optimizer.py 305.4 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
21

22

23 24 25 26 27 28 29 30 31
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
32

33 34
from . import framework
from . import layers
35
from . import unique_name
36 37 38 39 40 41
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
42 43
from .framework import program_guard
from .layer_helper import LayerHelper
44
from .dygraph import base as imperative_base
45
from .dygraph import no_grad
46 47 48 49
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
50 51 52
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
53
from functools import cmp_to_key
54
from .wrapped_decorator import signature_safe_contextmanager
55
import warnings
56
from paddle import _C_ops, _legacy_C_ops
57 58 59 60
from ..fluid.framework import (
    in_dygraph_mode,
    _current_expected_place,
)
61

62
__all__ = [
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
90
]
Q
Qiao Longfei 已提交
91 92


93
class Optimizer:
Q
Qiao Longfei 已提交
94 95 96
    """Optimizer Base class.

    Define the common interface of an optimizer.
97 98
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
99 100
    """

101
    @imperative_base.no_grad
102 103 104 105 106 107 108 109 110 111
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
112 113
        """
        Args:
114 115
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
116 117
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
118
        # Because of the loop import, so place it in the function body
119
        from paddle.optimizer.lr import LRScheduler
120 121 122 123

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
124
        self._name = name
姜永久 已提交
125
        if in_dygraph_mode():
126 127 128
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
129
                raise TypeError(
130
                    "learning rate should be float or LRScheduler, got %s here"
131 132
                    % type(learning_rate)
                )
133
            if self._parameter_list is None:
134 135 136
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
137 138 139 140 141 142
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
143 144
                            % regularization.__str__()
                        )
145
                        break
M
minqiyang 已提交
146
        else:
147 148 149
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
150
                raise TypeError(
151
                    "learning rate should be float or LRScheduler, got %s here"
152 153
                    % type(learning_rate)
                )
M
minqiyang 已提交
154

155
        if grad_clip is not None:
156
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
157 158 159
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
160
        self.regularization = regularization
161
        self._grad_clip = grad_clip
162
        self._learning_rate = learning_rate
163 164
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
165

D
dzhwinter 已提交
166
        self._dtype = None
L
Leo Chen 已提交
167 168 169 170
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

171
        # each program should have a independent learning rate
172
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
173
        self._learning_rate_map = dict()
174
        if isinstance(self._learning_rate, framework.Variable):
175
            self._learning_rate_map[
176 177
                framework.default_main_program()
            ] = self._learning_rate
178 179 180 181 182
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
183 184
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
185
        self.helper = LayerHelper(self.__class__.__name__)
186
        self._opti_name_list = []
H
hong 已提交
187
        self._accumulators_holder = {}
188
        self._param_device_map = dict()
189 190
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
191
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
192 193
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
194 195 196 197

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
198 199
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
200 201 202

        Args: None
        Return:
T
tianshuo78520a 已提交
203
            state_dict(dict) : dict contains all the variable used by optimizer
204

H
hong 已提交
205 206 207 208
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
209
                import paddle
210 211

                with fluid.dygraph.guard():
212
                    emb = paddle.nn.Embedding(10, 10)
213 214 215

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
216 217

        '''
218
        from paddle.optimizer.lr import LRScheduler
219

H
hong 已提交
220 221 222 223
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
224 225
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
226
        # global step if use lr decay
227
        if isinstance(self._learning_rate, LRScheduler):
228 229
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
230
        if isinstance(self._learning_rate, LearningRateDecay):
231 232 233 234
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
235
                var_temp = framework._create_tensor(
236 237
                    None, name='global_step', dtype='int32'
                )
238

239
                paddle.tensor.fill_constant(
240 241
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
242

243
                state_dict['global_step'] = var_temp
H
hong 已提交
244 245 246
        return state_dict

    @framework.dygraph_only
247
    def set_state_dict(self, state_dict):
H
hong 已提交
248
        '''
T
tianshuo78520a 已提交
249
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
250

251
        Args:
H
hong 已提交
252 253 254
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
255

H
hong 已提交
256 257
        Examples:
            .. code-block:: python
258

259
                import paddle
260 261 262

                paddle.disable_static()

263
                emb = paddle.nn.Embedding(10, 10)
264

265
                state_dict = emb.state_dict()
266
                paddle.save(state_dict, "paddle_dy.pdparams")
267

268
                scheduler = paddle.optimizer.lr.NoamDecay(
269 270 271 272
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
273
                state_dict = adam.state_dict()
274
                paddle.save(state_dict, "paddle_dy.pdopt")
275

276 277
                para_state_dict = paddle.load("paddle_dy.pdparams")
                opti_state_dict = paddle.load("paddle_dy.pdopt")
H
hong 已提交
278
        '''
279
        from paddle.optimizer.lr import LRScheduler
280

281
        if isinstance(self._learning_rate, LRScheduler):
282
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
283 284

        if isinstance(self._learning_rate, LearningRateDecay):
285 286 287
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
288 289 290
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
291 292 293 294 295
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
296 297 298 299 300
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
301 302 303

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
304 305 306 307 308
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
309 310 311
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
W
wanghuancoder 已提交
312
                        "Type not supprt, value in state dict must be [Tensor, Variable, numpy], the type is ",
313 314
                        type(global_step),
                    )
H
hong 已提交
315

316 317 318 319 320 321 322
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
W
wanghuancoder 已提交
323
            elif isinstance(load_para, core.eager.Tensor):
324 325 326 327
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
328 329 330
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
331

332 333 334 335 336
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
337

338 339 340 341 342
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
343 344 345

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
346 347 348
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
349 350 351
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
352
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
353

354
        for k, v in self._global_accumulators.items():
355 356 357
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
358
            _load_state_para(state_dict, v)
359

360 361 362
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

363 364
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
365

366 367 368 369 370 371 372 373 374
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
375
    def _create_global_learning_rate(self):
376
        from paddle.optimizer.lr import LRScheduler
377

378
        if isinstance(self._learning_rate, LRScheduler):
379 380 381 382 383 384 385 386 387 388
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
389 390
                    dtype='float32' if self._dtype is None else self._dtype,
                )
391
                main_prog = framework.default_main_program()
392
                main_prog.lr_scheduler = self._learning_rate
393
                main_prog.lr_var = lr_var
394
                self._learning_rate_map[
395 396
                    framework.default_main_program()
                ] = lr_var
397 398 399

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
400 401
                lr_var,
                initializer=paddle.nn.initializer.Constant(value=lr_value),
402
            )
403 404
            return

405 406 407
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
408 409 410 411 412
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
413 414
                    self._learning_rate_map[
                        framework.default_main_program()
415
                    ] = paddle.static.create_global_var(
M
minqiyang 已提交
416 417 418 419
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
420 421
                        persistable=True,
                    )
422
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
423
            elif isinstance(self._learning_rate, LearningRateDecay):
424
                self._learning_rate_map[
425 426
                    framework.default_main_program()
                ] = self._learning_rate()
427
            else:
Q
qiaolongfei 已提交
428
                raise TypeError(
429 430
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
431
        else:
432 433 434 435
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
436 437 438 439 440 441
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
442

443
            # create learning rate in the current main program
444
            self._learning_rate_map[
445
                framework.default_main_program()
446
            ] = paddle.static.create_global_var(
447 448 449 450 451 452
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
453

454 455 456 457
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
458

459 460 461 462 463 464 465 466
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
467

468 469 470
        Examples:
            .. code-block:: python

471
                import paddle
472
                import paddle.fluid as fluid
473
                import paddle
474

475
                with fluid.dygraph.guard():
476
                    linear = paddle.nn.Linear(10, 10)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
495
                    lr_var = paddle.static.create_global_var(
496 497 498 499 500 501 502 503 504 505 506 507 508
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
509 510
                % (type(value))
            )
511 512 513 514 515 516 517 518
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
519 520
                if in_dygraph_mode():
                    place = _current_expected_place()
521 522 523 524 525 526 527
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
528
                else:
529 530 531 532 533 534 535 536 537 538 539 540 541
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
542
        else:
543 544 545
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
546 547
            self._learning_rate_map[framework.default_main_program()] = value

548 549 550
    @framework.dygraph_only
    def current_step_lr(self):
        """
551
        :api_attr: imperative
552

553 554 555 556 557 558 559 560 561 562 563
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
564
                import paddle
565 566 567

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
568
                    emb = paddle.nn.Embedding(10, 10)
569 570 571 572 573 574 575
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
576
                    linear = paddle.nn.Linear(10, 10)
577 578
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
579
                    loss = paddle.mean(out)
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
598
        if isinstance(current_lr, framework.Variable):
599
            return float(current_lr)
600 601 602

        if isinstance(self._learning_rate, float):
            return self._learning_rate
603 604
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
605
            return float(step_lr)
606 607 608 609 610
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
611
                return float(step_lr)
612

Y
yuyang18 已提交
613
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
614 615 616 617
        """
        get global decayed learning rate
        :return:
        """
618 619
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
620
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
621

Q
Qiao Longfei 已提交
622
    def _append_optimize_op(self, block, param_and_grad):
623
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
624 625
        raise NotImplementedError()

626 627 628 629
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
630 631
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
632
        else:
W
Wu Yi 已提交
633
            if param_lr == 1.0:
Y
yuyang18 已提交
634
                return self._global_learning_rate()
W
Wu Yi 已提交
635
            else:
X
Xin Pan 已提交
636
                with default_main_program()._lr_schedule_guard(
637 638
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
639
                    return self._global_learning_rate() * param_lr
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

683 684 685 686 687 688
    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
689
        """
690 691
        pass

692
    def _finish_update(self, block, parameters_and_grads):
693 694 695 696 697 698 699 700
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
701
            None
702 703 704
        """
        pass

705 706 707 708 709 710 711 712 713 714
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
715 716 717 718 719 720 721 722 723
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
724 725
        if self._name is not None:
            name = self._name + "_" + name
726 727 728 729
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
姜永久 已提交
730
            if in_dygraph_mode():
X
polish  
Xin Pan 已提交
731
                return self._accumulators[name][param.name]
732 733
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
734 735 736
                    name, param.name
                )
            )
737
        if shape is None:
738
            shape = param.shape
Q
Qiao Longfei 已提交
739
        assert isinstance(self.helper, LayerHelper)
740 741 742 743 744

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
745
        var = self.helper.create_global_variable(
746
            name=var_name,
Q
Qiao Longfei 已提交
747
            persistable=True,
F
fengjiayi 已提交
748
            dtype=dtype or param.dtype,
749
            type=core.VarDesc.VarType.LOD_TENSOR
姜永久 已提交
750
            if in_dygraph_mode()
751
            else (param.type if type is None else type),
H
hong 已提交
752
            shape=shape,
753 754
            belong_to_optimizer=True,
        )
755 756 757 758
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
759 760 761 762
                var,
                initializer=paddle.nn.initializer.Constant(
                    value=float(fill_value)
                ),
763
            )
H
hong 已提交
764

姜永久 已提交
765
        if in_dygraph_mode():
H
hong 已提交
766
            if len(self._accumulators_holder) > 0:
767 768 769 770 771
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
772 773
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
774
        self._accumulators[name][param.name] = var
775
        return var
776

777 778 779 780 781 782 783 784 785
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
786 787 788 789 790 791 792 793 794 795 796 797 798
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
799
        if name in self._global_accumulators:
姜永久 已提交
800
            if in_dygraph_mode():
801 802
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
803
        if shape is None:
804 805 806 807 808 809 810 811 812 813 814 815 816
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
817 818
            belong_to_optimizer=True,
        )
819 820 821 822
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
823 824 825 826
                var,
                initializer=paddle.nn.initializer.Constant(
                    value=float(fill_value)
                ),
827
            )
828

姜永久 已提交
829
        if in_dygraph_mode():
830
            if len(self._accumulators_holder) > 0:
831 832 833 834 835
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
836 837 838 839 840
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

841 842 843 844 845 846 847 848
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
849
            accumulator variable
850
        """
W
whs 已提交
851 852
        if self._name is not None:
            name = self._name + "_" + name
853 854 855 856
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
857 858
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
859 860 861
                    name, param.name
                )
            )
862 863
        return self._accumulators[name][param.name]

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    def _get_accumulator_master(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

892 893 894 895 896 897 898 899 900 901 902
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
903
        if name not in self._global_accumulators:
904 905 906
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

907 908 909 910 911
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
912 913
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
914 915 916 917 918
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
919 920
                            device_attr_name
                        )
921
                        break
922 923 924 925 926 927 928

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

929
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
930 931 932
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
933
          parameters_and_grads(list(tuple(Variable, Variable))):
934
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
935 936

        Returns:
937
          return_op_list: a list of operators that will complete one step of
938 939 940
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
941
        """
942 943 944 945 946
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
947
        # for parameters and extend _finish_update method to add custom ops.
948

949
        # Allways called under program_guard use global block as loss block
950 951 952
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

