 169
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
189
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
190
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
191 192 193 194
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
195 196

    Returns:
C
Chen Long 已提交
197
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
198 199 200

    Examples:
        .. code-block:: python
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

219
    if in_dynamic_mode():
W
Weilong Wu 已提交
220 221
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
222 223
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
224 225
    else:
        check_variable_and_dtype(
226
            x,
227 228 229 230 231 232 233 234 235 236 237 238 239
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
240
        )
241 242 243 244 245 246 247 248 249 250 251
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
252

253 254 255 256
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
257 258 259


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
260 261
    r"""

262 263 264 265
    stanh activation.

    .. math::

266
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
267 268 269 270 271

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
272
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
273 274 275 276 277 278 279 280 281 282 283 284 285 286

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

287
    if in_dynamic_mode():
Z
zyfncg 已提交
288
        return _C_ops.stanh(x, scale_a, scale_b)
289 290
    else:
        check_variable_and_dtype(
291
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
292
        )
293

294 295 296 297 298 299 300 301 302
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
303

304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
336
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
337

338 339 340 341 342 343 344 345
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
346

347 348 349 350
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
351
            res = paddle.multiplex(inputs, index)
352
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
353 354

    """
355
    if in_dynamic_mode():
356
        return _C_ops.multiplex(inputs, index)
357 358
    else:
        helper = LayerHelper('multiplex', **locals())
359

360 361 362 363 364 365 366 367 368 369 370 371
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
372
        check_variable_and_dtype(
373
            index, "index", ['int32', 'int64'], 'multiplex'
374
        )
375

376 377 378 379 380 381 382
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
383

384

385 386 387 388 389 390
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
391
    if in_dynamic_mode():
392
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
393 394


395
def pow(x, y, name=None):
396
    """
C
Chen Long 已提交
397
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
398

399
    .. math::
400
        out = x^{y}
401

402
    Note:
I
Infinity_lee 已提交
403 404 405
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
406 407


408
    Args:
409
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
410
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
411
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
412

413
    Returns:
414
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
415 416 417

    Examples:

418
        ..  code-block:: python
419 420 421

            import paddle

422 423 424 425 426 427 428 429 430 431 432 433
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

434
            # example 2: y is a Tensor
435
            y = paddle.to_tensor([2], dtype='float32')
436
            res = paddle.pow(x, y)
437 438 439
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
440 441

    """
442
    # in dynamic graph mode
443
    if in_dynamic_mode():
444
        if isinstance(y, (int, float)):
445
            return _C_ops.pow(x, y)
446
        elif isinstance(y, (paddle.Tensor, Variable)):
447
            return _C_ops.elementwise_pow(x, y)
448
        else:
449
            raise TypeError(
450 451
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
452 453
    else:
        # in static graph mode
454
        if isinstance(y, (int, float)):
455 456 457 458 459 460
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
461
            )
462 463 464 465 466 467
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
468
        else:
469
            raise TypeError(
470
                'y must be scalar or tensor type, but received: %s ' % (type(y))
471
            )
472 473


474
OP_NAMEMAPPING = {
475 476 477 478 479 480 481 482
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
483
    'elementwise_mod': 'remainder',
484
}
485

486

487 488 489 490 491 492
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

493 494
    out = helper.kwargs.get('out', None)

495 496
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
497 498 499 500 501
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
502
        "elementwise_max",
503 504 505 506 507 508 509 510 511 512 513 514 515 516
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
517 518 519 520 521 522 523 524 525
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
526
    check_variable_and_dtype(
527 528
        x,
        'x',
529
        data_type,
530 531
        original_op_type,
    )
532
    check_variable_and_dtype(
533 534
        y,
        'y',
535
        data_type,
536 537
        original_op_type,
    )
538 539 540 541

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
542 543 544 545 546

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
547 548 549 550 551 552 553 554 555 556
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
557 558 559
    return helper.append_activation(out)


Y
Yang Zhang 已提交
560
def add(x, y, name=None):
561
    """
562 563 564 565 566 567 568 569
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

570 571
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
572 573

    There are two cases for this operator:
574 575 576 577

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

578
    For case 2:
579 580

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
581
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
582
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
583 584 585 586

        For example:

        ..  code-block:: python
587

588 589 590 591 592 593
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
594

595
    Args:
596 597 598
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
599 600

    Returns:
H
HongyuJia 已提交
601
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
602 603 604 605

    Examples:

        ..  code-block:: python
606

607
            import paddle
608

609 610 611 612
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
613
    """
614

615
    if in_dynamic_mode():
616
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
617
    else:
618
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
619 620


621 622 623 624 625 626 627 628 629
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
630
        raise ValueError(
631 632 633 634
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
635

636
    return _C_ops.add_(x, y)
637 638


Z
zhiboniu 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

        ..  code-block:: python

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be float32, float64, float16.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

        ..  code-block:: python

            import paddle

            x = paddle.to_tensor([-1, -2, -3], 'float64')
            y = paddle.to_tensor([-1], 'float64')
            z = paddle.logaddexp(x, y)
            print(z)  # [-0.30685282, -0.68673831, -0.87307199]
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


697 698
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
699
    Substract two tensors element-wise. The equation is:
700 701 702 703

    .. math::
        out = x - y

704
    Note:
I
Infinity_lee 已提交
705 706 707
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
708 709 710 711 712 713 714 715 716 717 718 719

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
720

721 722 723 724 725 726
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
727 728 729
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
730 731 732 733 734

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
735 736 737
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
738

739 740
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
741 742
            res = paddle.subtract(x, y)
            print(res)
743 744
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
745

746
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
747 748 749
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
750 751
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
752
    """
753
    if in_dynamic_mode():
754
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
755
    else:
756
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
757 758


759 760 761 762 763 764 765 766 767
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
768
        raise ValueError(
769 770 771 772
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
773

774
    return _C_ops.subtract_(x, y)
775 776


777
def divide(x, y, name=None):
778
    """
779
    Divide two tensors element-wise. The equation is:
780

781 782
    .. math::
        out = x / y
783

784
    Note:
I
Infinity_lee 已提交
785 786 787
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
788

789 790 791 792
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
793

794
    Returns:
795
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
796

797
    Examples:
798

799
        ..  code-block:: python
800

801
            import paddle
802

803 804
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
805
            z = paddle.divide(x, y)
806
            print(z)  # [2., 0.6, 2.]
807

808
    """
809
    if in_dynamic_mode():
810
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
811
    else:
812
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
813 814


815 816
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
817
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
818

819
    .. math::
L
Lin Manhui 已提交
820
        out = trunc(x / y)
821

H
hg-1099255210 已提交
822 823 824
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

825
    Note:
I
Infinity_lee 已提交
826 827 828 829
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
830
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
831

832
    Args:
833 834
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
835
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
836

837 838
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
839

840
    Examples:
841

842
        ..  code-block:: python
843

844
            import paddle
845

846 847
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
848
            z = paddle.floor_divide(x, y)
849
            print(z)  # [2, 0, 2, 2]
850

851
    """
852
    if in_dynamic_mode():
853
        return _C_ops.floor_divide(x, y)
854
    else:
855
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
856 857


858
def remainder(x, y, name=None):
859
    r"""
860 861 862
    Mod two tensors element-wise. The equation is:

    .. math::
863

864 865
        out = x \% y

866
    Note:
I
Infinity_lee 已提交
867 868 869
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
870 871

    Args:
872 873
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
874 875 876
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
877
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
878 879 880 881 882 883 884

    Examples:

