未验证 提交 43f19cc3 编写于 作者: T Tao Luo 提交者: GitHub

add paddle.gcd and paddle.lcm (#37819)

上级 0127e92d
......@@ -227,6 +227,8 @@ from .tensor.math import lgamma # noqa: F401
from .tensor.math import lerp # noqa: F401
from .tensor.math import rad2deg # noqa: F401
from .tensor.math import deg2rad # noqa: F401
from .tensor.math import gcd # noqa: F401
from .tensor.math import lcm # noqa: F401
from .tensor.math import diff # noqa: F401
from .tensor.math import angle # noqa: F401
......@@ -480,6 +482,8 @@ __all__ = [ # noqa
'atan2',
'rad2deg',
'deg2rad',
'gcd',
'lcm',
'expand',
'broadcast_to',
'ones_like',
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
from op_test import OpTest
paddle.enable_static()
class TestGcdAPI(unittest.TestCase):
def setUp(self):
self.x_np = 12
self.y_np = 20
self.x_shape = [1]
self.y_shape = [1]
def test_static_graph(self):
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(startup_program, train_program):
x = fluid.data(name='input1', dtype='int32', shape=self.x_shape)
y = fluid.data(name='input2', dtype='int32', shape=self.y_shape)
out = paddle.gcd(x, y)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
res = exe.run(fluid.default_main_program(),
feed={'input1': self.x_np,
'input2': self.y_np},
fetch_list=[out])
self.assertTrue((np.array(res[0]) == np.gcd(self.x_np, self.y_np)
).all())
def test_dygraph(self):
paddle.disable_static()
x = paddle.to_tensor(self.x_np)
y = paddle.to_tensor(self.y_np)
result = paddle.gcd(x, y)
self.assertEqual(
np.allclose(np.gcd(self.x_np, self.y_np), result.numpy()), True)
paddle.enable_static()
class TestGcdAPI2(TestGcdAPI):
def setUp(self):
self.x_np = np.arange(6).astype(np.int32)
self.y_np = np.array([20]).astype(np.int32)
self.x_shape = [6]
self.y_shape = [1]
class TestGcdAPI3(TestGcdAPI):
def setUp(self):
self.x_np = 0
self.y_np = 20
self.x_shape = [1]
self.y_shape = [1]
class TestGcdAPI4(TestGcdAPI):
def setUp(self):
self.x_np = 0
self.y_np = 0
self.x_shape = [1]
self.y_shape = [1]
class TestGcdAPI5(TestGcdAPI):
def setUp(self):
self.x_np = 12
self.y_np = -20
self.x_shape = [1]
self.y_shape = [1]
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
from op_test import OpTest
paddle.enable_static()
class TestLcmAPI(unittest.TestCase):
def setUp(self):
self.x_np = 12
self.y_np = 20
self.x_shape = [1]
self.y_shape = [1]
def test_static_graph(self):
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(startup_program, train_program):
x1 = fluid.data(name='input1', dtype='int32', shape=self.x_shape)
x2 = fluid.data(name='input2', dtype='int32', shape=self.y_shape)
out = paddle.lcm(x1, x2)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
res = exe.run(fluid.default_main_program(),
feed={'input1': self.x_np,
'input2': self.y_np},
fetch_list=[out])
self.assertTrue((np.array(res[0]) == np.lcm(self.x_np, self.y_np)
).all())
def test_dygraph(self):
paddle.disable_static()
x1 = paddle.to_tensor(self.x_np)
x2 = paddle.to_tensor(self.y_np)
result = paddle.lcm(x1, x2)
self.assertEqual(
np.allclose(np.lcm(self.x_np, self.y_np), result.numpy()), True)
paddle.enable_static()
class TestLcmAPI2(TestLcmAPI):
def setUp(self):
self.x_np = np.arange(6).astype(np.int32)
self.y_np = np.array([20]).astype(np.int32)
self.x_shape = [6]
self.y_shape = [1]
class TestLcmAPI3(TestLcmAPI):
def setUp(self):
self.x_np = 0
self.y_np = 20
self.x_shape = [1]
self.y_shape = [1]
class TestLcmAPI4(TestLcmAPI):
def setUp(self):
self.x_np = 0
self.y_np = 0
self.x_shape = [1]
self.y_shape = [1]
class TestLcmAPI5(TestLcmAPI):
def setUp(self):
self.x_np = 12
self.y_np = -20
self.x_shape = [1]
self.y_shape = [1]
......@@ -194,6 +194,8 @@ from .math import lerp # noqa: F401
from .math import lerp_ # noqa: F401
from .math import rad2deg # noqa: F401
from .math import deg2rad # noqa: F401
from .math import gcd # noqa: F401
from .math import lcm # noqa: F401
from .math import diff # noqa: F401
from .math import angle # noqa: F401
......@@ -409,6 +411,10 @@ tensor_method_func = [ #noqa
'multi_dot',
'solve',
'triangular_solve',
'rad2deg',
'deg2rad',
'gcd',
'lcm',
'diff',
'lerp',
'lerp_',
......