953
        global_block = framework.default_main_program().global_block()
954 955 956
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
957 958 959
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
960
            target_block = framework.default_main_program().blocks[
961 962
                current_block.backward_block_idx
            ]
963 964

        start = len(target_block.ops)
965

966
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
967
        self._create_accumulators(
968 969
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
970 971
        self._create_global_learning_rate()

姜永久 已提交
972
        if in_dygraph_mode():
W
wanghuancoder 已提交
973 974 975 976 977 978 979 980 981 982 983 984
            found_inf = self._get_auxiliary_var('found_inf')
            if found_inf:
                if isinstance(found_inf, core.eager.Tensor):
                    self._set_auxiliary_var('found_inf', True)
            else:
                if isinstance(found_inf, core.eager.Tensor):
                    self._set_auxiliary_var('found_inf', False)
                for param_and_grad in parameters_and_grads:
                    if param_and_grad[1] is None:
                        continue
                    if param_and_grad[0].trainable is True:
                        self._append_optimize_op(target_block, param_and_grad)
985 986 987 988 989
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
990 991
                    param_and_grad
                ), name_scope("optimizer"):
992
                    if param_and_grad[0].trainable is True:
993
                        device = self._get_device_for_param(
994 995
                            param_and_grad[0].name
                        )
996 997
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
998 999
                                target_block, param_and_grad
                            )
1000 1001 1002

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
1003
        self._finish_update(target_block, parameters_and_grads)
1004

1005 1006
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
1007 1008

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
1018 1019 1020 1021
        from paddle.distributed.distribute_lookup_table import (
            find_distributed_lookup_table,
        )

1022 1023
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
1024 1025 1026 1027 1028 1029 1030 1031
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
1032 1033
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
1034 1035 1036 1037 1038 1039
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
1040
            param_and_grad = [table_param, table_grad]
1041 1042 1043
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
1044 1045 1046 1047 1048 1049 1050
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
1051
                        "LearningRate": self._create_param_lr(param_and_grad),
1052
                    },
1053 1054
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
1055 1056
        return new_param_grads, (table_param, table_grad), sgd_op

1057 1058 1059 1060 1061 1062 1063 1064
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
1065
        """
1066
        The first part of ``minimize``, do auto-diff to append backward operations for
1067 1068 1069
        the current program.

        Args:
1070 1071 1072 1073
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1074
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1075 1076
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1077
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1078 1079 1080
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1081

1082
        Return:
1083 1084
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1085

1086
        Examples:
1087
            See examples in ``apply_gradients``.
1088
        """
1089
        act_no_grad_set = None
姜永久 已提交
1090
        if in_dygraph_mode():
1091
            pass
L
Leo Chen 已提交
1092 1093
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1094

L
Leo Chen 已提交
1095 1096 1097 1098
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

姜永久 已提交
1099
        if in_dygraph_mode():
1100 1101 1102
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1103

C
chengduo 已提交
1104
            params_grads = []
1105
            for param in parameter_list:
C
chengduo 已提交
1106 1107
                if not param.trainable:
                    continue
1108
                if param._grad_ivar() is not None:
C
chengduo 已提交
1109
                    # create gradient variable
1110
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1111
                    params_grads.append((param, grad_var))
1112
        else:
C
chengduo 已提交
1113
            if callbacks is None:
1114
                callbacks = [paddle.nn.clip.error_clip_callback]
C
chengduo 已提交
1115
            else:
1116
                assert isinstance(callbacks, list)
C
chengduo 已提交
1117
            program = loss.block.program
zhouweiwei2014's avatar
zhouweiwei2014 已提交
1118 1119
            assert np.prod(loss.shape) == 1, (
                "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
1120
                "Maybe that you should call paddle.mean to process the current loss.".format(
1121 1122 1123 1124 1125 1126
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1127
            with program_guard(program, startup_program):
1128 1129 1130
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1131
        return params_grads
1132

1133
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1134
        """Create and add backward regularization Operators
1135

1136 1137 1138
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1139
        if grad is None or (
1140 1141 1142 1143 1144 1145
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

姜永久 已提交
1156
        if in_dygraph_mode():
1157
            return _legacy_C_ops.sum([grad, regularization_term])
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1170 1171
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1172 1173 1174

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1175
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1176 1177 1178

        return new_grad

1179 1180 1181
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1182
        r"""Create and add backward regularization Operators
1183

1184 1185 1186 1187
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1188

1189 1190 1191 1192 1193
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1194

1195 1196 1197
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1198

1199 1200 1201 1202
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
姜永久 已提交
1203
        if in_dygraph_mode():
1204
            for param, grad in parameters_and_grads:
1205
                new_grad = self._create_regularization_of_grad(
1206 1207
                    param, grad, regularization
                )
1208 1209 1210 1211 1212
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1213 1214 1215 1216 1217
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1218 1219 1220 1221
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1222 1223
                            % regularization.__str__()
                        )
1224 1225
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1226 1227
                            param, grad, regularization
                        )
1228 1229 1230
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1231 1232 1233 1234 1235 1236 1237
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1238 1239 1240 1241
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1242 1243
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1244 1245
                    "the regularizer is set".format(p.name)
                )
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1260 1261
            belong_to_optimizer=True,
        )
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1272 1273
            belong_to_optimizer=True,
        )
1274 1275

        with program_guard(default_main_program()):
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1305

1306
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1307
        # so the shape of flatten_param and flatten_grad will be inferred.
1308
        self.helper.set_variable_initializer(
1309 1310
            flatten_param,
            initializer=paddle.nn.initializer.Constant(0.0),
1311 1312
        )
        self.helper.set_variable_initializer(
1313 1314
            flatten_grad,
            initializer=paddle.nn.initializer.Constant(0.0),
1315
        )
1316 1317 1318

        return [(flatten_param, flatten_grad)]

1319 1320 1321 1322 1323 1324 1325
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1326

1327 1328
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1329

1330 1331 1332
        Examples:
            .. code-block:: python

1333
                import paddle.fluid as fluid
1334 1335 1336 1337 1338 1339 1340 1341 1342
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1343 1344
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1345
            if self._grad_clip is None or isinstance(
1346
                self._grad_clip, paddle.nn.ClipGradByGlobalNorm
1347
            ):
1348 1349
                params_grads = self.flatten_param_grads(params_grads)

1350
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1351 1352 1353
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
1354
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
1355 1356

        # Add regularization if any
1357 1358 1359
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1360 1361 1362 1363

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
姜永久 已提交
1376
        if in_dygraph_mode():
1377 1378 1379 1380
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1381 1382
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1383
                params_grads = self.append_regularization_ops(
1384 1385
                    params_grads, self.regularization
                )
C
chengduo 已提交
1386 1387 1388 1389 1390 1391 1392
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1393
    def _get_no_grad_set(self, loss, no_grad_set=None):
1394
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1395 1396
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1397 1398
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1399 1400 1401 1402 1403
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1404 1405 1406 1407
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1408 1409

        If not, new gradient will accumulat on previous gradient.
1410

1411 1412
        Returns:
            None
1413

1414 1415 1416 1417
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1418
                import paddle
1419 1420 1421 1422 1423
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
1424
                    linear = paddle.nn.Linear(13, 5)
1425
                    # This can be any optimizer supported by dygraph.
1426
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1438
    @imperative_base.no_grad
1439 1440 1441
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1442
        """
1443
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1444

1445
        Args:
1446 1447 1448 1449
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1450
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1451 1452
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1453
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1454
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1455

1456
        Returns:
1457 1458 1459
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1460 1461
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1462
            ``fetch_list`` before run, see details in ``Executor``.
1463 1464 1465

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1466
        """
C
chengduo 已提交
1467
        assert isinstance(loss, Variable), "The loss should be an Variable."
1468

1469 1470 1471
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1472

1473 1474 1475 1476 1477 1478
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1479

1480 1481 1482
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1483

Q
Qiao Longfei 已提交
1484
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1485 1486 1487


class SGDOptimizer(Optimizer):
1488
    r"""
Q
qiaolongfei 已提交
1489 1490 1491 1492 1493 1494
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1495 1496 1497
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1498
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1499
            This parameter is required in dygraph mode. \
1500
            The default value is None in static graph mode, at this time all parameters will be updated.
1501 1502 1503 1504 1505
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1506 1507 1508
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1509
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1510 1511
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1512 1513 1514 1515

    Examples:
        .. code-block:: python

1516 1517 1518 1519
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1520
            paddle.enable_static()
1521 1522 1523
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
1524 1525
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
1526
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1527
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1528
                avg_cost = paddle.mean(cost)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1542 1543
    """

1544 1545 1546 1547 1548 1549 1550 1551 1552
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1553
        assert learning_rate is not None
1554
        super().__init__(
1555 1556 1557 1558 1559 1560
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1561
        self.type = "sgd"
1562
        self._use_mkldnn = False
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
1573
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
1574 1575
                master_p = self._create_master_weight(p)
                continue
1576
            if (
1577
                self._is_dtype_fp16_or_bf16(p.dtype)
1578 1579
                and not self._multi_precision
            ):
1580
                warnings.warn(
1581
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
1582 1583
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1584

1585
    @no_grad
1586
    def _append_optimize_op(self, block, param_and_grad):
1587 1588
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
1589 1590 1591 1592 1593 1594
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1595

1596
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1597
        if in_dygraph_mode():
1598 1599 1600 1601 1602 1603 1604
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1605
            return None
姜永久 已提交
1606 1607 1608 1609 1610 1611 1612 1613
        else:
            assert isinstance(block, framework.Block)
            # create the optimize op
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
            }
1614

姜永久 已提交
1615
            outputs = {"ParamOut": param_and_grad[0]}
1616

姜永久 已提交
1617
            attrs = {"multi_precision": find_master}
1618

姜永久 已提交
1619 1620 1621
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight
1622

姜永久 已提交
1623 1624 1625 1626 1627 1628 1629
            sgd_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
Q
Qiao Longfei 已提交
1630

姜永久 已提交
1631
            return sgd_op
1632 1633 1634


class MomentumOptimizer(Optimizer):
1635
    r"""
Q
qiaolongfei 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1649
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1650 1651 1652

        & else:

Q
qiaolongfei 已提交
1653
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1654

1655 1656 1657 1658
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1659
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1660
            This parameter is required in dygraph mode. \
1661
            The default value is None in static graph mode, at this time all parameters will be updated.
1662
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1663 1664 1665 1666 1667
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1668 1669 1670
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1671
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1672 1673
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1674 1675 1676 1677

    Examples:
        .. code-block:: python

1678 1679 1680 1681
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1682
            paddle.enable_static()
1683 1684 1685
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
1686 1687
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
1688
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1689
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1690
                avg_cost = paddle.mean(cost)
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1704 1705 1706
    """
    _velocity_acc_str = "velocity"

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1717 1718
        assert learning_rate is not None
        assert momentum is not None
1719
        super().__init__(
1720 1721 1722 1723 1724 1725
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1726 1727
        self.type = "momentum"
        self._momentum = momentum
1728
        self._use_nesterov = bool(use_nesterov)
1729 1730 1731 1732 1733

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1734
            self._add_accumulator(self._velocity_acc_str, p)
1735 1736 1737 1738

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1739 1740 1741
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1742
        lr = self._create_param_lr(param_and_grad)
1743
        master_weight = None
姜永久 已提交
1744
        if in_dygraph_mode():
1745
            _, _, _ = _legacy_C_ops.momentum(
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1759
            return None
姜永久 已提交
1760 1761 1762 1763 1764 1765 1766 1767
        else:
            attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "Velocity": [velocity_acc],
                "LearningRate": [lr],
            }
1768

姜永久 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
            outputs = {
                "ParamOut": [param_and_grad[0]],
                "VelocityOut": [velocity_acc],
            }
            # create the momentum optimize op
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1781

姜永久 已提交
1782
            return momentum_op
1783 1784


1785
class LarsMomentumOptimizer(Optimizer):
1786
    r"""
1787 1788 1789 1790 1791 1792 1793 1794 1795
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1796
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1797 1798 1799

        & param = param - velocity

1800 1801 1802 1803 1804 1805
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1806
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1807
            This parameter is required in dygraph mode. \
1808
            The default value is None in static graph mode, at this time all parameters will be updated.
1809 1810 1811 1812 1813
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1814 1815 1816
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1817
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1818 1819
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1820 1821
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1822 1823 1824
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1825

1826 1827 1828
    Examples:
        .. code-block:: python

1829
            import paddle
1830 1831 1832
            import paddle.fluid as fluid
            import numpy as np

1833
            paddle.enable_static()
1834
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
G
GGBond8488 已提交
1835 1836
            inp = paddle.static.data(
                name="inp", shape=[2, 2], dtype='float32')
C
Charles-hit 已提交
1837
            out = paddle.static.nn.fc(inp, size=3)
1838
            out = paddle.sum(out)
1839 1840 1841 1842 1843 1844 1845 1846
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1847 1848 1849
    """
    _velocity_acc_str = "velocity"

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
1865 1866
        assert learning_rate is not None
        assert momentum is not None
1867
        super().__init__(
1868 1869 1870 1871 1872 1873
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1874 1875 1876 1877
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1878 1879 1880 1881 1882
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1883 1884 1885 1886
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

1887 1888 1889 1890
    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1891
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
1892 1893 1894
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
1895
            if (
1896
                self._is_dtype_fp16_or_bf16(p.dtype)
1897 1898
                and not self._multi_precision
            ):
1899
                warnings.warn(
1900
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
1901 1902
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1903 1904 1905 1906
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1907 1908 1909 1910 1911 1912 1913 1914
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1915
        velocity_acc = self._get_accumulator_master(
1916 1917
            self._velocity_acc_str, param_and_grad[0]
        )
1918 1919
        lr = self._create_param_lr(param_and_grad)

1920 1921
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
1922 1923 1924 1925 1926 1927
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1928 1929 1930

        attrs = {
            "mu": self._momentum,
1931
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
1932
            "lars_weight_decay": [_lars_weight_decay],
1933
            "multi_precision": find_master,
L
limingshu 已提交
1934
            "epsilon": self._epsilon,
1935
            "rescale_grad": self._rescale_grad,
1936 1937 1938 1939 1940 1941
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
1942
            "LearningRate": lr,
1943 1944 1945 1946 1947 1948 1949 1950
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

姜永久 已提交
1951
        if in_dygraph_mode():
1952
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
1972 1973
        else:
            # create the momentum optimize op
1974 1975 1976 1977 1978 1979 1980
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1981

1982
            return momentum_op
1983 1984


1985
class AdagradOptimizer(Optimizer):
1986
    r"""
1987 1988
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1989

1990
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1991 1992 1993 1994 1995 1996 1997

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1998 1999 2000 2001 2002 2003
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2004 2005 2006
    for numerical stability to avoid the division by zero error.