        ..  code-block:: python

            import paddle

885 886
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
887
            z = paddle.remainder(x, y)
W
WangXi 已提交
888
            print(z)  # [0, 3, 2, 1]
889 890

    """
891
    if in_dynamic_mode():
892
        return _C_ops.remainder(x, y)
893
    else:
894
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
895 896


897 898 899 900 901 902 903 904 905
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
906 907 908 909
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
910
    return _C_ops.remainder_(x, y)
911 912


913 914
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
915 916


917
def multiply(x, y, name=None):
918
    """
919
    multiply two tensors element-wise. The equation is:
920

921 922
    .. math::
        out = x * y
923

924
    Note:
I
Infinity_lee 已提交
925 926 927
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
928

929
    Args:
W
will-jl944 已提交
930 931
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
932
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
933

934
    Returns:
935
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
936

937 938 939 940 941 942
    Examples:

        ..  code-block:: python

            import paddle

943 944
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
945
            res = paddle.multiply(x, y)
946
            print(res) # [[5, 12], [21, 32]]
947

948
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
949 950 951
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
952 953

    """
954
    if in_dynamic_mode():
955
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
956
    else:
957 958
        if x.dtype != y.dtype:
            raise TypeError(
959
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
960
            )
961

962
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
963

964

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


987 988 989 990 991
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
992 993
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1014
    if in_dynamic_mode():
1015 1016 1017
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1018
        return _elementwise_op(LayerHelper(op_type, **locals()))
1019 1020 1021 1022


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1023
    if in_dynamic_mode():
1024 1025 1026 1027 1028
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1029
        return _elementwise_op(LayerHelper(op_type, **locals()))
1030 1031 1032 1033


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1034
    if in_dynamic_mode():
1035 1036 1037 1038 1039
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1040
        return _elementwise_op(LayerHelper(op_type, **locals()))
1041 1042 1043 1044


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1045
    if in_dynamic_mode():
1046 1047 1048
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1049
        return _elementwise_op(LayerHelper(op_type, **locals()))
1050 1051


1052
def maximum(x, y, name=None):
1053
    """
W
Wei Shengyu 已提交
1054
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1055

1056 1057
    .. math::
        out = max(x, y)
1058

1059
    Note:
I
Infinity_lee 已提交
1060 1061 1062
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1082 1083 1084
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1085 1086 1087 1088 1089

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1090 1091 1092
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1093 1094

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1095
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1096 1097
            res = paddle.maximum(x, y)
            print(res)
1098 1099
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1100

1101 1102
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1103 1104
            res = paddle.maximum(x, y)
            print(res)
1105 1106
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1107
    """
1108
    if in_dynamic_mode():
1109
        return _C_ops.maximum(x, y)
1110
    else:
1111
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1112

1113

1114
def minimum(x, y, name=None):
1115
    """
C
Chen Long 已提交
1116
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1117

1118 1119
    .. math::
        out = min(x, y)
1120

1121
    Note:
I
Infinity_lee 已提交
1122 1123 1124
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1125 1126 1127 1128 1129 1130 1131

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1132
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1144 1145 1146
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1147 1148 1149 1150 1151

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1152 1153 1154
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1155 1156

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1157
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1158 1159
            res = paddle.minimum(x, y)
            print(res)
1160 1161
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1162

1163 1164
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1165 1166
            res = paddle.minimum(x, y)
            print(res)
1167 1168
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1169
    """
1170
    if in_dynamic_mode():
1171
        return _C_ops.minimum(x, y)
1172
    else:
1173
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1174

1175

L
LJQ❤️ 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1185
    Note:
I
Infinity_lee 已提交
1186 1187 1188
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1189 1190

    Args:
1191 1192
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1208 1209 1210
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1211 1212 1213 1214 1215

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1216 1217 1218
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1219 1220

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1221
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1222 1223
            res = paddle.fmax(x, y)
            print(res)
1224 1225
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1226

1227 1228
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1229 1230
            res = paddle.fmax(x, y)
            print(res)
1231 1232
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1233
    """
1234
    if in_dynamic_mode():
1235
        return _C_ops.fmax(x, y)
1236
    else:
1237
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1238

1239

L
LJQ❤️ 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1249
    Note:
I
Infinity_lee 已提交
1250 1251 1252
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1253 1254

    Args:
1255 1256
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1272 1273 1274
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1275 1276 1277 1278 1279

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1280 1281 1282
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1283 1284

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1285
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1286 1287
            res = paddle.fmin(x, y)
            print(res)
1288 1289
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1290

1291 1292
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1293 1294
            res = paddle.fmin(x, y)
            print(res)
1295 1296
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1297
    """
1298
    if in_dynamic_mode():
1299
        return _C_ops.fmin(x, y)
1300
    else:
1301
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1302

Y
Yang Zhang 已提交
1303

1304
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1305 1306 1307 1308
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1309
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1310 1311
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1312
            Tensor with a single element, otherwise must be in the
1313 1314 1315 1316 1317 1318 1319
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1320
            value is False.
1321
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1322 1323

    Returns:
1324
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1325
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1326
        otherwise it's data type is the same as `x`.
1327 1328 1329 1330 1331

    Examples:
        .. code-block:: python

            import paddle
1332

1333
            # x is a Tensor with following elements:
1334 1335 1336
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1337 1338
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1339
            out1 = paddle.sum(x)          # 3.5
1340
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
1341
            out3 = paddle.sum(x, axis=-1) # [1.9, 1.6]
1342
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1343

1344
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1345 1346 1347
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1348
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1349
                                  [[5, 6], [7, 8]]])
1350 1351
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1352

1353 1354 1355 1356 1357 1358
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
1359
            out7 = paddle.sum(x)          # 4
1360 1361
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1362
    """
1363

1364 1365 1366 1367
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1368

1369
    if in_dynamic_mode():
1370
        return _C_ops.sum(x, axis, dtype, keepdim)
1371 1372 1373
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1374

1375
        if dtype_flag:
1376
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1377

1378 1379 1380 1381 1382
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1383
                'uint16',
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1395

1396 1397 1398
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1412

1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1462 1463 1464 1465 1466
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1467
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1479
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1493 1494
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
1495
            out1 = paddle.nansum(x)          # 2.7
W
wangguanqun 已提交
1496
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
1497
            out3 = paddle.nansum(x, axis=-1) # [1.7, 1.0]
W
wangguanqun 已提交
1498 1499 1500 1501 1502 1503
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1504
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1505 1506 1507 1508
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1509
    check_variable_and_dtype(
1510
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1511
    )
W
wangguanqun 已提交
1512 1513 1514 1515 1516 1517 1518
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
1555
            # 0.44999996
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1576 1577 1578
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1579 1580 1581
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1582 1583 1584
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1585 1586
        cnt.astype(x.dtype),
    )
1587 1588


1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1643 1644 1645
            if not isinstance(axis[i], int) or not (
                axis[i] < dims and axis[i] >= -dims
            ):
1646 1647 1648 1649 1650 1651 1652 1653 1654
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1655
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1656
def add_n(inputs, name=None):
1657
    """
1658
    Sum one or more Tensor of the input.
1659

S
Steffy-zxf 已提交
1660 1661 1662
    For example:

    .. code-block:: text
1663

S
Steffy-zxf 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1677

S
Steffy-zxf 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1693 1694

    Args:
1695
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1696
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1697
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1698 1699

    Returns:
S
Steffy-zxf 已提交
1700
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1701 1702 1703

