optimizer.py 56.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
18 19
from contextlib import contextmanager

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
M
minqiyang 已提交
33
from .imperative import base as imperative_base
34

35
__all__ = [
Q
qiaolongfei 已提交
36
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
37
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
38
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
39 40
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
41
]
Q
Qiao Longfei 已提交
42 43 44 45 46 47


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
48 49
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
50 51
    """

X
Xin Pan 已提交
52
    def __init__(self, learning_rate, regularization=None, name=None):
53
        if not isinstance(learning_rate, float) and \
54 55
                not isinstance(learning_rate, framework.Variable):
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
56
        self._name = name
D
dzhwinter 已提交
57
        self.regularization = regularization
58
        self._learning_rate = learning_rate
D
dzhwinter 已提交
59 60
        # the learning rate type should be inferenced from loss
        self._dtype = None
61
        # each program should have a independent learning rate
62
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
63
        self._learning_rate_map = dict()
64
        if isinstance(self._learning_rate, framework.Variable):
65 66
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
67 68 69 70 71
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
72
        self.helper = None
Q
Qiao Longfei 已提交
73

Q
Qiao Longfei 已提交
74
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
75
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
76

77 78 79 80
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
81
                raise TypeError(
82 83
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
84

85 86 87 88 89 90
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
Q
Qiao Longfei 已提交
91
            dtype='float32' if self._dtype is None else self._dtype,
92 93
            persistable=True)

Y
yuyang18 已提交
94
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
95 96 97 98
        """
        get global decayed learning rate
        :return:
        """
99 100
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
101
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
102

Q
Qiao Longfei 已提交
103 104 105 106 107
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

108 109 110 111
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
M
minqiyang 已提交
112
        print("param_lr: ", param_lr, self._global_learning_rate()._numpy())
W
Wu Yi 已提交
113 114
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
115
        else:
W
Wu Yi 已提交
116
            if param_lr == 1.0:
Y
yuyang18 已提交
117
                return self._global_learning_rate()
W
Wu Yi 已提交
118
            else:
X
Xin Pan 已提交
119 120 121
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
122
                    return self._global_learning_rate() * param_lr
123 124 125 126 127 128 129

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
130
        """
131 132
        pass

133
    def _finish_update(self, block, parameters_and_grads):
134 135 136 137 138 139 140 141
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
142
            None
143 144 145
        """
        pass

146 147 148 149 150 151
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
152 153 154 155 156 157 158 159 160
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
161 162
        if self._name is not None:
            name = self._name + "_" + name
163 164
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
165
            raise Exception("Accumulator {} already exists for parameter {}".
166
                            format(name, param.name))
167 168
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
169 170
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
171
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
172
            persistable=True,
F
fengjiayi 已提交
173
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
174
            type=param.type,
175
            shape=shape)
Q
Qiao Longfei 已提交
176
        self.helper.set_variable_initializer(
177
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
178
        self._accumulators[name][param.name] = var
179
        return var
180 181 182 183 184 185 186 187 188 189 190

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
191 192
        if self._name is not None:
            name = self._name + "_" + name
193 194 195 196 197 198
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
199 200 201 202
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
203 204 205
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
206 207 208
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
209 210

        Returns:
211 212 213 214
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
215
        """
216 217 218 219 220
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
221
        # for parameters and extend _finish_update method to add custom ops.
222 223

        # Create any accumulators
Q
Qiao Longfei 已提交
224
        program = loss.block.program
D
dzhwinter 已提交
225
        self._dtype = loss.dtype
226
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
227 228
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
229 230 231
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
232
            self._create_global_learning_rate()
233 234 235

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
236 237
                if param_and_grad[1] is None:
                    continue
W
Wu Yi 已提交
238
                with param_and_grad[0].block.program._optimized_guard(
239
                        param_and_grad), name_scope("optimizer"):
240
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
241 242 243
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
244 245 246

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
247
            self._finish_update(loss.block, parameters_and_grads)
248

Y
Yancey1989 已提交
249
            end = len(global_block.ops)
W
Wu Yi 已提交
250
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
251

Q
Qiao Longfei 已提交
252 253
    def _process_distribute_lookuptable(self, param_grads, loss,
                                        startup_program):
Q
Qiao Longfei 已提交
254 255 256 257 258 259 260 261 262
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
Q
Qiao Longfei 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        program = loss.block.program
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
            with program_guard(program, startup_program):
                param_and_grad = [table_param, table_grad]
                with table_param.block.program._optimized_guard(param_and_grad), \
                     framework.name_scope("optimizer"):
Q
Qiao Longfei 已提交
283
                    self._create_global_learning_rate()
Q
Qiao Longfei 已提交
284 285 286 287 288 289 290 291 292 293 294 295
                    # create the optimize op
                    sgd_op = loss.block.append_op(
                        type='sgd',
                        inputs={
                            "Param": table_param,
                            "Grad": table_grad,
                            "LearningRate":
                            self._create_param_lr(param_and_grad)
                        },
                        outputs={"ParamOut": param_and_grad[0]})
        return new_param_grads, (table_param, table_grad), sgd_op