    Args:
2007 2008 2009 2010
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2011
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2012
            This parameter is required in dygraph mode. \
2013
            The default value is None in static graph mode, at this time all parameters will be updated.
2014 2015 2016 2017 2018
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2019 2020 2021
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2022
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2023 2024 2025 2026 2027
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2028 2029 2030 2031

    Examples:
        .. code-block:: python

2032
            import paddle
2033
            import numpy as np
2034
            import paddle.fluid as fluid
2035

2036
            paddle.enable_static()
2037
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2038
            inp = paddle.static.data(name="inp", shape=[2, 2], dtype="float32")
C
Charles-hit 已提交
2039
            out = paddle.static.nn.fc(inp, size=3)
2040
            out = paddle.sum(out)
2041
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2042 2043 2044 2045 2046 2047 2048
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2049 2050 2051
    """
    _moment_acc_str = "moment"

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2062 2063
        assert learning_rate is not None
        assert epsilon is not None
2064
        super().__init__(
2065 2066 2067 2068 2069 2070
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2071
        self.type = "adagrad"
2072
        self._multi_precision = False
2073
        self._epsilon = epsilon
2074
        self.initial_accumulator_value = initial_accumulator_value
2075 2076
        self._master_weights = {}

2077 2078 2079 2080
    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2081
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
2082
                master_p = self._create_master_weight(p)
2083 2084 2085 2086 2087
                self._add_accumulator(
                    self._moment_acc_str,
                    master_p,
                    fill_value=self.initial_accumulator_value,
                )
2088 2089
                continue
            if (
2090
                self._is_dtype_fp16_or_bf16(p.dtype)
2091 2092 2093
                and not self._multi_precision
            ):
                warnings.warn(
2094
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
2095 2096
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2097 2098 2099 2100 2101
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2102 2103 2104 2105

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2106
        moment_acc = self._get_accumulator_master(
2107 2108
            self._moment_acc_str, param_and_grad[0]
        )
2109

2110 2111
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
2112 2113 2114 2115 2116 2117 2118
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )

C
caozhou 已提交
2119
        if in_dygraph_mode():
2120 2121 2122 2123 2124
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
2125
                master_weight,
2126
                self._epsilon,
2127
                find_master,
2128
            )
C
caozhou 已提交
2129
            return None
2130 2131
        else:
            # Create the adagrad optimizer op
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment_acc,
            }

            attrs = {"epsilon": self._epsilon, "multi_precision": find_master}

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

2149 2150
            adagrad_op = block.append_op(
                type=self.type,
2151 2152 2153
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
2154 2155
                stop_gradient=True,
            )
2156

2157
            return adagrad_op
2158 2159 2160


class AdamOptimizer(Optimizer):
2161
    r"""
T
tianshuo78520a 已提交
2162
    The Adam optimizer uses an optimization described at the end
2163 2164 2165
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2166

2167
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2182 2183
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2184
    Args:
2185 2186
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2187 2188
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2189
            The default value is 0.9.
2190 2191
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2192
            The default value is 0.999.
2193 2194
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2195
            The default value is 1e-08.
H
hong 已提交
2196
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2197
            This parameter is required in dygraph mode. \
2198
            The default value is None in static graph mode, at this time all parameters will be updated.
2199 2200 2201 2202 2203
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2204 2205 2206
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2207
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2218
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2219
            for whole model instead of creating beta_pow for each parameter. Default is false.
2220 2221
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2222
            use same align_size as allocator.
Q
qiaolongfei 已提交
2223 2224 2225 2226

    Examples:
        .. code-block:: python

2227 2228 2229
            import paddle
            import paddle.fluid as fluid

2230
            paddle.enable_static()
2231 2232 2233
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2234 2235
                x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2236
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2237
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2238
                avg_cost = paddle.mean(cost)
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2251

2252 2253 2254 2255 2256 2257 2258
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

2259
            paddle.enable_static()
2260 2261 2262
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2263 2264
                x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2265
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2266
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2267
                avg_cost = paddle.mean(cost)
2268 2269

                # define beta decay variable
2270
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2271 2272
                    global_step = lr_scheduler._decay_step_counter()

2273
                    beta1 = paddle.static.create_global_var(
2274 2275 2276 2277 2278 2279
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
2280
                    beta2 = paddle.static.create_global_var(
2281 2282 2283 2284 2285 2286
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2287
                    epsilon = paddle.static.create_global_var(
2288 2289 2290 2291 2292 2293
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2294 2295 2296 2297

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
2298 2299
                    paddle.assign(decayed_beta1, beta1)
                    paddle.assign(decayed_beta2, beta2)
2300

2301
                    return beta1, beta2, epsilon
2302

2303
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2304 2305
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2306
                                                    beta1=beta1,
2307 2308
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2319 2320 2321
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2322 2323
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2324

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2340 2341 2342 2343
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2344
        super().__init__(
2345 2346 2347 2348 2349 2350 2351 2352
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2353 2354 2355 2356
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2357
        self._lazy_mode = lazy_mode
2358
        self._use_global_beta_pow = use_global_beta_pow
2359 2360 2361 2362 2363 2364

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2365 2366
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2367 2368 2369 2370
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2371 2372 2373
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2374
                    shape=[1],
2375 2376 2377
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2378 2379 2380
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2381 2382 2383
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2384
                    shape=[1],
2385 2386 2387
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2388 2389
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2390
                name=self._beta1_pow_acc_str,
2391 2392 2393
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2394
                shape=[1],
2395 2396 2397
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2398
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2399
                name=self._beta2_pow_acc_str,
2400 2401 2402
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2403
                shape=[1],
2404 2405 2406
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2407 2408 2409 2410

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2411 2412 2413 2414 2415 2416
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2417 2418
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2419 2420
                self._beta1_pow_acc_str
            )
2421
            beta2_pow_acc = self._get_global_accumulator(
2422 2423
                self._beta2_pow_acc_str
            )
2424
        else:
2425 2426 2427 2428 2429 2430
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2431
        lr = self._create_param_lr(param_and_grad)
2432
        # create the adam optimize op
2433

姜永久 已提交
2434
        if in_dygraph_mode():
2435 2436 2437
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
2438
                else self._beta1.item(0)
2439 2440 2441 2442
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
2443
                else self._beta2.item(0)
2444
            )
2445
            master_weight = None
2446
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2474 2475 2476

            return None

2477
        inputs = {
2478 2479
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2480
            "LearningRate": [lr],
2481 2482 2483
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2484
            "Beta2Pow": [beta2_pow_acc],
2485
        }
2486 2487 2488 2489 2490 2491 2492

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2493
        outputs = {
2494 2495 2496 2497 2498
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2499 2500 2501
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2502
            "min_row_size_to_use_multithread": 1000,
2503
            'use_global_beta_pow': self._use_global_beta_pow,
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2514 2515 2516 2517
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2518

2519 2520 2521 2522 2523 2524 2525
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2526 2527 2528

        return adam_op

2529
    def _finish_update(self, block, parameters_and_grads):
2530
        r"""Update beta1_pow and beta2_pow accumulator"""
2531 2532 2533
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2534 2535
                self._beta1_pow_acc_str
            )
2536
            beta2_pow_acc = self._get_global_accumulator(
2537 2538
                self._beta2_pow_acc_str
            )
2539 2540 2541

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2542
                outputs = {"Out": beta1_pow_acc}
2543 2544
                attrs = {}
                if isinstance(self._beta1, Variable):
2545 2546
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2547 2548 2549 2550 2551 2552 2553
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2554 2555
                else:
                    attrs['scale'] = self._beta1
2556 2557 2558 2559 2560 2561 2562
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2563 2564

                inputs = {"X": beta2_pow_acc}
2565
                outputs = {"Out": beta2_pow_acc}
2566 2567
                attrs = {}
                if isinstance(self._beta2, Variable):
2568 2569
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2570 2571 2572 2573 2574 2575 2576
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2577 2578
                else:
                    attrs['scale'] = self._beta2
2579 2580 2581 2582 2583 2584 2585
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2586

2587 2588

class AdamaxOptimizer(Optimizer):
2589
    r"""
2590
    The Adamax optimizer is implemented based on the Adamax Optimization
2591 2592 2593
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2594

2595
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2609
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2610

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2623
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2624
            This parameter is required in dygraph mode. \
2625
            The default value is None in static graph mode, at this time all parameters will be updated.
2626 2627 2628 2629 2630
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2631 2632 2633
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2634
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2635 2636 2637 2638 2639 2640
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2641

2642 2643 2644 2645 2646
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2647 2648
          import paddle
          paddle.enable_static()
2649 2650 2651 2652 2653 2654 2655 2656

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2657
              data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2658
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2659
              loss = paddle.mean(hidden)
2660
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2661 2662 2663 2664 2665 2666 2667 2668 2669
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2670 2671 2672
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2673
    _beta1_pow_acc_str = "beta1_pow_acc"
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2686 2687 2688 2689
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2690
        super().__init__(
2691 2692 2693 2694 2695 2696
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2697 2698 2699 2700
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
2701 2702 2703
        self._multi_precision = False
        self._master_weights = {}

2704 2705 2706
    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
2707
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._moment_acc_str, master_p)
                self._add_accumulator(self._inf_norm_acc_str, master_p)
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=master_p,
                    fill_value=self._beta1,
                    shape=[1],
                )
                continue
            if (
2719
                self._is_dtype_fp16_or_bf16(p.dtype)
2720 2721 2722
                and not self._multi_precision
            ):
                warnings.warn(
2723
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
2724 2725
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
Q
Qiao Longfei 已提交
2726 2727
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2728 2729 2730 2731 2732 2733
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
2734 2735 2736 2737

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2738 2739 2740 2741
        moment = self._get_accumulator_master(
            self._moment_acc_str, param_and_grad[0]
        )
        inf_norm = self._get_accumulator_master(
2742 2743
            self._inf_norm_acc_str, param_and_grad[0]
        )
2744
        beta1_pow_acc = self._get_accumulator_master(
2745 2746
            self._beta1_pow_acc_str, param_and_grad[0]
        )
2747

2748 2749
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
2750 2751 2752 2753 2754 2755
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
姜永久 已提交
2756
        if in_dygraph_mode():
2757 2758 2759 2760 2761 2762 2763
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
2764
                master_weight,
2765 2766 2767
                self._beta1,
                self._beta2,
                self._epsilon,
2768
                find_master,
2769
            )
2770 2771
        else:
            # create the adamax optimize op
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": beta1_pow_acc,
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm,
            }
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            attrs = {
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "multi_precision": find_master,
            }

2796 2797
            adamax_op = block.append_op(
                type=self.type,
2798 2799 2800
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
2801 2802
                stop_gradient=True,
            )
2803

2804
            return adamax_op
2805

2806
    def _finish_update(self, block, parameters_and_grads):
2807
        """Update Beta1 Power accumulator"""
2808
        assert isinstance(block, framework.Block)
2809
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2810
            if grad is None or param.trainable is False:
2811
                continue
2812 2813 2814
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
2815
                beta1_pow_acc = self._get_accumulator_master(
2816 2817
                    self._beta1_pow_acc_str, param
                )
姜永久 已提交
2818 2819
                if in_dygraph_mode():
                    tmp = _C_ops.scale(beta1_pow_acc, self._beta1, 0.0, True)
2820 2821
                    beta1_pow_acc.copy_(tmp, False)
                else:
2822 2823 2824 2825 2826 2827 2828
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
2829 2830


2831
class DpsgdOptimizer(Optimizer):
2832
    r"""
2833 2834 2835 2836 2837 2838 2839 2840
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2841 2842
          import paddle
          paddle.enable_static()
2843 2844 2845 2846 2847 2848 2849 2850

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
2851
              data = paddle.static.data(name='X', shape=[-1,1], dtype='float32')
C
Charles-hit 已提交
2852
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2853
              loss = paddle.mean(hidden)
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2871
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2872
            This parameter is required in dygraph mode. \
2873
            The default value is None in static graph mode, at this time all parameters will be updated.
2874 2875 2876 2877
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

2878 2879 2880 2881 2882 2883 2884 2885
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
2886 2887 2888 2889
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2890
        super().__init__(
2891 2892
            learning_rate=learning_rate, parameter_list=parameter_list
        )
2893 2894 2895 2896
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2897 2898 2899 2900 2901 2902 2903
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2904 2905 2906 2907 2908

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
2909
        if self._seed is None:
Z
zhongpu 已提交
2910 2911
            self._seed = 0

姜永久 已提交
2912
        if in_dygraph_mode():
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
2927
        else:
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
2944

2945
            return dpsgd_op
2946 2947


2948
class DecayedAdagradOptimizer(Optimizer):
2949
    r"""
2950 2951 2952
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2953

2954
    The parameter ``param_out`` update rule with gradient ``grad``:
2955 2956 2957 2958 2959 2960 2961

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2962 2963 2964 2965
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2966 2967 2968
    stability to avoid the division by zero error.