    Examples:
        .. code-block:: python
1704

1705 1706
            import paddle

S
Steffy-zxf 已提交
1707 1708 1709
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1710
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1711
            #  [14., 16., 18.]]
1712
    """
1713
    if in_dynamic_mode():
1714 1715
        if isinstance(inputs, Variable):
            inputs = [inputs]
1716
        return _C_ops.add_n(inputs)
1717
    else:
1718 1719
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1720
        if isinstance(inputs, (list, tuple)):
1721 1722 1723 1724 1725
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1726 1727 1728 1729 1730 1731 1732 1733
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1734 1735 1736 1737 1738 1739
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1740
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1741 1742
                'add_n',
            )
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1753

1754
        return out
1755 1756


1757 1758 1759
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1760

1761 1762 1763
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1764

1765 1766
    Returns:
        Tensor: The output Tensor of trunc.
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
1785
    if in_dynamic_mode():
1786
        return _C_ops.trunc(input)
1787
    else:
1788 1789
        inputs = {"X": input}
        attrs = {}
1790

1791 1792 1793 1794 1795
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1796

1797 1798 1799 1800
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1801 1802


W
WuHaobo 已提交
1803
def mm(input, mat2, name=None):
1804
    """
S
swtkiwi 已提交
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1817
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1818
        mat2 (Tensor): The input tensor which is a Tensor.
1819
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1820 1821

    Returns:
N
Noel 已提交
1822
        Tensor: The product Tensor.
1823

W
wawltor 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1856 1857 1858 1859
    Examples:
        .. code-block:: python

            import paddle
1860 1861 1862 1863 1864 1865 1866 1867
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1868

1869
    """
1870
    if in_dynamic_mode():
1871
        return _C_ops.matmul(input, mat2, False, False)
1872
    else:
1873

1874 1875 1876 1877 1878
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1879
                )
1880 1881 1882 1883 1884 1885
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1886

1887 1888 1889
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1890
                    raise ValueError(
1891 1892
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
1893 1894 1895
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
1896
                    )
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1921

1922

Y
yaoxuefeng 已提交
1923
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1924 1925 1926
    """
    **addmm**

1927
    Perform matrix multiplication for input $x$ and $y$.
1928 1929 1930 1931 1932 1933 1934 1935 1936
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1937 1938 1939
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1940 1941
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1942
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1943 1944

    Returns:
1945
        Tensor: The output Tensor of addmm.
1946 1947 1948

    Examples:
        ..  code-block:: python
1949

1950 1951
            import paddle

Y
yaoxuefeng 已提交
1952 1953 1954
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1955

Y
yaoxuefeng 已提交
1956
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1957

N
Noel 已提交
1958
            print(out)
1959 1960 1961
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1962 1963 1964
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1965
    if not len(x_shape) == len(y_shape) == 2:
1966
        raise ValueError(
1967 1968 1969 1970
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1971
    if x_shape[1] != y_shape[0]:
1972
        raise ValueError(
1973 1974 1975 1976
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1977 1978 1979
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1980
                raise ValueError(
1981 1982 1983 1984
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1985
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1986
                raise ValueError(
1987 1988 1989 1990
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1991 1992
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1993
                raise ValueError(
1994 1995 1996 1997
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1998 1999
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2000
            raise ValueError(
2001 2002 2003 2004
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2005
    else:
2006
        raise ValueError(
2007 2008 2009 2010
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2011

2012
    if in_dynamic_mode():
2013
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2014
    else:
2015 2016
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2017

2018 2019
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2020 2021 2022 2023 2024 2025 2026
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2027 2028
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2029

2030 2031 2032 2033
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2034

2035

S
seemingwang 已提交
2036 2037 2038 2039 2040 2041 2042
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2043
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
2058

S
seemingwang 已提交
2059 2060 2061 2062
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
2063
            print(y)
S
seemingwang 已提交
2064 2065 2066 2067
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
2068

S
seemingwang 已提交
2069 2070 2071
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2072 2073
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2074 2075 2076
                axis, len(input_shape), input_shape
            )
        )
2077
    if not axis >= 0:
S
seemingwang 已提交
2078
        if not axis >= -1 * len(input_shape):
2079
            raise ValueError(
2080 2081 2082 2083
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2084
        axis = axis + len(input_shape)
2085
    if in_dynamic_mode():
2086
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2087
        return out
2088
    else:
2089
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2090 2091
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2092

2093 2094
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2095

2096 2097 2098 2099
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2100

2101

Z
zhiboniu 已提交
2102 2103 2104 2105
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2106

Z
zhiboniu 已提交
2107 2108 2109 2110 2111
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2112
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2135
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2136

Z
zhiboniu 已提交
2137 2138 2139
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2140
        if in_dynamic_mode():
2141
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2142
        else:
Z
zhiboniu 已提交
2143

2144 2145 2146 2147 2148
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2149
                    )
2150 2151 2152 2153 2154 2155 2156 2157 2158
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2159 2160 2161
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2184 2185
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2186
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2208
    if in_dynamic_mode():
2209
        return _C_ops.matmul(nx, ny, False, False)
2210
    else:
Z
zhiboniu 已提交
2211

2212 2213 2214 2215 2216 2217
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2218

2219
        __check_input(nx, ny)
Z
zhiboniu 已提交
2220

2221 2222 2223 2224 2225 2226
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2227 2228


2229
def logsumexp(x, axis=None, keepdim=False, name=None):
2230
    r"""
2231
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2232

2233
    .. math::
2234
       logsumexp(x) = \log\sum exp(x)
2235

2236
    Args:
2237
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2238
            have no more than 4 dimensions.
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2255

2256
    Returns:
2257 2258
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2259

2260
    Examples:
2261

2262
    .. code-block:: python
2263

2264 2265
        import paddle

2266
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2267
        out1 = paddle.logsumexp(x)    # 3.4691226
2268
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2269 2270

    """
2271
    reduce_all, axis = _get_reduce_axis(axis, x)
2272

2273
    if in_dynamic_mode():
2274
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2275
    else:
2276
        check_variable_and_dtype(
2277
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2278
        )
2279 2280 2281 2282 2283 2284

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2285
        )
2286
        return out
2287

S
swtkiwi 已提交
2288

2289 2290
def inverse(x, name=None):
    """
2291 2292 2293 2294 2295
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2296
        x (Tensor): The input tensor. The last two
2297 2298 2299
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2300
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2301 2302

    Returns:
2303
        Tensor: A Tensor holds the inverse of x. The shape and data type
2304
                        is the same as x.
2305 2306 2307 2308 2309

    Examples:
        .. code-block:: python

            import paddle
2310 2311

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2312 2313
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2314 2315

    """
2316
    if in_dynamic_mode():
W
wanghuancoder 已提交
2317
        return _C_ops.inverse(x)
2318
    else:
2319

2320 2321 2322 2323 2324 2325 2326 2327
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2328

2329 2330 2331 2332 2333 2334 2335
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2336

2337

2338
def max(x, axis=None, keepdim=False, name=None):
2339
    """
S
swtkiwi 已提交
2340

2341
    Computes the maximum of tensor elements over the given axis.
2342

T
Tao Luo 已提交
2343 2344
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2345
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2346 2347 2348
        while max propagates gradient to all of them.