......@@ -2788,6 +2788,139 @@ def deg2rad(x, name=None):
type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
return out
def gcd(x, y, name=None):
"""
Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
Both x and y must have integer types.
Note:
gcd(0,0)=0, gcd(0, y)=|y|
Args:
x, y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8.
If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
out (Tensor): An N-D Tensor, the data type is the same with input.
Examples:
.. code-block:: python
import paddle
import numpy as np
x1 = paddle.to_tensor(12)
x2 = paddle.to_tensor(20)
paddle.gcd(x1, x2)
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [4])
x3 = paddle.to_tensor(np.arange(6))
paddle.gcd(x3, x2)
# Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [20, 1 , 2 , 1 , 4 , 5])
x4 = paddle.to_tensor(0)
paddle.gcd(x4, x2)
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [20])
paddle.gcd(x4, x4)
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [0])
x5 = paddle.to_tensor(-20)
paddle.gcd(x1, x5)
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [4])
"""
shape = paddle.broadcast_shape(x.shape, y.shape)
x = paddle.broadcast_to(x, shape)
y = paddle.broadcast_to(y, shape)
x = paddle.abs(x)
y = paddle.abs(y)
def _gcd_cond_fn(x, y):
return paddle.any(y != 0)
def _gcd_body_fn(x, y):
# paddle.mod will raise an error when any element of y is 0. To avoid
# that, we change those zeros to ones. Their values don't matter because
# they won't be used.
y_not_equal_0 = (y != 0)
y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
x, y = (paddle.where(y_not_equal_0, y, x),
paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))
if in_dygraph_mode():
while _gcd_cond_fn(x, y):
x, y = _gcd_body_fn(x, y)
return x
else:
check_variable_and_dtype(x, 'x', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd')
check_variable_and_dtype(y, 'y', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd')
out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
return out
def lcm(x, y, name=None):
"""
Computes the element-wise least common multiple (LCM) of input |x| and |y|.
Both x and y must have integer types.
Note:
lcm(0,0)=0, lcm(0, y)=0
Args:
x, y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8.
If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
out (Tensor): An N-D Tensor, the data type is the same with input.
Examples:
.. code-block:: python
import paddle
import numpy as np
x1 = paddle.to_tensor(12)
x2 = paddle.to_tensor(20)
paddle.lcm(x1, x2)
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [60])
x3 = paddle.to_tensor(np.arange(6))
paddle.lcm(x3, x2)
# Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [0, 20, 20, 60, 20, 20])
x4 = paddle.to_tensor(0)
paddle.lcm(x4, x2)
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [0])
paddle.lcm(x4, x4)
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [0])
x5 = paddle.to_tensor(-20)
paddle.lcm(x1, x5)
# Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
# [60])
"""
d = paddle.gcd(x, y)
# paddle.mod will raise an error when any element of y is 0. To avoid
# that, we change those zeros to ones. Their values don't matter because
# they won't be used.
d_equal_0 = paddle.equal(d, 0)
d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
return out
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
r"""
Computes the n-th forward difference along the given axis.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册