    Args:
2969 2970 2971 2972 2973
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2974
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2975
            This parameter is required in dygraph mode. \
2976
            The default value is None in static graph mode, at this time all parameters will be updated.
2977 2978 2979 2980 2981
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2982 2983 2984
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2985
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2986 2987 2988 2989 2990 2991
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2992 2993 2994 2995

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
2996
            import paddle
2997 2998
            import paddle.fluid as fluid

C
Charles-hit 已提交
2999
            paddle.enable_static()
3000
            x = paddle.static.data(name='x', shape=[None, 10], dtype='float32')
C
Charles-hit 已提交
3001 3002
            trans = paddle.static.nn.fc(x, 100)
            cost = paddle.mean(trans)
3003
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
3004
            optimizer.minimize(cost)
3005 3006 3007
    """
    _moment_acc_str = "moment"

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3018 3019 3020 3021
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3022
        super().__init__(
3023 3024 3025 3026 3027 3028
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3042 3043 3044
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3045

姜永久 已提交
3046
        if in_dygraph_mode():
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3059 3060 3061 3062 3063 3064 3065 3066
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3067
                    "LearningRate": self._create_param_lr(param_and_grad),
3068 3069 3070
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3071
                    "MomentOut": moment_acc,
3072
                },
3073 3074 3075
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3076

3077
            return decayed_adagrad_op
3078 3079


3080
class AdadeltaOptimizer(Optimizer):
3081
    r"""
Z
Zeng Jinle 已提交
3082
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3083

Z
Zeng Jinle 已提交
3084
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3085 3086 3087
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3088

Z
Zeng Jinle 已提交
3089 3090
    .. math::

Z
Zeng Jinle 已提交
3091
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3092

Z
Zeng Jinle 已提交
3093
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3094

Z
Zeng Jinle 已提交
3095
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3096 3097

    Args:
Z
Zeng Jinle 已提交
3098 3099 3100
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3101
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3102
            This parameter is required in dygraph mode. \
3103
            The default value is None in static graph mode, at this time all parameters will be updated.
3104 3105 3106 3107 3108
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3109 3110 3111
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3112
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3113 3114 3115
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3116 3117 3118 3119

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
3120
            import paddle
3121
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3122

C
Charles-hit 已提交
3123
            paddle.enable_static()
3124
            image = paddle.static.data(name='image', shape=[None, 28], dtype='float32')
C
Charles-hit 已提交
3125 3126
            fc = paddle.static.nn.fc(image, size=10)
            cost = paddle.mean(fc)
3127 3128
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3129

Z
Zeng Jinle 已提交
3130 3131 3132 3133
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3134
    """
3135

3136 3137 3138
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3149 3150 3151 3152 3153 3154
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3155
        super().__init__(
3156 3157 3158 3159 3160 3161
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3162
        self.type = "adadelta"
3163 3164
        self._multi_precision = False
        self._master_weights = {}
3165 3166 3167 3168
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3169 3170
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3171 3172

        for p in parameters:
3173
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
3174 3175 3176 3177 3178 3179 3180
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._avg_squared_grad_acc_str, master_p)
                self._add_accumulator(
                    self._avg_squared_update_acc_str, master_p
                )
                continue
            if (
3181
                self._is_dtype_fp16_or_bf16(p.dtype)
3182 3183 3184
                and not self._multi_precision
            ):
                warnings.warn(
3185
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
3186 3187
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
3188 3189 3190 3191
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3192 3193
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3194

3195
        avg_squared_grad_acc = self._get_accumulator_master(
3196 3197
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3198
        avg_squared_update_acc = self._get_accumulator_master(
3199 3200
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3201 3202 3203

        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
3204 3205 3206 3207 3208 3209
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
3210

姜永久 已提交
3211
        if in_dygraph_mode():
3212 3213 3214 3215 3216
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
3217
                self._create_param_lr(param_and_grad),
3218
                master_weight,
3219 3220
                self._rho,
                self._epsilon,
3221
                find_master,
3222
            )
3223 3224
        else:
            # Create the adadelta optimizer op
3225 3226 3227 3228 3229
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc,
3230
                "LearningRate": self._create_param_lr(param_and_grad),
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

3242 3243
            adadelta_op = block.append_op(
                type=self.type,
3244 3245 3246 3247 3248 3249
                inputs=inputs,
                outputs=outputs,
                attrs={
                    "epsilon": self._epsilon,
                    "rho": self._rho,
                    "multi_precision": find_master,
3250 3251 3252
                },
                stop_gradient=True,
            )
3253

3254
            return adadelta_op
3255 3256


Q
qingqing01 已提交
3257
class RMSPropOptimizer(Optimizer):
3258
    r"""
Q
qingqing01 已提交
3259 3260 3261 3262 3263 3264 3265 3266
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3267
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3268 3269 3270 3271

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3272
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3273 3274 3275 3276 3277 3278

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3279
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3295 3296 3297 3298
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3299
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3300 3301 3302 3303 3304
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3305 3306 3307
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3308
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3309
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3310
        momentum(float): :math:`\\beta` in equation is the momentum term,
3311
            default is 0.0.
3312 3313 3314 3315
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3316
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3317
            This parameter is required in dygraph mode. \
3318
            The default value is None in static graph mode, at this time all parameters will be updated.
3319 3320 3321 3322 3323
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3324 3325 3326
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3327
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3328 3329
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3330 3331 3332 3333 3334 3335 3336

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3337 3338 3339 3340
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3341
            paddle.enable_static()
3342 3343 3344
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
3345 3346
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
3347
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3348
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3349
                avg_cost = paddle.mean(cost)
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3363 3364 3365 3366
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3367
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3381
        super().__init__(
3382 3383 3384 3385 3386 3387
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3401
        self._centered = centered
3402 3403 3404
        self._multi_precision = False
        self._master_weights = {}

Q
qingqing01 已提交
3405 3406 3407 3408 3409
    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
3410
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
3411 3412 3413 3414 3415 3416
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._momentum_acc_str, master_p)
                self._add_accumulator(self._mean_square_acc_str, master_p)
                self._add_accumulator(self._mean_grad_acc_str, master_p)
                continue
            if (
3417
                self._is_dtype_fp16_or_bf16(p.dtype)
3418 3419 3420
                and not self._multi_precision
            ):
                warnings.warn(
3421
                    "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
3422 3423
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
Q
qingqing01 已提交
3424 3425
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3426
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3427 3428 3429 3430 3431

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3432
        momentum_acc = self._get_accumulator_master(
3433 3434
            self._momentum_acc_str, param_and_grad[0]
        )
3435
        mean_square_acc = self._get_accumulator_master(
3436 3437
            self._mean_square_acc_str, param_and_grad[0]
        )
3438
        mean_grad_acc = self._get_accumulator_master(
3439 3440
            self._mean_grad_acc_str, param_and_grad[0]
        )
3441 3442
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
3443 3444 3445 3446 3447 3448
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
C
caozhou 已提交
3449
        if in_dygraph_mode():
3450 3451 3452 3453 3454 3455 3456
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
3457
                master_weight,
3458 3459 3460 3461
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
3462
                find_master,
3463
            )
C
caozhou 已提交
3464
            return None
3465
        else:
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "MeanGrad": mean_grad_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }

            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

3486 3487
            rmsprop_op = block.append_op(
                type=self.type,
3488 3489
                inputs=inputs,
                outputs=outputs,
3490 3491 3492 3493
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3494
                    "centered": self._centered,
3495
                    "multi_precision": find_master,
3496
                },
3497 3498
                stop_gradient=True,
            )
Q
qingqing01 已提交
3499

3500
            return rmsprop_op
Q
qingqing01 已提交
3501 3502


Q
qiaolongfei 已提交
3503
class FtrlOptimizer(Optimizer):
3504
    r"""
Q
qiaolongfei 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3543 3544 3545 3546 3547
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3548
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3549
            This parameter is required in dygraph mode. \
3550
            The default value is None in static graph mode, at this time all parameters will be updated.
3551 3552 3553 3554 3555
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3556 3557 3558
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3559
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3560 3561
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3562 3563 3564 3565 3566 3567 3568

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3569 3570 3571 3572
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3573 3574
            paddle.enable_static()

3575 3576 3577
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
3578 3579
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
3580
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3581
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3582
                avg_cost = paddle.mean(cost)
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3595

3596
    NOTE:
C
chengduo 已提交
3597
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3598 3599 3600 3601 3602
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3614
        super().__init__(
3615 3616 3617 3618 3619 3620
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3641 3642 3643 3644 3645 3646
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
姜永久 已提交
3647
        if in_dygraph_mode():
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
3664 3665

        else:
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
3687

3688
            return ftrl_op
Q
qiaolongfei 已提交
3689 3690


Y
Yibing Liu 已提交
3691
class LambOptimizer(AdamOptimizer):
3692
    r"""
Y
Yibing Liu 已提交
3693 3694
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3695 3696 3697
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3698
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3699 3700 3701 3702 3703

    The updating of parameters follows:

    ..  math::

3704
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3705

Y
Yibing Liu 已提交
3706
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3707

3708 3709 3710 3711
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3712
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3713

Y
Yibing Liu 已提交
3714
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3715 3716


3717
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3718 3719 3720
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3721 3722 3723 3724 3725 3726 3727 3728
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3729
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3730
            This parameter is required in dygraph mode. \
3731
            The default value is None in static graph mode, at this time all parameters will be updated.
3732 3733 3734 3735 3736
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3737 3738
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3739 3740 3741
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3742 3743
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3744
            Default None.
3745
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3746
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3747 3748 3749

    Examples:
        .. code-block:: python
3750

2
201716010711 已提交
3751
            import paddle
3752
            import paddle.fluid as fluid
2
201716010711 已提交
3753
            paddle.enable_static()
Y
Yibing Liu 已提交
3754

3755
            data = paddle.static.data(name='x', shape=[-1, 5], dtype='float32')
C
Charles-hit 已提交
3756
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3757
            cost = paddle.mean(hidden)
Y
Yibing Liu 已提交
3758

Y
Yibing Liu 已提交
3759 3760 3761 3762 3763
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3764 3765 3766 3767 3768 3769 3770
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
3784 3785 3786 3787 3788
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3789
        super().__init__(
3790 3791 3792 3793 3794 3795 3796 3797 3798
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
3799 3800
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3801
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3802 3803 3804

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3805
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3806

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
3824 3825 3826
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3827
        lr = self._create_param_lr(param_and_grad)
3828
        master_weight = None
姜永久 已提交
3829
        if in_dygraph_mode():
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
3854
            return None
Y
Yibing Liu 已提交
3855

Y
Yibing Liu 已提交
3856
        # create the lamb optimize op
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
3883 3884 3885 3886

        return lamb_op


3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3900
Dpsgd = DpsgdOptimizer
3901
DecayedAdagrad = DecayedAdagradOptimizer
3902
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3903
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3904
Ftrl = FtrlOptimizer
3905
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3906
Lamb = LambOptimizer
3907 3908 3909


class ModelAverage(Optimizer):
3910
    r"""
3911
    :api_attr: Static Graph
S
swtkiwi 已提交
3912

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3941 3942

    Args:
3943 3944 3945
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3946 3947 3948 3949 3950
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3951 3952 3953
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3954

3955
    Examples:
Q
qiaolongfei 已提交
3956 3957 3958

      .. code-block:: python

2
201716010711 已提交
3959
        import paddle
3960 3961
        import paddle.fluid as fluid
        import numpy
2
201716010711 已提交
3962
        paddle.enable_static()
3963 3964 3965 3966