2349
    Args:
2350 2351
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2352
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2353
            `x` and return a Tensor with a single element,
2354 2355
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2356
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2357
            output Tensor. The result tensor will have one fewer dimension
2358
            than the `x` unless :attr:`keepdim` is true, default
2359
            value is False.
2360
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2361 2362

    Returns:
2363
        Tensor, results of maximum on the specified axis of input tensor,
2364
        it's data type is the same as `x`.
2365 2366 2367

    Examples:
        .. code-block:: python
2368

2369
            import paddle
2370

N
Noel 已提交
2371
            # data_x is a Tensor with shape [2, 4]
2372
            # the axis is a int element
2373
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2374
                                  [0.1, 0.2, 0.6, 0.7]],
2375
                                 dtype='float64', stop_gradient=False)
2376
            result1 = paddle.max(x)
2377
            result1.backward()
2378
            print(result1, x.grad)
2379
            # 0.9, [[0., 0., 0., 1.], [0., 0., 0., 0.]]
2380 2381

            x.clear_grad()
2382
            result2 = paddle.max(x, axis=0)
2383
            result2.backward()
2384
            print(result2, x.grad)
2385 2386 2387
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2388
            result3 = paddle.max(x, axis=-1)
2389
            result3.backward()
2390
            print(result3, x.grad)
2391 2392 2393
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2394
            result4 = paddle.max(x, axis=1, keepdim=True)
2395
            result4.backward()
2396
            print(result4, x.grad)
2397
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2398

N
Noel 已提交
2399
            # data_y is a Tensor with shape [2, 2, 2]
2400
            # the axis is list
2401
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2402 2403
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2404
            result5 = paddle.max(y, axis=[1, 2])
2405
            result5.backward()
2406
            print(result5, y.grad)
2407 2408 2409
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2410
            result6 = paddle.max(y, axis=[0, 1])
2411
            result6.backward()
2412
            print(result6, y.grad)
2413
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2414 2415
    """

2416
    if in_dynamic_mode():
2417
        return _C_ops.max(x, axis, keepdim)
2418 2419 2420 2421
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2422 2423 2424 2425
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2426
        )
2427 2428
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2429

2430 2431 2432 2433 2434 2435 2436 2437
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2438

2439

2440
def min(x, axis=None, keepdim=False, name=None):
2441
    """
S
swtkiwi 已提交
2442

2443
    Computes the minimum of tensor elements over the given axis
2444

T
Tao Luo 已提交
2445 2446
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2447
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2448 2449
        while min propagates gradient to all of them.

2450
    Args:
2451 2452
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2453
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2454
            `x` and return a Tensor with a single element,
2455 2456
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2457
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2458
            output Tensor. The result tensor will have one fewer dimension
2459
            than the `x` unless :attr:`keepdim` is true, default
2460
            value is False.
2461
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2462

2463
    Returns:
2464
        Tensor, results of minimum on the specified axis of input tensor,
2465
        it's data type is the same as input's Tensor.
2466

2467 2468 2469
    Examples:
        .. code-block:: python

2470
            import paddle
2471

2472
            # data_x is a Tensor with shape [2, 4]
2473
            # the axis is a int element
2474
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2475
                                  [0.1, 0.2, 0.6, 0.7]],
2476
                                 dtype='float64', stop_gradient=False)
2477
            result1 = paddle.min(x)
2478
            result1.backward()
2479
            print(result1, x.grad)
2480
            # 0.1, [[0., 0., 0., 0.], [1., 0., 0., 0.]]
2481 2482

            x.clear_grad()
2483
            result2 = paddle.min(x, axis=0)
2484
            result2.backward()
2485
            print(result2, x.grad)
2486 2487 2488
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2489
            result3 = paddle.min(x, axis=-1)
2490
            result3.backward()
2491
            print(result3, x.grad)
2492 2493 2494
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2495
            result4 = paddle.min(x, axis=1, keepdim=True)
2496
            result4.backward()
2497
            print(result4, x.grad)
2498
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2499

2500
            # data_y is a Tensor with shape [2, 2, 2]
2501
            # the axis is list
2502
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2503 2504
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2505
            result5 = paddle.min(y, axis=[1, 2])
2506
            result5.backward()
2507
            print(result5, y.grad)
2508 2509 2510
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2511
            result6 = paddle.min(y, axis=[0, 1])
2512
            result6.backward()
2513
            print(result6, y.grad)
2514
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2515
    """
2516

2517
    if in_dynamic_mode():
2518
        return _C_ops.min(x, axis, keepdim)
2519 2520 2521 2522
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2523 2524 2525 2526
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2527
        )
2528

2529 2530 2531 2532 2533 2534 2535 2536
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2537

2538

T
Tao Luo 已提交
2539 2540 2541 2542 2543 2544
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2545
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2546 2547 2548
        while max propagates gradient to all of them.

    Args:
2549
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2550
            the dimension is no more than 4.
2551
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2552 2553 2554 2555
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2556
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2557 2558 2559
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2560
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2574
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2575
                                 dtype='float64', stop_gradient=False)
2576 2577
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2578
            #    thus the corresponding gradients are 1/5=0.2;
2579
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2580
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2581 2582
            result1 = paddle.amax(x)
            result1.backward()
2583
            print(result1, x.grad)
2584
            # 0.9, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
T
Tao Luo 已提交
2585

T
Tao Luo 已提交
2586 2587 2588
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2589
            print(result1_max, x.grad)
2590
            # 0.9, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]
T
Tao Luo 已提交
2591 2592 2593

            ###############################

T
Tao Luo 已提交
2594 2595 2596
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2597
            print(result2, x.grad)
T
Tao Luo 已提交
2598 2599 2600 2601 2602
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2603
            print(result3, x.grad)
T
Tao Luo 已提交
2604 2605 2606 2607 2608
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2609
            print(result4, x.grad)
T
Tao Luo 已提交
2610 2611 2612
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2613
            # the axis is list
T
Tao Luo 已提交
2614 2615 2616 2617 2618
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2619
            print(result5, y.grad)
T
Tao Luo 已提交
2620 2621 2622 2623 2624
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2625
            print(result6, y.grad)
T
Tao Luo 已提交
2626 2627
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2628
    if in_dynamic_mode():
2629
        return _C_ops.amax(x, axis, keepdim)
2630

2631 2632 2633 2634 2635
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2636
        )
T
Tao Luo 已提交
2637

2638 2639 2640 2641 2642 2643 2644 2645
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2646

2647

T
Tao Luo 已提交
2648 2649 2650 2651 2652 2653 2654
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2655
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2656 2657 2658
        while min propagates gradient to all of them.

    Args:
2659
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2660
            the dimension is no more than 4.
2661
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2662 2663 2664 2665
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2666
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2667 2668 2669
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2670
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2684
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2685
                                 dtype='float64', stop_gradient=False)
2686 2687
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2688
            #    thus the corresponding gradients are 1/5=0.2;
2689
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2690
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2691 2692
            result1 = paddle.amin(x)
            result1.backward()
2693
            print(result1, x.grad)
2694
            # 0.1, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]
T
Tao Luo 已提交
2695

T
Tao Luo 已提交
2696 2697 2698
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2699
            print(result1_min, x.grad)
2700
            # 0.1, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]
T
Tao Luo 已提交
2701 2702 2703

            ###############################

T
Tao Luo 已提交
2704 2705 2706
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2707
            print(result2, x.grad)
T
Tao Luo 已提交
2708 2709 2710 2711 2712
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2713
            print(result3, x.grad)
T
Tao Luo 已提交
2714 2715 2716 2717 2718
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2719
            print(result4, x.grad)
T
Tao Luo 已提交
2720 2721 2722
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2723
            # the axis is list
T
Tao Luo 已提交
2724 2725 2726 2727 2728
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2729
            print(result5, y.grad)
T
Tao Luo 已提交
2730 2731 2732 2733 2734
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2735
            print(result6, y.grad)
T
Tao Luo 已提交
2736 2737
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2738
    if in_dynamic_mode():
2739
        return _C_ops.amin(x, axis, keepdim)
2740

2741 2742 2743 2744 2745
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2746
        )
T
Tao Luo 已提交
2747

2748 2749 2750 2751 2752 2753 2754 2755
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2756

2757

W
WuHaobo 已提交
2758
def log1p(x, name=None):
2759
    r"""
2760
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2761

2762
    .. math::
2763
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2764

2765
    Args:
2766
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
2767
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2768

2769
    Returns:
S
Steffy-zxf 已提交
2770
        Tensor, the natural log of the input Tensor computed element-wise.
2771

2772 2773
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2774

2775
            import paddle
S
Steffy-zxf 已提交
2776 2777 2778 2779

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2780 2781
    """

2782
    if in_dynamic_mode():
W
wanghuancoder 已提交
2783
        return _C_ops.log1p(x)
2784
    else:
2785
        check_variable_and_dtype(
2786
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log1p"
2787
        )
2788 2789 2790 2791 2792 2793
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2794

2795

J
joejiong 已提交
2796
def log2(x, name=None):
2797
    r"""
J
joejiong 已提交
2798 2799 2800 2801
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2802
        Out = \log_2x
J
joejiong 已提交
2803 2804 2805

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2806
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2807 2808 2809 2810 2811 2812 2813 2814


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2815

J
joejiong 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2834
    if in_dynamic_mode():
W
wanghuancoder 已提交
2835
        return _C_ops.log2(x)
2836 2837
    else:
        check_variable_and_dtype(
2838
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log2"
2839 2840 2841 2842 2843 2844 2845
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2846

J
joejiong 已提交
2847 2848

def log10(x, name=None):
2849
    r"""
J
joejiong 已提交
2850 2851 2852 2853
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2854
        Out = \log_10_x
J
joejiong 已提交
2855 2856 2857

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2858
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2859 2860 2861 2862 2863 2864 2865 2866


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2867

J
joejiong 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2886
    if in_dynamic_mode():
W
wanghuancoder 已提交
2887
        return _C_ops.log10(x)
2888 2889
    else:
        check_variable_and_dtype(
2890
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], "log10"
2891 2892 2893 2894 2895 2896 2897
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2898 2899


Y
Yang Zhang 已提交
2900
def clip(x, min=None, max=None, name=None):
2901
    """
Y
Yang Zhang 已提交
2902
    This operator clip all elements in input into the range [ min, max ] and return
2903 2904 2905 2906
    a resulting tensor as the following equation:

    .. math::

2907
        Out = MIN(MAX(x, min), max)
2908 2909

    Args:
2910
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
2911 2912 2913 2914
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
2915
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2916 2917

    Returns:
Y
Yang Zhang 已提交
2918
        Tensor: A Tensor with the same data type and data shape as input.
2919 2920 2921 2922 2923

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2924

2925
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2926 2927
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2928
            print(out1)
Y
Yang Zhang 已提交
2929 2930
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2931
            print(out2)
Y
Yang Zhang 已提交
2932 2933
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2934 2935
    """

2936 2937 2938 2939 2940 2941 2942
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
2943 2944 2945
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
2946 2947 2948
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2949

2950
    if in_dynamic_mode():
C
chentianyu03 已提交
2951
        if isinstance(min, Variable):
2952
            min = min.item(0)
C
chentianyu03 已提交
2953
        if isinstance(max, Variable):
2954
            max = max.item(0)
C
chentianyu03 已提交
2955 2956
        min = min_ if min is None else min
        max = max_ if max is None else max
2957
        return _C_ops.clip(x, min, max)
2958 2959 2960 2961 2962 2963 2964
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
2965
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2966 2967 2968 2969 2970 2971 2972 2973 2974
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
2975
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2976 2977 2978
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
2979

2980
        check_variable_and_dtype(
2981 2982 2983 2984
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
2985
        )
Y
Yang Zhang 已提交
2986

2987 2988
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
2989

2990 2991 2992 2993 2994
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
2995

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3009

3010
        return output
F
Feiyu Chan 已提交
3011

W
WuHaobo 已提交
3012

3013 3014 3015 3016 3017 3018 3019 3020 3021
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3022
        min = min.item(0)
3023
    if isinstance(max, Variable):
3024
        max = max.item(0)
3025 3026
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3027

3028
    if in_dynamic_mode():
3029
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3030

3031

3032
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3033
    """
S
swtkiwi 已提交
3034

3035
    Computes the sum along diagonals of the input tensor x.
3036 3037

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3038

3039
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3040
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3041
    of the input tensor x.
L
Li Fuchen 已提交
3042

3043
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3044 3045 3046 3047

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3048
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3049

L
Li Fuchen 已提交
3050
    Args:
3051 3052 3053 3054 3055
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3056 3057

    Returns:
3058
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3059 3060 3061 3062 3063

    Examples:
        .. code-block:: python

            import paddle
3064

3065 3066 3067
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
3068
            data1 = paddle.trace(case1) # data1.shape = []
3069 3070
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
3071
    """
3072

Z
zyfncg 已提交
3073
    def __check_input(x, offset, axis1, axis2):
3074 3075 3076 3077 3078 3079
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3080

3081
        input_shape = list(x.shape)
3082 3083 3084 3085
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3086

3087 3088
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3089

3090 3091
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3092
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3093
        )
L
Li Fuchen 已提交
3094

3095 3096
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3097
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3098
        )
L
Li Fuchen 已提交
3099

3100 3101 3102 3103
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3104

3105
    if in_dynamic_mode():
3106
        return _C_ops.trace(x, offset, axis1, axis2)
3107 3108
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3109

3110 3111
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3112

3113 3114 3115 3116 3117 3118 3119
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3120

3121

3122 3123
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3124
    Computes the diagonals of the input tensor x.
3125 3126

    If ``x`` is 2D, returns the diagonal.
3127
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3128 3129 3130 3131 3132 3133 3134
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3135

3136
    Args:
3137 3138 3139 3140 3141
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3185

3186
    """
3187
    if in_dynamic_mode():
3188
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3189
    else:
W
wanghuancoder 已提交
3190

3191 3192 3193 3194
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3195 3196 3197 3198 3199 3200 3201 3202 3203
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3204 3205
                'diagonal',
            )
3206

3207 3208 3209 3210 3211
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3212

3213 3214
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3215

3216 3217 3218 3219
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3220

3221 3222 3223 3224
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3225

3226 3227 3228 3229
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3230

3231 3232 3233
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3234

3235 3236 3237 3238 3239 3240 3241
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3242 3243


W
WuHaobo 已提交
3244
def kron(x, y, name=None):
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3264 3265

    Args:
3266 3267
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3268
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3269 3270

    Returns:
3271
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3272 3273 3274

    Examples:
        .. code-block:: python
3275

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3287
    """
3288
    if in_dynamic_mode():
3289 3290 3291 3292 3293 3294 3295 3296 3297
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3298

3299 3300 3301 3302 3303
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3304 3305 3306 3307


def cumsum(x, axis=None, dtype=None, name=None):
    """
3308 3309
    The cumulative sum of the elements along a given axis.