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3967

3968 3969 3970 3971
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3972
            data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
3973
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3974
            loss = paddle.mean(hidden)
3975 3976 3977 3978 3979 3980
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3981
                                                         max_average_window=12500)
3982 3983

            exe.run(startup_program)
3984 3985 3986 3987 3988
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3989 3990

            # apply ModelAverage
3991
            with model_average.apply(exe):
3992 3993 3994 3995
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3996 3997
    """

3998 3999 4000 4001 4002 4003 4004 4005
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
姜永久 已提交
4006
        if in_dygraph_mode():
Z
zhongpu 已提交
4007
            raise Exception("In dygraph, don't support ModelAverage.")
4008
        super().__init__(0.0, regularization=regularization, name=name)
4009 4010 4011
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
4012

4013
        self.params_grads = []
4014 4015 4016
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
4017
            if param.do_model_average != False:
4018
                grad = param.block.create_var(
4019 4020 4021
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
4022 4023
                    dtype=param.dtype,
                    persistable=False,
4024 4025
                    stop_gradient=True,
                )
4026
                self.params_grads.append((param, grad))
4027

4028
        for param, grad in self.params_grads:
4029 4030
            if grad is None:
                continue
X
Xin Pan 已提交
4031
            with param.block.program._optimized_guard(
4032 4033
                [param, grad]
            ), name_scope('move_average'):
4034
                self._append_average_accumulate_op(param)
4035

4036 4037 4038 4039
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
4040
                self._add_average_apply_op(block, param_grad)
4041 4042 4043 4044 4045

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
4046
                self._add_average_restore_op(block, param_grad)
4047

4048
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
4049 4050 4051 4052 4053 4054
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
4055 4056
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
4057
        old_num_accumulates = block._clone_variable(
4058 4059
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
4060
        num_updates = block._clone_variable(
4061 4062
            self._get_accumulator('num_updates', param)
        )
4063
        # backup param value to grad
4064
        paddle.assign(param, output=grad)
4065
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
4066 4067
        tmp = paddle.add_n([num_accumulates, old_num_accumulates])
        sum = paddle.add_n([sum_1, sum_2, sum_3])
4068
        tmp = paddle.cast(
4069
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
4070
        )
4071
        sum = paddle.cast(
4072
            x=sum, dtype='float32' if self._dtype is None else self._dtype
4073
        )
4074
        paddle.assign(paddle.divide(sum, tmp), output=param)
4075 4076

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
4077 4078
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
4079
        paddle.assign(grad, output=param)
4080 4081 4082 4083 4084 4085

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4122

S
rename  
sneaxiy 已提交
4123
    @signature_safe_contextmanager
4124
    def apply(self, executor, need_restore=True):
4125 4126
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4127 4128

        Args:
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4140 4141
            import paddle
            paddle.enable_static()
4142 4143 4144 4145 4146 4147 4148 4149 4150

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
4151
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4152
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4153
                loss = paddle.mean(hidden)
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4175
        """
4176 4177 4178 4179 4180 4181
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4182 4183

    def restore(self, executor):
4184 4185
        """
        Restore ``Parameter`` values of current model.
4186

4187
        Args:
4188 4189 4190 4191 4192 4193 4194 4195
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4196 4197
            import paddle
            paddle.enable_static()
4198 4199 4200 4201 4202 4203 4204 4205 4206

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
4207
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4208
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4209
                loss = paddle.mean(hidden)
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4234
        """
4235
        executor.run(self.restore_program)
4236 4237


4238
class ExponentialMovingAverage:
4239
    r"""
S
swtkiwi 已提交
4240

4241 4242 4243 4244 4245 4246
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4247
        \text{EMA}_0 & = 0
4248

4249
        \text{EMA}_t & = \text{decay} * \text{EMA}_{t-1} + (1 - \text{decay}) * \theta_t
4250

4251 4252 4253
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4254
    the **restore()** method is used to restore the parameters.
4255

4256 4257
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
4258
    :math:`(1 - \text{decay}^t)` , i.e., the actual EMAs applied to parameters
4259
    when calling **apply()** method would be
4260 4261

    ..  math::
4262

4263
        \widehat{\text{EMA}}_t = \frac{\text{EMA}_t}{1 - \text{decay}^t}
4264

4265 4266
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4267
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4268
    allows users to pass a Variable to schedule the decay rate, in this case,
4269
    the actual decay rate becomes
4270

4271
    ..  math::
4272

4273
        \min(\text{decay}, \frac{1 + \text{thres_steps}}{10 + \text{thres_steps}})
4274 4275

    Usually **thres_steps** can be the global training steps.
4276 4277 4278


    Args:
4279 4280 4281
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4282 4283 4284 4285


    Examples:

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4314
                    feed={'x': data},
4315 4316 4317 4318 4319 4320
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4321
                        feed={'x': data},
4322 4323 4324 4325 4326 4327
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4328
                        feed={'x': data},
4329 4330 4331
                        fetch_list=[hidden.name])
                ema.restore(exe)

4332 4333
    """

4334
    def __init__(self, decay=0.999, thres_steps=None, name=None):
姜永久 已提交
4335
        if in_dygraph_mode():
Z
zhongpu 已提交
4336
            raise Exception(
4337 4338
                "In dygraph, don't support ExponentialMovingAverage."
            )
4339
        self._decay = decay
4340
        self._thres_steps = thres_steps
4341
        self._name = name if name is not None else ''
4342 4343
        self._decay_var = self._get_ema_decay()

4344
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4345
        self._params_tmps = []
4346
        for param in default_main_program().global_block().all_parameters():
4347
            if param.do_model_average != False:
4348 4349 4350 4351 4352 4353 4354 4355
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4356
                self._params_tmps.append((param, tmp))
4357

Y
Yibing Liu 已提交
4358 4359
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4360 4361 4362
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4363
                self._ema_vars[param.name] = self._create_ema_vars(param)
4364 4365 4366 4367

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4368
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4369
            for param, tmp in self._params_tmps:
4370 4371
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4372
                ema = block._clone_variable(self._ema_vars[param.name])
4373
                paddle.assign(param, output=tmp)
4374
                # bias correction
Q
qizhaoaoe 已提交
4375 4376 4377 4378 4379 4380
                param_val = paddle.static.nn.cond(
                    global_step > 0,
                    lambda: ema / (1.0 - decay_pow),
                    lambda: ema,
                )
                paddle.assign(param_val, output=param)
4381 4382 4383
        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4384
            for param, tmp in self._params_tmps:
4385 4386
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
4387
                paddle.assign(tmp, output=param)
4388

4389 4390
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
4391
            decay_var = paddle.static.create_global_var(
4392 4393 4394 4395
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4396 4397
                name="scheduled_ema_decay_rate",
            )
4398 4399 4400

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
Q
qizhaoaoe 已提交
4401 4402 4403 4404 4405 4406
                decay_val = paddle.static.nn.cond(
                    decay_t < self._decay,
                    lambda: decay_t,
                    lambda: np.array([self._decay], dtype=np.float32),
                )
                paddle.assign(decay_val, decay_var)
4407 4408 4409
        return decay_var

    def _get_decay_pow(self, block):
4410
        global_step = paddle.static.create_global_var(
4411 4412 4413 4414 4415 4416
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4417
        global_step = paddle.cast(global_step, "float32")
4418
        decay_var = block._clone_variable(self._decay_var)
4419
        decay_pow_acc = paddle.pow(decay_var, global_step)
4420
        return decay_pow_acc, global_step
4421

Y
Yibing Liu 已提交
4422
    def _create_ema_vars(self, param):
4423
        param_ema = paddle.static.create_global_var(
4424 4425 4426 4427
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4428 4429
            persistable=True,
        )
4430 4431 4432

        return param_ema

Y
Yibing Liu 已提交
4433
    def update(self):
4434 4435
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4436 4437
        train program.
        """
4438
        global_step = layers.autoincreased_step_counter(
4439 4440
            counter_name=self._step_counter_name
        )
4441
        param_master_emas = []
Y
Yibing Liu 已提交
4442
        for param, tmp in self._params_tmps:
4443 4444 4445
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4446
                param_ema = self._ema_vars[param.name]
4447
                if param.name + '.master' in self._ema_vars:
4448 4449 4450 4451
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4452 4453
                        1 - self._decay_var
                    )
4454
                    paddle.assign(ema_t, output=param_ema)
4455 4456 4457 4458 4459 4460 4461 4462 4463

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4464 4465 4466
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4467

4468 4469 4470 4471
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4472

4473 4474
        Args:
            executor (Executor): The Executor to execute applying.
4475
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4476
                applying. Default True.
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4487

4488 4489 4490 4491
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4492 4493


4494
class PipelineOptimizer:
4495
    """
4496
        :api_attr: Static Graph
S
swtkiwi 已提交
4497

4498 4499 4500 4501
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4502

4503
    Args:
4504 4505 4506
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4507

4508 4509
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4510

C
Charles-hit 已提交
4511
            import paddle
4512
            import paddle.fluid as fluid
H
hutuxian 已提交
4513
            import paddle.fluid.layers as layers
G
GGBond8488 已提交
4514
            import numpy as np
H
hutuxian 已提交
4515

C
Charles-hit 已提交
4516
            paddle.enable_static()
4517
            with fluid.device_guard("gpu:0"):
G
GGBond8488 已提交
4518 4519
                x = paddle.static.data(name='x', shape=[-1, 1], dtype='int64', lod_level=0)
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='int64', lod_level=0)
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
C
Charles-hit 已提交
4531 4532
                fc = paddle.static.nn.fc(x=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = paddle.mean(fc)
H
hutuxian 已提交
4533
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4534
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4535
            optimizer.minimize(loss)
4536 4537 4538 4539 4540 4541 4542 4543 4544

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4545 4546
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4547 4548
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4549
            exe.train_from_dataset(
4550
                    fluid.default_main_program())
4551
            data_loader.reset()
4552 4553
    """

4554
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4555
        self._device = 'cpu'
4556
        if core.is_compiled_with_cuda():
4557
            self._device = "gpu"
姜永久 已提交
4558
        if in_dygraph_mode():
Z
zhongpu 已提交
4559
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4560 4561 4562
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
4563
            paddle.static.amp.decorator.OptimizerWithMixedPrecision,
4564
        )
4565
        if not isinstance(optimizer, valid_optimizers):
4566 4567 4568 4569 4570 4571 4572
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4573
        self._optimizer = optimizer
4574 4575 4576 4577 4578 4579

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4580 4581 4582
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4583
        self._num_microbatches = num_microbatches
4584 4585 4586
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4587
        self._start_cpu_core_id = start_cpu_core_id
4588 4589 4590 4591 4592 4593
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4594
        self._param_device_map = None
4595 4596
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4597 4598
        self.output_var_to_op = None
        self.input_var_to_op = None
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4628 4629 4630 4631
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
4632 4633
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
4634 4635 4636
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4637
                'ring_id': self.global_ring_id,
4638
                self._op_role_key: self._op_role.Optimize,
4639 4640 4641
                'use_calc_stream': True,
            },
        )
4642 4643
        offset += 1
        if op.type == "reduce_any":
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4655
            offset += 1
4656
        return offset
H
hutuxian 已提交
4657

4658
    def _create_vars(self, block, ori_block):
4659
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4660
        used_var_set = set()
4661 4662 4663 4664 4665 4666 4667 4668 4669
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4670
            # For op process vars on all devices, remove its input
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4696 4697 4698 4699 4700 4701 4702 4703
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4704
            for var in vars:
4705 4706
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4707
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4708 4709
                    continue
                used_var_set.add(var)
4710 4711
                if block._find_var_recursive(str(var)):
                    continue
4712
                source_var = ori_block._var_recursive(str(var))
4713
                if source_var.type == core.VarDesc.VarType.READER:
4714
                    dest_var = block.create_var(
4715 4716
                        name=var,
                        type=core.VarDesc.VarType.READER,
4717 4718
                        persistable=source_var.persistable,
                    )
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
4730 4731
                        error_clip=source_var.error_clip,
                    )
4732
                else:
4733
                    dest_var = block._clone_variable(source_var, False)
4734
                self._clone_var_attr(dest_var, source_var)
4735 4736 4737
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
4738 4739
            if self.use_sharding or not should_insert:
                continue
4740 4741 4742 4743
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4744

4745
    def _is_loss_grad_op(self, op):
4746 4747
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4748
        return op_role & int(self._op_role.Backward) and op_role & int(
4749 4750
            self._op_role.Loss
        )
4751

4752
    def _is_forward_op(self, op):
4753 4754 4755
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
4756

4757
    def _is_backward_op(self, op):
4758
        return self._op_role_key in op.attr_names and (
4759 4760
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
4761 4762 4763 4764

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4765 4766

    def _is_optimize_op(self, op):
4767
        return self._op_role_key in op.attr_names and (
4768 4769
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
4770 4771

    def _is_update_op(self, op):
4772 4773 4774 4775 4776
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
4777