3310
    Note:
3311
        The first element of the result is the same as the first element of the input.
3312 3313

    Args:
3314
        x (Tensor): The input tensor needed to be cumsumed.
3315
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3316
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3317 3318 3319
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3320
        Tensor, the result of cumsum operator.
3321 3322 3323

    Examples:
        .. code-block:: python
3324

3325
            import paddle
3326

3327 3328
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3329 3330 3331 3332 3333 3334 3335 3336

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3337

3338 3339 3340 3341 3342 3343 3344
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3345
            # paddle.float64
3346 3347 3348 3349 3350 3351
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3352
        x = cast(x, dtype)
3353

3354
    if in_dynamic_mode():
3355 3356
        if axis is None:
            axis = -1
3357
        return _C_ops.cumsum(x, axis, flatten, False, False)
3358
    else:
3359 3360 3361
        check_variable_and_dtype(
            x,
            'x',
3362
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3363 3364
            'cumsum',
        )
3365 3366
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3367
        kwargs = {}
3368 3369 3370 3371 3372
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3373

3374 3375 3376

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3377
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3378 3379 3380 3381 3382 3383

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3384

3385 3386 3387 3388 3389 3390
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3391
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3392 3393 3394
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3395
        Tensor, the result of logcumsumexp operator.
3396 3397 3398

    Examples:
        .. code-block:: python
3399

3400
            import paddle
3401

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3413

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

3430
    if in_dynamic_mode():
3431 3432
        if axis is None:
            axis = -1
3433
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3434 3435
    else:
        check_variable_and_dtype(
3436
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
3437
        )
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3448 3449


H
hlygit66666 已提交
3450 3451 3452 3453
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3454 3455
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3456 3457 3458

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3459 3460 3461 3462 3463 3464 3465
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3502
        x = cast(x, dtype)
H
hlygit66666 已提交
3503

3504
    if in_dynamic_mode():
3505
        return _C_ops.cumprod(x, dim)
3506 3507 3508 3509
    else:
        check_variable_and_dtype(
            x,
            "x",
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3520 3521 3522
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3523

3524 3525 3526 3527 3528 3529 3530 3531 3532
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3533

3534

J
Jack Zhou 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3551

3552
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3553
            out = paddle.isfinite(x)
N
Noel 已提交
3554
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3555
    """
3556
    if in_dynamic_mode():
3557
        return _C_ops.isfinite(x)
3558 3559 3560 3561 3562
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
3563 3564 3565 3566 3567 3568 3569 3570
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3571 3572 3573 3574 3575 3576 3577
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3578

3579

J
Jack Zhou 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3596

3597
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3598
            out = paddle.isinf(x)
N
Noel 已提交
3599
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3600
    """
3601
    if in_dynamic_mode():
3602
        return _C_ops.isinf(x)
3603 3604 3605
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
3617 3618 3619 3620
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3621

3622

J
Jack Zhou 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3639

3640
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3641
            out = paddle.isnan(x)
N
Noel 已提交
3642
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3643
    """
3644
    if in_dynamic_mode():
3645
        return _C_ops.isnan(x)
3646 3647 3648
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
3660 3661 3662 3663
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3664 3665


G
guofei 已提交
3666 3667 3668 3669 3670
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3671
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3672 3673 3674
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3675
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3676
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3677
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3678 3679 3680
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3681
            of output is the same as input Tensor `x`.
3682
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3683 3684 3685

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3686

G
guofei 已提交
3687 3688 3689 3690 3691 3692
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3693 3694
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3695
            out1 = paddle.prod(x)
3696
            # 0.0002268
G
guofei 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3711 3712
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3713 3714 3715 3716 3717 3718 3719 3720
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3721
        check_dtype(
3722 3723 3724 3725
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
3726
        )
G
guofei 已提交
3727
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3728
            x = cast(x, dtype)
G
guofei 已提交
3729

3730
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3731
    if in_dynamic_mode():
3732
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3733 3734 3735 3736 3737
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
3738
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
3739
            'reduce_prod',
3740
        )
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3751 3752 3753 3754


def sign(x, name=None):
    """
3755
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3756 3757

    Args:
3758 3759
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3769
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3770 3771 3772
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
3773
    if in_dynamic_mode():
3774
        return _C_ops.sign(x)
3775 3776
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
3777
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
3778 3779 3780
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3781

3782
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
3783

3784
        return out
W
WangXi 已提交
3785 3786 3787


def tanh(x, name=None):
3788
    r"""
W
WangXi 已提交
3789 3790 3791
    Tanh Activation Operator.

    .. math::
3792
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3793 3794

    Args:
3795
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3807
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3808
            out = paddle.tanh(x)
N
Noel 已提交
3809
            print(out)
W
WangXi 已提交
3810 3811
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
3812
    if in_dynamic_mode():
3813
        return _C_ops.tanh(x)
3814 3815
    else:
        check_variable_and_dtype(
3816
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
3817 3818 3819 3820 3821 3822
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
3823

3824

3825
@inplace_apis_in_dygraph_only
3826 3827 3828 3829 3830
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3831
    return _C_ops.tanh_(x)
3832 3833


S
Steffy-zxf 已提交
3834 3835
def increment(x, value=1.0, name=None):
    """
3836
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3837 3838 3839 3840
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3841
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
3857
    if in_dynamic_mode():
3858
        return _C_ops.increment_(x, value)
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
3871 3872 3873 3874


def all(x, axis=None, keepdim=False, name=None):
    """
3875
    Computes the ``logical and`` of tensor elements over the given dimension.
3876 3877 3878 3879 3880

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3881
            Tensor with a single element, otherwise must be in the
3882 3883 3884 3885 3886 3887
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3888
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3889 3890 3891 3892 3893 3894 3895 3896

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3897

N
Noel 已提交
3898
            # x is a bool Tensor with following elements:
3899 3900
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3901
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3902
            print(x)
S
syyxsxx 已提交
3903
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3904

3905 3906
            # out1 should be False
            out1 = paddle.all(x)          # False
3907
            print(out1)
C
Chen Long 已提交
3908

3909 3910 3911
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3912 3913

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3914
            out3 = paddle.all(x, axis=-1) # [False, True]
3915
            print(out3)
C
Chen Long 已提交
3916 3917 3918

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3919
            print(out4)
3920

3921
    """
3922
    if in_dynamic_mode():
3923
        return _C_ops.all(x, axis, keepdim)
3924 3925 3926 3927 3928 3929 3930 3931
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
        check_variable_and_dtype(x, 'x', ['bool'], 'all')
3932

3933
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
3934

3935 3936 3937 3938 3939 3940 3941 3942 3943
        helper = LayerHelper('all', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
3944 3945 3946 3947


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3948
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3949 3950 3951 3952 3953

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3954
            Tensor with a single element, otherwise must be in the
3955 3956 3957 3958 3959 3960
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3961
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3962 3963 3964 3965 3966 3967 3968 3969

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3970 3971 3972

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3973
            print(x)
S
syyxsxx 已提交
3974
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3975 3976 3977 3978
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3979 3980
            # out1 should be True
            out1 = paddle.any(x)           # True
3981
            print(out1)
C
Chen Long 已提交
3982

3983
            # out2 should be [True, True]
3984
            out2 = paddle.any(x, axis=0)   # [True, True]
3985
            print(out2)
C
Chen Long 已提交
3986 3987

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3988
            out3 = paddle.any(x, axis=-1)  # [True, True]
3989
            print(out3)
C
Chen Long 已提交
3990 3991 3992

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3993 3994
            print(out4)

3995
    """
3996
    if in_dynamic_mode():
3997
        return _C_ops.any(x, axis, keepdim)
3998 3999 4000 4001 4002 4003 4004
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4005

4006
        check_variable_and_dtype(x, 'x', ['bool'], 'any')
4007

4008
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018
        helper = LayerHelper('any', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4019

4020

L
Leo Chen 已提交
4021 4022
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4023 4024 4025 4026 4027 4028
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4029 4030 4031 4032

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4033

L
Leo Chen 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
4045

L
Leo Chen 已提交
4046 4047 4048 4049 4050 4051
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
4052

4053

4054 4055 4056 4057 4058
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4059
        x (Tensor): The input Tensor which hold the complex numbers.
4060
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4061
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4062 4063

    Returns:
C
Chen Long 已提交
4064
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4065 4066 4067 4068 4069

    Examples:
        .. code-block:: python

          import paddle
4070

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
4082
    if in_dynamic_mode():
4083
        return _C_ops.conj(x)
4084 4085 4086 4087
    else:
        check_variable_and_dtype(
            x,
            "x",
4088 4089 4090 4091
            [
                'complex64',
                'complex128',
                'float16',
4092
                'uint16',
4093 4094 4095 4096 4097
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4098 4099
            'conj',
        )
H
hong 已提交
4100

4101 4102 4103 4104
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4105

4106 4107
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4108

4109

Z
zyfncg 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4119
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

4136
    if in_dynamic_mode():
4137
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4138
    else:
4139 4140 4141
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4142 4143 4144 4145
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4146

4147

4148 4149 4150 4151 4152 4153 4154 4155 4156
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4157
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
4173
    if in_dynamic_mode():
4174
        return _C_ops.lgamma(x)
4175
    else:
4176 4177 4178
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4179 4180 4181 4182
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4183 4184


4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4207 4208 4209
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4210

R
ronnywang 已提交
4211

4212
def atan2(x, y, name=None):
R
ronnywang 已提交
4213
    r"""
4214
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4215 4216 4217 4218

    Equation:
        .. math::

4219 4220 4221 4222 4223 4224 4225 4226
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4227 4228

    Args:
4229 4230
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4231 4232 4233 4234 4235 4236 4237 4238
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4239
            import paddle
R
ronnywang 已提交
4240

4241 4242 4243
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4244

4245 4246 4247
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4248

4249 4250 4251
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4252 4253 4254

    """

4255
    if in_dynamic_mode():
4256
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4257
    else:
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4270

4271 4272 4273 4274 4275
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4276

4277

W
wangzhen38 已提交
4278 4279 4280 4281 4282
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4283

W
wangzhen38 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4315
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4316 4317

    """
4318
    if eps is None:
W
wangzhen38 已提交
4319
        eps = 0.0
4320
    if in_dynamic_mode():
4321
        return _C_ops.logit(x, eps)
4322 4323
    else:
        check_variable_and_dtype(
4324
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4335

4336

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4347 4348 4349
        x (Tensor): An N-D Tensor with starting points, the data type is float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float16, float32, float64.
4350 4351 4352 4353 4354 4355 4356 4357 4358
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4359

4360 4361 4362
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4363
            out = paddle.lerp(x, y, 0.5)
4364
            # out: [5.5, 6., 6.5, 7.]
4365 4366

    """
4367 4368
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4369

4370
    if in_dynamic_mode():
4371
        return _C_ops.lerp(x, y, weight)
4372 4373
    else:
        check_variable_and_dtype(
4374 4375 4376 4377 4378 4379 4380
            x, 'x', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            weight, 'weight', ['float16', 'float32', 'float64'], 'lerp'
4381
        )
4382

4383 4384 4385 4386 4387
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4388

4389

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4403
        raise ValueError(
4404 4405 4406 4407
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4408
    return _C_ops.lerp_(x, y, weight)
4409

4410

W
wuhuanzhou 已提交
4411 4412
def erfinv(x, name=None):
    r"""
4413
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4424
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4425 4426 4427 4428 4429

    Example:
        .. code-block:: python

            import paddle
4430

W
wuhuanzhou 已提交
4431 4432 4433 4434 4435
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
4436
    if in_dynamic_mode():
4437
        return _C_ops.erfinv(x)
4438 4439 4440 4441 4442 4443
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4444

4445

W
wuhuanzhou 已提交
4446 4447 4448 4449 4450 4451 4452
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4453
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4454

4455

4456
def rad2deg(x, name=None):
4457
    r"""
4458
    Convert each of the elements of input x from angles in radians to degrees.
4459

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4476
            import math
4477

4478 4479 4480 4481 4482 4483 4484
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4485
            x2 = paddle.to_tensor(math.pi/2)
4486 4487
            result2 = paddle.rad2deg(x2)
            print(result2)
4488 4489
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         90.)
4490

4491 4492 4493
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
4494 4495
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        57.29578018)
4496 4497
    """
    rad2deg_scale = 180 / np.pi
4498
    if in_dynamic_mode():
4499 4500
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4501
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4502
    else:
4503 4504 4505
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4506 4507 4508
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4509
            out_cast = helper.create_variable_for_type_inference(
4510 4511 4512 4513 4514 4515 4516 4517
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4518
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4519 4520 4521 4522 4523 4524
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4525 4526
        return out

4527

4528
def deg2rad(x, name=None):
4529
    r"""
4530
    Convert each of the elements of input x from degrees to angles in radians.
4531

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4547

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
4558 4559
            # Tensor(shape=[], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        3.14159274)
4560 4561
    """
    deg2rad_scale = np.pi / 180.0
4562
    if in_dynamic_mode():
4563 4564
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4565
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4566
    else:
4567 4568 4569
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4570 4571 4572
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4573
            out_cast = helper.create_variable_for_type_inference(
4574 4575 4576 4577 4578 4579 4580 4581
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4582
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4583 4584 4585 4586 4587 4588
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4589
        return out
A
andyjpaddle 已提交
4590

4591

T
Tao Luo 已提交
4592 4593 4594 4595
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4596

T
Tao Luo 已提交
4597 4598 4599
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4600 4601
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4602
    Args:
C
cyberslack_lee 已提交
4603 4604
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4614

T
Tao Luo 已提交
4615 4616 4617
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
4618 4619
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4620

T
Tao Luo 已提交
4621
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4622 4623 4624 4625 4626 4627
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
4628 4629
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        20)
T
Tao Luo 已提交
4630 4631

            paddle.gcd(x4, x4)
4632 4633
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4634

T
Tao Luo 已提交
4635 4636
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
4637 4638
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        4)
T
Tao Luo 已提交
4639 4640 4641 4642 4643 4644 4645 4646
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4647
        return paddle.any(y != 0)
T
Tao Luo 已提交
4648 4649 4650 4651 4652

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4653
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4654
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4655 4656 4657 4658 4659 4660 4661 4662
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4663 4664
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4665
    if in_dynamic_mode():
T
Tao Luo 已提交
4666 4667 4668 4669 4670
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4671 4672
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4673 4674 4675
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4676

T
Tao Luo 已提交
4677 4678 4679 4680
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4681

T
Tao Luo 已提交
4682 4683 4684
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4685 4686
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4687
    Args:
C
cyberslack_lee 已提交
4688 4689
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
4690 4691 4692 4693 4694 4695 4696 4697 4698
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4699

T
Tao Luo 已提交
4700 4701 4702
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
4703 4704
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4705

T
Tao Luo 已提交
4706
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4707 4708 4709 4710 4711 4712
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
4713 4714
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
T
Tao Luo 已提交
4715 4716

            paddle.lcm(x4, x4)
4717 4718
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        0)
4719

T
Tao Luo 已提交
4720 4721
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
4722 4723
            # Tensor(shape=[], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        60)
T
Tao Luo 已提交
4724 4725 4726 4727 4728 4729 4730
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4731 4732 4733
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4734 4735
    return out

4736

A
andyjpaddle 已提交
4737 4738 4739
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4740
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4741 4742 4743 4744

    .. math::

        out[i] = x[i+1] - x[i]
4745 4746

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4747 4748 4749
    Only n=1 is currently supported.