4778
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4779
        """
4780
        Split a program into sections according to devices that ops run on.
4781
        The op whose op_device attr is "gpu:all" is copied to all sections.
4782 4783 4784

        Args:
            main_program (Program): the main program
4785
            devices: all used devices
H
hutuxian 已提交
4786
        """
4787
        # Map from device to its corresponding section program info
4788
        device_program_map = defaultdict(Program)
4789

4790
        block = main_program.block(0)
4791 4792
        for op in block.ops:
            device = op.attr(self._op_device_key)
4793
            # Copy ops whose op_device set to "gpu:all" to all sections.
4794
            if device == f"{self._device}:all":
4795
                for device in devices:
4796 4797
                    program = device_program_map[device]
                    op_desc = op.desc
4798
                    ap_op = program.global_block().desc.append_op()
4799
                    ap_op.copy_from(op_desc)
4800
                    ap_op._set_attr(self._op_device_key, "")
4801 4802 4803
            else:
                program = device_program_map[device]
                op_desc = op.desc
4804
                ap_op = program.global_block().desc.append_op()
4805
                ap_op.copy_from(op_desc)
4806
                ap_op._set_attr(self._op_device_key, "")
4807

4808
        program_list = []
4809
        for key in devices:
4810
            program = device_program_map[key]
4811 4812
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4813

4814
        return program_list
H
hutuxian 已提交
4815

4816 4817 4818 4819 4820 4821 4822
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4823 4824
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
4825
            'or beta2_pow_acc.'
4826 4827
        )
        param_name = var_name[0 : var_name.index('_beta')]
4828 4829 4830
        device = self._param_device_map[param_name]
        return device

4831 4832
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4833 4834 4835
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4836 4837
            if device == "cpu":
                assert op.type == "fill_constant", (
4838
                    "For ops in startup program with the op_device attribute "
4839 4840
                    "of cpu, they must be of type fill_constant."
                )
4841 4842 4843
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4844
            if device:
4845
                device_index = int(device.split(':')[1])
4846
            else:
4847 4848
                # LR related ops
                device = None
4849 4850
            if device and device_index != device_id:
                continue
4851
            op_desc = op.desc
4852
            ap_op = new_startup_program.global_block().desc.append_op()
4853 4854 4855
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4856
        self._create_vars(new_startup_program.global_block(), block)
4857 4858
        return new_startup_program

4859
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4860
        """
4861
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4862
        """
4863 4864 4865 4866 4867 4868
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4869
        post_ops = self.input_var_to_op[var_name]
4870
        if post_ops is None:
4871
            return None
4872 4873 4874 4875 4876 4877
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4878

4879
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4880
        """
4881 4882
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4883
        """
4884
        prev_ops = self.output_var_to_op[var_name]
4885
        if prev_ops is None:
4886
            return None
4887 4888 4889 4890
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4891
                break
4892
        return result_op
4893 4894

    def _rename_arg(self, op, old_name, new_name):
4895 4896
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4897

4898
    def _create_var(self, block, ref_var, name, dtype=None):
4899 4900 4901 4902 4903 4904 4905 4906
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4907
            dtype=ref_var.dtype if dtype is None else dtype,
4908 4909
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4910 4911
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4912 4913
            need_check_feed=ref_var.desc.need_check_feed(),
        )
4914
        self._clone_var_attr(new_var, ref_var)
4915 4916
        return new_var

4917 4918 4919 4920 4921
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4922 4923 4924 4925 4926 4927
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4928

4929 4930 4931 4932 4933 4934
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4935
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4936
        """
4937
        Get the op_device attribute of a op.
H
hutuxian 已提交
4938
        """
4939 4940 4941 4942 4943
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
4944
        if device:
4945 4946
            assert device[0:3] == 'gpu', (
                "Now, only gpu devices are "
4947
                "supported in pipeline parallemism."
4948
            )
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4962
            op._set_attr(self._op_device_key, f"{self._device}:all")
4963 4964 4965 4966
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
4967 4968 4969
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
4970 4971 4972 4973
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
4974 4975 4976 4977
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
4978 4979 4980
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4981 4982
        elif (op.type == "cast" or op.type == "scale") and (
            self._is_backward_op(op) or self._is_forward_op(op)
4983
        ):
4984
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4985 4986
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4987
            # for checkpoint offloading
4988 4989 4990
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
4991 4992 4993
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4994
                post_op = self._find_post_op(idx, output_name)
4995 4996 4997
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
4998
            else:
4999
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
5000 5001 5002
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
5003 5004 5005
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
5006 5007 5008
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
5009 5010 5011 5012 5013 5014 5015 5016 5017
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
5018
            param_name = self._strip_grad_suffix(grad_name[0])
5019 5020 5021 5022 5023
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
5024 5025
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
5026
                "and regularization ops must have op_role_var attribute."
5027
            )
5028
            op_role_var = op.attr(self._op_role_var_key)
5029 5030
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
5031
                "regularization ops must have two elements."
5032
            )
5033 5034
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
5035
            # For sum op added by global gradient clip, it must be
5036
            # put on all devices
5037 5038 5039 5040 5041 5042 5043
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
5044
                device = f"{self._device}:all"
5045
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
5046
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
5047
            op._set_attr(self._op_device_key, f"{self._device}:all")
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
5058 5059
        else:
            other_known_ops = [
5060 5061 5062 5063 5064 5065
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
5066
            ]
5067 5068 5069
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
5070
                "is {}".format(other_known_ops, op.type)
5071
            )
5072
            assert self._is_optimize_op(op)
5073
            op._set_attr(self._op_device_key, f"{self._device}:all")
5074 5075

    def _add_op_device_attr(self, block):
5076
        """
5077
        Add op_device attrribute for ops in block that have
5078
        not that attribute set.
5079
        """
5080
        for idx, op in enumerate(list(block.ops)):
5081 5082 5083 5084 5085
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
5086
                # Copy read related ops to all section to make them exit
5087 5088 5089 5090
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5091
                op._set_attr(self._op_device_key, f"{self._device}:all")
5092 5093
                continue
            # op_device attribute has been set
5094 5095
            if self._get_op_device_attr(op):
                continue
5096
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5097

5098 5099
    def _check_validation(self, block):
        """
5100
        Check whether ops in a block have both the op_device and the
5101 5102
        op_role attributes set.
        Then, return all devices in order.
5103
        """
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5114
        for op in block.ops:
5115
            if not op._has_kernel(op.type):
5116 5117 5118 5119 5120 5121
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5122
            assert op.has_attr(
5123 5124
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5125
            op_role = op.attr(self._op_role_key)
5126 5127 5128 5129 5130
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5131

5132
            assert op.has_attr(
5133 5134 5135 5136
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5137 5138

            device = op.attr(self._op_device_key)
5139 5140 5141 5142 5143 5144 5145
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5146

5147
            dev_type = device.split(':')[0]
5148 5149
            assert dev_type == "gpu", (
                "Now only gpu devices are supported "
5150 5151
                "for pipeline parallelism."
            )
5152 5153

            if device not in device_list:
5154
                device_list.append(device)
5155

5156
        return device_list
5157

5158
    def _insert_sendrecv_ops_for_boundaries(self, block):
5159
        """
5160
        Insert a pair of send and recv ops for every two
5161 5162
        consecutive ops on different devices.
        """
5163
        # A map from var to device where op takes it as input,
5164
        # avoiding multiple send and recv ops.
5165
        input_var_to_device = dict()
5166 5167 5168 5169 5170 5171 5172 5173
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5174
            'first_optimize_index': first_optimize_index,
5175
        }
5176

5177
        for index, op in enumerate(list(block.ops)):
5178
            cur_device = op.attr(self._op_device_key)
5179 5180
            if cur_device == f"{self._device}:all":
                continue
5181 5182
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5183
                # skip data var
5184 5185
                if var.is_data:
                    continue
5186
                prev_device = None
5187 5188 5189

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5190 5191
                    if var_name not in self._param_device_map:
                        continue
5192
                    prev_device = self._param_device_map[var_name]
5193

5194
                if not prev_device:
5195 5196 5197
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5198

5199 5200
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5201

5202 5203
                if prev_device == cur_device:
                    continue
5204

5205 5206 5207 5208 5209 5210 5211
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5212 5213 5214 5215
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5216 5217
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5218
                        'please check the op_role of op={}'.format(op)
5219
                    )
5220 5221

                    if is_forward:
5222 5223
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5224
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5225 5226 5227
                                prev_id, cur_id, op
                            )
                        )
5228
                    elif is_backward:
5229 5230
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5231
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5232 5233 5234
                                prev_id, cur_id, op
                            )
                        )
5235

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5246 5247
                            (cur_dev, prev_dev)
                        )
5248 5249 5250 5251 5252
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5253 5254
                            (cur_dev, prev_dev)
                        )
5255 5256 5257 5258 5259 5260
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5261
                    var = block.vars[var_name]
5262 5263 5264
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5265 5266 5267 5268 5269 5270 5271
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5272

5273
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5274
                        block._insert_op_without_sync(
5275
                            index=index + extra_index_info['index'],
5276 5277 5278
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5279
                                self._op_device_key: prev_dev,
5280 5281 5282
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5283 5284 5285
                                'ring_id': ring_id,
                            },
                        )
5286
                        extra_index_info['index'] += 1
5287
                        var_shape = list(var.shape)
5288 5289 5290 5291 5292
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5293
                        block._insert_op_without_sync(
5294
                            index=index + extra_index_info['index'],
5295 5296 5297
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5298
                                'out_shape': var_shape,
5299
                                'dtype': var.dtype,
5300
                                self._op_device_key: cur_dev,
5301 5302 5303
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5304 5305 5306
                                'ring_id': ring_id,
                            },
                        )
5307
                        extra_index_info['index'] += 1
5308
                    elif self.schedule_mode == '1F1B':  # 1F1B
5309
                        var_shape = list(var.shape)
5310 5311 5312 5313 5314
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5315

5316
                        numel = np.prod(var_shape)
5317 5318 5319
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5342 5343
                                },
                            )
5344 5345 5346
                            extra_index_info['index'] += 1
                            return

5347 5348
                        _check_stage(cur_id, prev_id)

5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5359
                        extra_index_info['index'] += 1
5360 5361
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5362 5363 5364
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5365
                        block._insert_op_without_sync(
5366
                            index=index + extra_index_info['index'],
5367
                            type='send_v2'
5368 5369
                            if not use_mp or is_param
                            else 'partial_send',
5370 5371
                            inputs={'X': var},
                            attrs={
5372
                                self._op_device_key: prev_dev,
5373 5374 5375 5376
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5377 5378 5379
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5380 5381
                            },
                        )
5382
                        extra_index_info['index'] += 1
5383 5384 5385
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5386 5387
                                'first_optimize_index'
                            ]
5388 5389 5390 5391
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5392
                        sync_comm_op = block._insert_op_without_sync(
5393
                            index=insert_index + extra_index_info['index'],
5394 5395 5396 5397
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5398
                                self._op_device_key: prev_dev,
5399
                                self._op_role_key: new_op_role,
5400
                                'ring_id': ring_id,
5401 5402
                            },
                        )
5403
                        if int(op_role) == int(self._op_role.Forward):
5404
                            sync_comm_op._set_attr('pipeline_flag', '')
5405
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5406
                        block._insert_op_without_sync(
5407
                            index=index + extra_index_info['index'],
5408
                            type='recv_v2'
5409 5410
                            if not use_mp or is_param
                            else 'partial_recv',
5411 5412 5413 5414
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5415
                                self._op_device_key: cur_dev,
5416 5417 5418
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5419 5420 5421 5422
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5423 5424
                            },
                        )
5425
                        extra_index_info['index'] += 1
5426
                        if use_mp and not is_param:
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5440 5441
                                },
                            )
5442
                            extra_index_info['index'] += 1
5443 5444 5445
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5446 5447
                            "The given value is {}.".format(self.schedule_mode)
                        )
5448

5449 5450 5451 5452
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5453 5454
        block._sync_with_cpp()

5455
    def _insert_loss_scale(self, block):
5456
        """
5457
        Scale the loss corresponding to number of micro-batches.
5458
        """
5459 5460
        if self._num_microbatches == 1:
            return
5461
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5462
            if self._is_loss_grad_op(op):
5463 5464
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5465
                    "but this op is {}".format(op.type)
5466
                )
5467 5468 5469 5470
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5471 5472
                break

5473 5474
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5475 5476
            if not self._is_optimize_op(op):
                continue
5477 5478 5479
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5480 5481
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5482 5483 5484
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5485 5486
                if not core.grad_var_suffix() in name:
                    continue
5487 5488 5489 5490
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5491 5492 5493
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5494 5495 5496 5497
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5498 5499
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5500
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5501 5502
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5503 5504
            return fused_gradient_names

5505 5506 5507
        merged_gradient_names = []
        first_opt_op_idx = None

5508 5509 5510
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5511 5512 5513 5514 5515 5516 5517 5518
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5519
                    continue
5520

5521
            if self._is_backward_op(op) and first_opt_op_idx is None:
5522
                first_opt_op_idx = index + 1
5523 5524
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5525

5526 5527 5528
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5529
                op_role_var = op.attr(self._op_role_var_key)
5530 5531
                if len(op_role_var) == 0:
                    continue
5532 5533
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5534 5535
                    offset = 0
                    param_name = op_role_var[i]
5536 5537 5538 5539
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5540

5541
                    param_grad_name = param_name + core.grad_var_suffix()
5542
                    merged_param_grad_name = param_grad_name + merged_suffix
5543
                    if not block.has_var(merged_param_grad_name):
5544 5545 5546 5547 5548 5549
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5550
                    assert block.has_var(merged_param_grad_name)
5551

5552 5553 5554
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5555
                    block._insert_op(
5556 5557 5558 5559
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5560
                        attrs={
5561 5562 5563
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5564
                            # a trick to run this op once per mini-batch
5565 5566 5567
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5568
                    offset += 1
5569 5570
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5571 5572

                    is_fp16_grad = 'cast_fp16' in grad_name
5573
                    need_cast = is_fp16_grad is not fp16_allreduce
5574 5575 5576 5577 5578 5579

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5580
                        cast_grad_var_name = param_grad_name + '@TMP'
5581
                        cast_grad_var = self._create_var(
5582 5583
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5584
                        cast_grad_var.persistable = False
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5596
                        offset += 1
5597 5598 5599 5600 5601 5602 5603
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5604 5605
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5606 5607
                        },
                    )
5608 5609 5610
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5611 5612
        if not fp16_allreduce:
            return merged_gradient_names
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5647

5648
        return merged_gradient_names
5649

5650 5651 5652
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
5653
        grad_param_pairs = self._sort_grad_param_by_dtype(
5654 5655
            main_block, grad_param_pairs
        )
5656

5657 5658 5659
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
5660
        cur_size = 0.0
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
5671 5672
                stop_gradient=False,
            )
5673
            real_param = main_block.var(param)
5674 5675
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5676 5677 5678 5679
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
5680 5681 5682 5683 5684
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
5685
                grad_param_segments.append(
5686 5687
                    ([real_grad], [real_param], [merged_grad_var])
                )
5688
                last_dtype = real_grad.dtype
5689
                cur_size = 0.0
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5702 5703 5704 5705 5706 5707
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
5708
            # keep the '.cast_fp16' info in the fuse var name
5709 5710 5711 5712 5713 5714 5715 5716 5717
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
5718 5719 5720 5721
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
5722 5723
                stop_gradient=False,
            )
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5749
                outputs={"Output": grads, "FusedOutput": fused_grad},
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5766 5767 5768 5769 5770
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
K
Kim Yann 已提交
5771
                    "set_constant": core.is_compiled_with_custom_device('npu'),
5772
                    "constant": float(0.0),
5773 5774
                },
            )
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
5785
                    "FusedOutput": fused_merged_grad,
5786 5787 5788 5789 5790 5791 5792 5793
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
5794 5795 5796
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
5797 5798 5799 5800 5801 5802 5803 5804 5805
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
5806
            need_cast = is_fp16_grad is not fp16
5807 5808 5809 5810
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
5828 5829 5830 5831 5832 5833 5834
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
5835 5836
                attrs={self._op_role_key: self._op_role.Backward},
            )
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
5865 5866 5867 5868 5869 5870
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5871
        return fused_merged_gradients, first_opt_op_idx
5872

5873 5874 5875
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5895 5896 5897
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
5909 5910
                        (op_role_var[i + 1], op_role_var[i])
                    )
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
5924 5925 5926 5927 5928 5929
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
5930 5931 5932 5933
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5934

5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5953 5954 5955
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
5956
            core.VarDesc.VarType.BF16: 2,
5957 5958 5959 5960 5961 5962 5963 5964 5965
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
5966
        return (
5967
            reduce(lambda x, y: x * y, var.shape, 1)
5968 5969 5970 5971
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
5972

5973 5974
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5975
        for prog in program_list:
5976 5977 5978 5979 5980 5981
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5982 5983
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5984 5985 5986
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5987
                self._create_vars(new_sub_block, origin_sub_block)
5988
                op._set_attr('sub_block', new_sub_block)
5989 5990 5991

    def _get_device_info(self, block):
        for op in block.ops:
5992 5993
            if not op._has_kernel(op.type):
                continue
5994 5995 5996
            op_device = op.attr(self._op_device_key)
            return op_device

5997 5998 5999
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
6000 6001 6002 6003 6004 6005 6006
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
6007
        for prog in program_list:
6008 6009
            block = prog.block(0)
            for var_name in block.vars:
6010 6011
                if var_name == "double_buffer_0":
                    continue
6012
                var = block.var(var_name)
6013 6014
                if not var.persistable:
                    continue
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
6030 6031 6032 6033 6034 6035
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
6036
                        continue
6037 6038
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
6039 6040
                        self._op_role.Optimize.LRSched
                    ):
6041 6042 6043 6044
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
6045 6046
                            "op {}.".format(var_name, op)
                        )
6047 6048 6049 6050 6051
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
6052 6053
            if not var_name in write_info:
                continue
6054 6055 6056 6057 6058

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
6059
            write_dev_index = int(write_device.split(':')[1])
6060 6061
            all_progs = var_info[var_name]
            for prog in all_progs:
6062 6063
                if prog == write_prog:
                    continue
6064 6065 6066
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
6067 6068 6069 6070 6071 6072 6073 6074 6075
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
6076 6077 6078

                write_block._insert_op(
                    index=0,
6079
                    type='send_v2',
6080 6081 6082
                    inputs={
                        'X': write_block.var(var_name),
                    },
6083
                    attrs={
6084 6085
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
6086 6087
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6088 6089 6090 6091 6092
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6093 6094
                read_block._insert_op(
                    index=0,
6095
                    type='recv_v2',
6096 6097
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6098 6099 6100 6101
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6102 6103
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6104 6105 6106 6107 6108
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6109 6110 6111 6112 6113 6114
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6115
                        self._op_device_key: read_device,
6116 6117
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6118 6119 6120 6121
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6122 6123

    def _is_gradient_clip_op(self, op):
6124 6125 6126
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6127 6128

    def _is_regularization_op(self, op):
6129 6130 6131
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6132

6133 6134
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6135 6136 6137
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6138

6139 6140 6141 6142 6143
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6144
        output_var_to_op = defaultdict(list)
6145
        # A map from var to op which takes it as input.
6146
        input_var_to_op = defaultdict(list)
6147

6148
        for index, op in enumerate(block.ops):
6149
            for var_name in op.input_arg_names:
6150
                input_var_to_op[var_name].append([op, index])
6151
            for var_name in op.output_arg_names:
6152 6153 6154 6155 6156 6157 6158 6159
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6160 6161
        if self.schedule_mode != '1F1B':
            return
6162 6163 6164

        block = program.block(0)

6165
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6166 6167
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6168
            if op.type == recv_type and self._is_backward_op(op):
6169 6170 6171
                backward_recv_index = index
                break

6172
        # last pipeline stage
6173 6174
        if backward_recv_index is None:
            return
6175 6176 6177

        offset = 0
        for index, op in enumerate(list(block.ops)):
6178 6179
            if index >= backward_recv_index:
                break
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6196 6197
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6198
        block._sync_with_cpp()
6199

6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6213 6214 6215 6216
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6217
                backward_insert_index = i
6218 6219 6220 6221 6222 6223
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6243 6244 6245 6246 6247 6248 6249
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6250 6251 6252 6253 6254 6255 6256
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6284 6285
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6286

6287 6288 6289
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6290
        main_block = loss.block
6291
        self.origin_main_block = main_block
6292
        main_program = main_block.program
6293 6294
        if startup_program is None:
            startup_program = default_startup_program()
6295

6296 6297
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6298 6299 6300 6301 6302 6303 6304
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6305 6306
            'mp_degree',
            'mp_rank',
6307 6308
        ]
        for key in required_keys:
6309 6310 6311
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6312 6313 6314 6315 6316 6317 6318 6319
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6320
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6321 6322
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6323 6324

        optimize_ops, params_grads = self._optimizer.minimize(
6325 6326
            loss, startup_program, parameter_list, no_grad_set
        )
6327
        self._param_device_map = self._origin_optimizer._param_device_map
6328

6329 6330 6331 6332
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6333 6334 6335
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6347 6348 6349
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6350 6351
            "another in the order of their ids."
        )
6352
        # Step2: add send and recv ops between section boundaries
6353
        self._insert_sendrecv_ops_for_boundaries(main_block)
6354

6355
        # Step3: split program into sections and add pairs of
6356 6357
        # send and recv ops for data var.
        main_program = main_block.program
6358
        program_list = self._split_program(main_program, device_list)
6359
        for p in program_list:
6360
            self._create_vars(p.global_block(), main_block)
6361

L
lilong12 已提交
6362 6363 6364 6365 6366
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6367 6368
                "stages."
            )
L
lilong12 已提交
6369 6370
        else:
            self.local_rank %= len(device_list)
6371 6372 6373
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6374
        # Step4: Special Case: process persistable vars that exist in
6375
        # multiple sections
6376
        # FIXME
6377 6378
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6379

6380
        # Step5: Add sub blocks for section programs
6381 6382
        self._add_sub_blocks(main_block, program_list)

6383
        place_list = []
6384 6385
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6386 6387
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
6388

6389
        # Step6: Split startup program
6390
        new_startup_program = self._split_startup_program(
6391 6392
            startup_program, self.local_rank
        )
6393 6394 6395 6396

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6397
        real_block = program_list[self.local_rank].global_block()
6398 6399
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6400
        if not self.use_sharding:
6401
            # Step7: clear gradients before each mini-batch and
6402 6403 6404 6405 6406
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6407

6408 6409
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
6410 6411 6412
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6413 6414 6415 6416 6417

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6418
        main_program._pipeline_opt = {
H
hutuxian 已提交
6419 6420
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6421
            "pipeline_stage": self.local_rank,
6422
            "num_pipeline_stages": len(device_list),
6423
            "schedule_mode": self.schedule_mode,
6424
            "inner_parallelism": len(device_list),
6425 6426
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6427
            "place_id": place_id,
6428
            "sync_steps": -1,
L
lilong12 已提交
6429
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6430 6431
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6432 6433 6434 6435 6436 6437 6438
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6439 6440


M
mapingshuo 已提交
6441 6442
class RecomputeOptimizer(Optimizer):
    """
6443
        :api_attr: Static Graph
S
swtkiwi 已提交
6444

M
mapingshuo 已提交
6445 6446 6447
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6448
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6449 6450 6451
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6452
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6453 6454 6455
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6456
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6457 6458
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6459

M
mapingshuo 已提交
6460 6461 6462 6463 6464 6465 6466 6467 6468
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

6469
            import paddle
M
mapingshuo 已提交
6470 6471
            import paddle.fluid as fluid
            import numpy as np
6472 6473 6474

            paddle.enable_static()

M
mapingshuo 已提交
6475 6476 6477 6478 6479
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
C
Charles-hit 已提交
6480 6481
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6482 6483 6484 6485 6486
                cost = paddle.nn.functional.cross_entropy(
                    input=prediction, label=input_y,
                    reduction='none', use_softmax=False
                )
                sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6487
                return sum_cost, fc_1, prediction
G
GGBond8488 已提交
6488 6489
            input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
            input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
姜永久 已提交
6512
        if in_dygraph_mode():
Z
zhongpu 已提交
6513
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6514 6515
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6516 6517
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6518
        self.enable_offload = False
M
mapingshuo 已提交
6519 6520

    def _set_checkpoints(self, checkpoints):
6521 6522
        """
        Args:
6523
            checkpoints (list): List of Variable or string
6524 6525 6526 6527 6528
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6529 6530
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6531
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6532 6533
        self._checkpoints = checkpoints

6534
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6535 6536 6537
    def _enable_offload(self):
        self.enable_offload = True

6538 6539
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6540
        """
6541
            :api_attr: Static Graph
S
swtkiwi 已提交
6542

M
mapingshuo 已提交
6543 6544 6545 6546
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6547
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6548 6549 6550 6551

        Examples:
            .. code-block:: python

6552
                import paddle
M
mapingshuo 已提交
6553
                import paddle.fluid as fluid
6554

6555
                paddle.enable_static()
M
mapingshuo 已提交
6556
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6557 6558
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6559 6560 6561 6562 6563
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6564
                    return sum_cost, fc_1, prediction
6565

G
GGBond8488 已提交
6566 6567
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6568 6569
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6570

M
mapingshuo 已提交
6571 6572 6573 6574
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6575 6576
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6577
                except NotImplementedError as e:
6578
                    print(e)
M
mapingshuo 已提交
6579 6580
        """
        raise NotImplementedError(
6581 6582
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

6597
                import paddle
M
mapingshuo 已提交
6598 6599 6600
                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

6601 6602
                paddle.enable_static()

M
mapingshuo 已提交
6603
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6604 6605
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6606 6607 6608 6609 6610
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6611 6612 6613
                    return sum_cost, fc_1, prediction