    Args:
4750
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
4751
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4752
                          Only support n=1. Default:1
4753 4754
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4755
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4756
                                   and its shapes must match x's shape except on axis.
4757 4758
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4759
                                   and its shapes must match x's shape except on axis.
4760
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4761

A
andyjpaddle 已提交
4762 4763 4764 4765 4766 4767 4768
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4769

A
andyjpaddle 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4779
            # out:
A
andyjpaddle 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
4801
    infer_flags = [1 for i in range(len(axes))]
4802
    if in_dynamic_mode():
A
andyjpaddle 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4815
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4828 4829 4830
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
4831 4832 4833 4834
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4835 4836 4837
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
4838 4839

        if x.dtype == paddle.bool:
4840
            return _C_ops.logical_xor(input_back, input_front)
4841
        else:
4842
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
4843
    else:
4844
        check_variable_and_dtype(
4845 4846 4847 4848
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
4849
        )
A
andyjpaddle 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4866 4867 4868 4869 4870 4871
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4882 4883 4884 4885 4886 4887
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
4888 4889 4890 4891 4892 4893
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4894 4895 4896 4897 4898 4899
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
4900 4901 4902

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4903 4904 4905 4906 4907
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
4908
        else:
Z
zyfncg 已提交
4909
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
4910
        return out
F
Feiyu Chan 已提交
4911

4912

F
Feiyu Chan 已提交
4913 4914
def angle(x, name=None):
    r"""
4915
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4928
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
4938 4939 4940 4941 4942 4943
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
4944 4945

            theta = paddle.angle(z)
4946 4947 4948 4949 4950 4951
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
4952 4953
    """

4954
    if in_dynamic_mode():
F
Feiyu Chan 已提交
4955
        return _C_ops.angle(x)
4956 4957
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4979

4980

4981
def heaviside(x, y, name=None):
4982
    r"""
4983 4984 4985 4986 4987
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4988 4989 4990 4991
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4992
                \end{array}
4993
            \right.
4994

4995
    Note:
I
Infinity_lee 已提交
4996 4997 4998
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
4999 5000

    Args:
5001 5002
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
5021
    """
5022
    if in_dynamic_mode():
5023
        return _C_ops.heaviside(x, y)
5024
    else:
W
Weilong Wu 已提交
5025
        op_type = 'elementwise_heaviside'
5026
        return _elementwise_op(LayerHelper(op_type, **locals()))
5027

5028

5029 5030 5031 5032 5033 5034
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
5035
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5036 5037 5038 5039 5040

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
5041
        .. code-block:: python
5042 5043 5044

            import paddle

5045 5046
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
5047
            output = paddle.frac(input)
5048 5049 5050 5051
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
5052
    """
5053
    if x.dtype not in [
5054 5055 5056 5057
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
5058
    ]:
5059
        raise TypeError(
5060 5061 5062 5063
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5064
    if in_dynamic_mode():
5065 5066
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
5067
    else:
5068 5069
        inputs = {"X": x}
        attrs = {}
5070

5071 5072 5073 5074 5075 5076 5077 5078
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
5079
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
5080

5081

5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
5107
    if x.dtype not in [
5108 5109 5110 5111 5112
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
5113
    ]:
5114
        raise TypeError(
5115 5116 5117 5118
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
5130

5131

5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5199 5200 5201 5202
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5203

5204
    if in_dynamic_mode():
5205 5206
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5207
                "The type of 'index' must be Tensor, but got {}".format(
5208 5209 5210
                    type(index)
                )
            )
5211 5212
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5213 5214 5215 5216
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5230
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5231 5232 5233
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5234 5235 5236 5237 5238 5239 5240
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5267
    """
5268 5269
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5270 5271 5272 5273
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5274 5275
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5276 5277 5278
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5279 5280 5281 5282

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5293 5294 5295

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
5338
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.trapezoid(y))
5389 5390
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        10.)
5391 5392

            print(paddle.trapezoid(y, dx=2.))
5393 5394
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        20.)
5395 5396 5397 5398 5399

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.trapezoid(y, x))
5400 5401
            # Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        10.)
5402 5403 5404 5405 5406 5407


            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.trapezoid(y, x))
5408 5409
            # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        -8.)
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.trapezoid(y, axis=0))
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 2.50000000, 3.50000000])
            print(paddle.trapezoid(y, axis=1))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 8.])
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.cumulative_trapezoid(y))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            print(paddle.cumulative_trapezoid(y, dx=2.))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [9. , 20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-3., -8.])

            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.cumulative_trapezoid(y, axis=0))
            # Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1.50000000, 2.50000000, 3.50000000]])
            print(paddle.cumulative_trapezoid(y, axis=1))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.50000000, 2.        ],
            #         [3.50000000, 8.        ]])
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            out = paddle.vander(x)
            print(out.numpy())
            # [[1., 1., 1.],
            #  [4., 2., 1.],
            #  [9., 3., 1.]]
            out1 = paddle.vander(x,2)
            print(out1.numpy())
            # [[1., 1.],
            #  [2., 1.],
            #  [3., 1.]]
            out2 = paddle.vander(x, increasing = True)
            print(out2.numpy())
            # [[1., 1., 1.],
            #  [1., 2., 4.],
            #  [1., 3., 9.]]
            real = paddle.to_tensor([2., 4.])
            imag = paddle.to_tensor([1., 3.])
            complex = paddle.complex(real, imag)
            out3 = paddle.vander(complex)
            print(out3.numpy())
            # [[2.+1.j, 1.+0.j],
            #  [4.+3.j, 1.+0.j]]
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

    if n > 0:
        res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
    if n > 1:
        res[:, 1:] = x[:, None]
        res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    res = res[:, ::-1] if not increasing else res
    return res
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            print(out)
            #Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #       [1.00000012, 1.99999988])
    """
5579
    if in_dynamic_mode():
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i0(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089]),
    """
5618
    if in_dynamic_mode():
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i0e(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 0.46575961, 0.30850832, 0.24300035, 0.20700192]),
    """
5655
    if in_dynamic_mode():
5656 5657 5658 5659 5660 5661 5662 5663
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i1(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0., 0.5651591 , 1.59063685 , 3.95337022 , 9.75946515]),
    """
5686
    if in_dynamic_mode():
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            print(paddle.i1e(x))
            # (Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [0., 0.20791042, 0.21526929, 0.24300035, 0.17875084]),
    """
5720
    if in_dynamic_mode():
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            res = paddle.polygamma(data, 1)
            print(res)
            # Tensor(shape=[2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [0.64493407,  0.39493407,  0.03999467])
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840


def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

        ..  code-block:: python

            import paddle

            #example1
            x = paddle.to_tensor([1, 2, 3], dtype='float32')
            y = paddle.to_tensor([2, 3, 4], dtype='int32')
            res = paddle.ldexp(x, y)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [4., 16., 48.])

            #example2
            x = paddle.to_tensor([1, 2, 3], dtype='float32')
            y = paddle.to_tensor([2], dtype='int32')
            res = paddle.ldexp(x, y)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [4., 8., 12.])

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))