G
GGBond8488 已提交
6614 6615
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6616 6617 6618 6619 6620
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6621
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6622 6623 6624 6625
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6626
                    no_grad_set=None)
M
mapingshuo 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6637 6638 6639 6640 6641 6642 6643 6644 6645
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6646 6647
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
6648 6649 6650 6651 6652 6653

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6654 6655
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
6656 6657 6658 6659 6660 6661 6662 6663

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6664 6665 6666
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
6693 6694 6695

        return

6696 6697 6698
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
6699 6700 6701 6702 6703 6704 6705 6706
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6707 6708
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
6709 6710

    def _insert_fetch_op(self, idx, varname):
6711 6712 6713 6714 6715
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6716 6717 6718

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6719
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6720 6721

    def _insert_offload_op(self, idx, varname):
6722 6723 6724 6725 6726
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6727
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6728
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6729 6730

    def _insert_sync_op(self, op_idx, checkpoint_name):
6731
        # single stream offload no need sync
J
JZ-LIANG 已提交
6732 6733 6734
        pass

    def _record_fetch_op(self, idx):
6735 6736 6737
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
6738 6739 6740 6741 6742 6743 6744 6745
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
6746 6747 6748 6749 6750
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
6751 6752 6753 6754
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
6755 6756 6757
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
6758 6759 6760 6761 6762 6763
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):
        self.idx2insertions = {}
6764
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
6779 6780
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
6781 6782 6783

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
6784 6785
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
6786 6787
        last_last_fetch_checkpoint = None

6788
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
6789 6790 6791 6792 6793 6794 6795 6796 6797
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
6798 6799 6800
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
6801
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6802
                            if input_var != self.sorted_checkpoint_names[0]:
6803 6804 6805
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
6806

6807
                        # should check the current used checkpoint is ths last fetch one
6808 6809 6810 6811 6812
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
6813 6814 6815
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
6816 6817
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
6818 6819 6820 6821
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
6822 6823 6824
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
6825

6826 6827 6828 6829 6830
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6841
                    logging.debug(
6842 6843
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6844 6845 6846 6847 6848
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
6849 6850 6851 6852 6853
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6854 6855 6856

    def _parse_forward(self):
        self.idx2insertions = {}
6857
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6858 6859 6860 6861 6862 6863 6864
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
6865
                'idx': -1,
J
JZ-LIANG 已提交
6866 6867 6868 6869 6870 6871 6872 6873 6874
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
6875 6876
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
6877 6878
        last_offload_checkpoint = None

6879
        for i, op in enumerate(
6880 6881
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
6882 6883 6884 6885 6886 6887
            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
6888 6889 6890 6891 6892
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
6893 6894 6895

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
6896
                        if last_offload_checkpoint is not None:
6897 6898 6899 6900 6901 6902 6903 6904 6905
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6906
                            else:
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6920 6921 6922 6923 6924
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6925 6926 6927 6928
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
6929 6930
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
6944
                    # sync if last checkpoint has not been sync
6945 6946 6947 6948 6949 6950
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
6951 6952 6953
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
6964
            # record checkpoint usage
J
JZ-LIANG 已提交
6965 6966
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
6967 6968 6969
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
6970 6971 6972
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

6973 6974 6975 6976 6977
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6978 6979 6980
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
6981 6982
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
6983 6984 6985 6986 6987

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
6988 6989
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
6990 6991 6992 6993
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
6994
                    logging.debug(
6995 6996
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6997 6998 6999
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
7000
                    logging.debug(
7001 7002
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7003 7004 7005
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
7006 7007 7008 7009 7010
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7011 7012 7013 7014 7015 7016 7017 7018

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
7019
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
7020 7021 7022 7023 7024 7025
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
7026
        if startup_program is None:
J
JZ-LIANG 已提交
7027
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
7028 7029

        with program_guard(self._main_program, startup_program):
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
7040 7041 7042 7043
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
7044 7045
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
7046
                self.checkpoint_name2pinned_name[
7047 7048
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
7049
                self.checkpoint_name2fetch_name[
7050 7051
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

7065 7066 7067 7068 7069 7070 7071 7072
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
7073 7074 7075 7076 7077 7078 7079
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
7080 7081
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
7082 7083 7084 7085 7086 7087 7088
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

7089
                import paddle
M
mapingshuo 已提交
7090
                import paddle.fluid as fluid
7091

7092 7093
                paddle.enable_static()

M
mapingshuo 已提交
7094
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7095 7096
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7097 7098 7099 7100 7101
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
7102
                    return sum_cost, fc_1, prediction
7103 7104


G
GGBond8488 已提交
7105 7106
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
7107 7108
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7109

M
mapingshuo 已提交
7110 7111
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7112
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7113 7114 7115 7116
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7117
                    no_grad_set=None)
M
mapingshuo 已提交
7118 7119
                print("Finished backward")
        """
7120 7121 7122
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7123

姜永久 已提交
7124
        if in_dygraph_mode():
M
mapingshuo 已提交
7125
            raise NotImplementedError(
7126 7127
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7128 7129 7130 7131

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7132 7133 7134 7135 7136 7137 7138
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7139 7140 7141 7142 7143 7144
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7145 7146
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7147
            else:
7148 7149 7150 7151 7152 7153
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7154 7155 7156 7157 7158

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
7171
                import paddle
M
mapingshuo 已提交
7172
                import paddle.fluid as fluid
7173

7174 7175
                paddle.enable_static()

M
mapingshuo 已提交
7176
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7177 7178
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7179 7180 7181 7182 7183
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
7184 7185
                    return sum_cost, fc_1, prediction

G
GGBond8488 已提交
7186 7187
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
7188 7189
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7190

M
mapingshuo 已提交
7191 7192
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7193
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7194 7195 7196 7197
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7198
                    no_grad_set=None)
7199

M
mapingshuo 已提交
7200 7201
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7202

M
mapingshuo 已提交
7203 7204 7205
                print("Finished apply_optimize")
        """

7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7218
        assert isinstance(loss, Variable), "The loss should be an Variable."
7219 7220 7221
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
姜永久 已提交
7222
        if in_dygraph_mode():
M
mapingshuo 已提交
7223
            raise NotImplementedError(
7224 7225 7226 7227 7228 7229 7230 7231
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7232

7233 7234 7235
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7236 7237 7238 7239

        return optimize_ops, params_grads


7240
class LookaheadOptimizer:
7241
    r"""
7242
        :api_attr: Static Graph
S
swtkiwi 已提交
7243

M
mapingshuo 已提交
7244 7245 7246 7247
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7248 7249
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7250 7251 7252
    every k training steps as follows:

    .. math::
7253

M
mapingshuo 已提交
7254
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7255

7256
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7257 7258

    Args:
7259
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7260 7261 7262 7263 7264 7265 7266 7267 7268
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7269
            import numpy.random as random
M
mapingshuo 已提交
7270

7271
            paddle.enable_static()
7272

G
GGBond8488 已提交
7273 7274
            x = paddle.static.data(name='x', shape=[-1,2], dtype='float32')
            label = paddle.static.data(name="label", shape=[-1,1], dtype="int64")
C
Charles-hit 已提交
7275
            y = paddle.static.nn.fc(x=[x], size=2, activation="softmax")
7276 7277 7278 7279
            loss = paddle.nn.functional.cross_entropy(
                input=y, label=label,
                reduction='none', use_softmax=False
            )
7280
            loss = paddle.mean(x=loss)
7281 7282 7283 7284 7285 7286 7287 7288 7289
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7290

7291 7292 7293
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7294

7295 7296
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7297

7298 7299 7300
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7301 7302 7303 7304

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):
姜永久 已提交
7305
        if in_dygraph_mode():
Z
zhongpu 已提交
7306
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7307
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7308 7309 7310
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7311
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):
        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7321 7322
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7334 7335 7336 7337 7338 7339 7340
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7341 7342 7343 7344 7345 7346
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7347 7348 7349 7350 7351 7352 7353
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7354

7355 7356 7357
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7358

7359 7360
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7361
            k = paddle.static.create_global_var(
7362 7363 7364 7365 7366 7367
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7368

7369
            # Add Var alpha to main prog and startup prog
7370
            alpha = paddle.static.create_global_var(
7371 7372 7373 7374 7375 7376
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7377

7378
            # Add Var step
7379
            step = paddle.static.create_global_var(
7380 7381 7382 7383 7384 7385
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7386
            paddle.increment(x=step, value=1.0)
7387 7388

            # lookahead
7389
            zero_var = paddle.tensor.fill_constant(
7390 7391
                shape=[1], dtype='float32', value=0.0
            )
7392

7393
            one_var = paddle.tensor.fill_constant(
7394 7395
                shape=[1], dtype='float32', value=1.0
            )
7396

7397
            mod = paddle.remainder(step, k)
Q
qizhaoaoe 已提交
7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
            for param_name in params:
                fast_var = main_block.var(param_name)
                slow_var = param_to_slow[param_name]
                tmp_var = paddle.add(
                    paddle.multiply(fast_var, alpha),
                    paddle.multiply(slow_var, paddle.subtract(one_var, alpha)),
                )
                slow_val = paddle.static.nn.case(
                    [
                        (step == one_var, lambda: fast_var),
                        (mod == zero_var, lambda: tmp_var),
                    ],
                    default=lambda: slow_var,
                )
                paddle.assign(slow_val, slow_var)

                fast_val = paddle.static.nn.case(
                    [
                        (mod == zero_var, lambda: tmp_var),
                    ],
                    default=lambda: fast_var,
                )
                paddle.assign(fast_val, fast_var)

M
mapingshuo 已提交
7422
        return mini_out
7423 7424


7425
class GradientMergeOptimizer:
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

7448
        import paddle
7449 7450 7451 7452 7453 7454 7455 7456
        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7457 7458
            fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
            prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7459 7460 7461 7462 7463
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=input_y,
                reduction='none', use_softmax=False
            )
            sum_cost = paddle.mean(cost)
7464 7465
            return sum_cost, fc_1, prediction

G
GGBond8488 已提交
7466 7467
        input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7484 7485
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7486
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
姜永久 已提交
7487
        if in_dygraph_mode():
7488 7489 7490
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7491 7492
                "and one-time optimizer.minimize()"
            )
7493

7494 7495 7496 7497
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7498 7499 7500 7501 7502

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7503
        self._optimize_ops = None
7504

7505 7506 7507 7508 7509 7510
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7511 7512 7513 7514 7515 7516 7517 7518
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7519 7520 7521 7522 7523 7524 7525 7526 7527
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7528 7529
            loss, startup_program=startup_program
        )
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7541 7542 7543
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7544 7545 7546 7547 7548 7549
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7550 7551 7552 7553 7554
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7555 7556 7557

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7594
        k_step_var = paddle.static.create_global_var(
7595 7596 7597 7598 7599 7600 7601 7602
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

7603
        zero_var = paddle.static.create_global_var(
7604 7605 7606 7607 7608 7609 7610
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7611 7612

        # Add step var & cond var
7613
        step_var = paddle.static.create_global_var(
7614 7615 7616 7617 7618 7619 7620
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7621

7622 7623 7624
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7625 7626 7627

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
7628
            paddle.increment(x=step_var, value=1.0)
7629 7630 7631 7632 7633 7634
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7635 7636

            # cond_var = (step_var == 0)
7637 7638 7639 7640 7641
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7642 7643 7644 7645 7646 7647 7648 7649 7650 7651

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7652

7653
        # TODO(mapingshuo) support sparse embedding
7654 7655
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7656
            assert (
7657
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7658 7659
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7660
            self._remove_op_role_var(param, grad)
7661

7662
        param_to_grad = {k.name: v for (k, v) in params_grads}
7663 7664 7665
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7666 7667 7668 7669 7670
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7671
            param_var = main_block.var(param_name)
7672 7673 7674 7675 7676 7677 7678
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
7679
            param_to_gradient_merge[param_name] = gradient_merge_var
7680

7681 7682 7683 7684
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
7696

7697 7698 7699
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7700
                inputs={'X': grad, 'Y': gradient_merge_var},
7701
                outputs={'Out': gradient_merge_var},
7702 7703 7704 7705 7706
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
7707 7708 7709 7710 7711 7712 7713 7714
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7715
            op_maker = core.op_proto_and_checker_maker
7716 7717 7718 7719

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
7733

7734 7735 7736 7737 7738 7739
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7740

7741
            self._optimize_ops = self.inner_optimizer.apply_gradients(
7742 7743
                new_params_grads
            )
7744

7745 7746
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7747
                paddle.tensor.fill_constant(
7748 7749 7750 7751 7752 7753 7754 7755
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
7756 7757

        # step3. apply gradient
7758
        paddle.static.nn.cond(cond, true_fn=true_apply_gradient, false_fn=None)
7759 7760 7761

        return self._optimize_ops

7762 7763 7764
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7765 7766
        assert isinstance(loss, Variable), "The loss should be an Variable."

7767 7768 7769 7770 7771 7772
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
7773

7774 7775 7776
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
7777 7778

        return optimize_ops, params_grads