Q
Qiao Longfei 已提交
296 297
    def minimize(self,
                 loss,
298
                 startup_program=None,
Q
Qiao Longfei 已提交
299 300
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
301 302
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
303
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
304 305
        `create_optimization_pass()` into one.
        """
M
minqiyang 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        if imperative_base.enabled:
            if parameter_list is not None:
                params_grads = parameter_list
            else:
                program = loss.block.program
                parameters = program.global_block().all_parameters()
                params_grads = []
                for param in parameters:
                    grad_var = Variable(
                        block=loss.block,
                        name=param._ivar._grad_name(),
                        stop_gradient=True)
                    grad_var._value = param._ivar._grad_var()
                    print("create grad var: ", grad_var.name)
                    print("grad_var value: ", grad_var._numpy())
                    import sys
                    sys.stdout.flush()
                    params_grads.append((param, grad_var))
        else:
            params_grads = append_backward(loss, parameter_list, no_grad_set,
                                           [error_clip_callback])
Q
Qiao Longfei 已提交
327

M
minqiyang 已提交
328
            params_grads = sorted(params_grads, key=lambda x: x[0].name)
Y
Yu Yang 已提交
329

M
minqiyang 已提交
330 331
            params_grads, table_param_and_grad, table_optimize_op = \
                self._process_distribute_lookuptable(params_grads, loss, startup_program)
Y
Yu Yang 已提交
332

M
minqiyang 已提交
333
            params_grads = append_gradient_clip_ops(params_grads)
334

M
minqiyang 已提交
335 336 337
            # Add regularization if any
            params_grads = append_regularization_ops(params_grads,
                                                     self.regularization)
Y
Yu Yang 已提交
338

Q
Qiao Longfei 已提交
339 340 341 342 343 344
        optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                      startup_program)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
345 346 347


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
348 349 350 351 352 353 354 355 356 357
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
358 359 360
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
361 362 363 364

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
365
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
366
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
367 368
    """

X
Xin Pan 已提交
369
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
370
        assert learning_rate is not None
Q
Qiao Longfei 已提交
371
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
372 373 374
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
375 376
        self.type = "sgd"

377 378
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
379

M
minqiyang 已提交
380 381 382 383
        print("append sgd")
        import sys
        sys.stdout.flush()

Q
Qiao Longfei 已提交
384 385 386 387 388 389
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
390
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
391
            },
392
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
393 394

        return sgd_op
395 396 397


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

412
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
413 414 415

        & else:

Q
qiaolongfei 已提交
416
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
417 418 419 420 421 422

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
423 424 425
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
426 427 428 429

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
430
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
431
            optimizer.minimize(cost)
432 433 434
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
435 436 437 438 439 440
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
441 442
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
443
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
444 445 446
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
447 448
        self.type = "momentum"
        self._momentum = momentum
449
        self._use_nesterov = bool(use_nesterov)
450 451 452 453 454

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
455
            self._add_accumulator(self._velocity_acc_str, p)
456 457 458 459 460 461 462 463 464 465 466 467 468

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
469
                "LearningRate": self._create_param_lr(param_and_grad)
470 471 472 473 474
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
475
            attrs={"mu": self._momentum,
476
                   "use_nesterov": self._use_nesterov})
477 478

        return momentum_op
479 480


481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
            })

        return momentum_op


566
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
587 588 589
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
590 591 592 593 594 595

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
596 597 598
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
599 600 601 602 603
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
604 605
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
606
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
607 608 609
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
610 611 612 613 614 615 616
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
617
            self._add_accumulator(self._moment_acc_str, p)
618 619 620 621 622 623 624

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

625
        # Create the adagrad optimizer op
626 627 628 629 630 631
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
632
                "LearningRate": self._create_param_lr(param_and_grad)
633 634 635 636 637 638
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
639 640 641


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
669
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
670
        name: A optional name prefix.
671 672 673 674 675 676
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
677 678 679 680 681 682 683

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

684 685 686
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
687 688
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
689 690 691 692 693

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
694
                 epsilon=1e-8,
X
Xin Pan 已提交
695
                 regularization=None,
Q
Qiao Longfei 已提交
696
                 name=None,
Q
Qiao Longfei 已提交
697
                 lazy_mode=False):
698 699 700 701
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
702
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
703 704 705
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
706 707 708 709
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
710
        self._lazy_mode = lazy_mode
711 712 713 714 715 716

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
717 718
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
719 720 721 722 723 724 725 726 727 728 729 730
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
731 732 733 734 735 736 737 738

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
739 740 741 742 743
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

744
        # create the adam optimize op
745 746 747 748 749
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
750
                "LearningRate": self._create_param_lr(param_and_grad),
751 752
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
753 754
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
755 756 757 758 759 760 761 762 763
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
764
                "epsilon": self._epsilon,
Q
Qiao Longfei 已提交
765
                "lazy_mode": self._lazy_mode
766 767 768 769
            })

        return adam_op

770
    def _finish_update(self, block, param_and_grads):
771 772 773
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
774
        main_block = block.program.global_block()
775 776 777
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
778 779
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
795 796 797


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
828 829 830
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
831 832 833 834 835 836

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
837 838 839

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
840 841 842
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
843
    _beta1_pow_acc_str = "beta1_pow_acc"
844 845 846 847 848

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
849
                 epsilon=1e-8,
X
Xin Pan 已提交
850 851
                 regularization=None,
                 name=None):
852 853 854 855
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
856
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
857 858 859
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
860 861 862 863 864 865 866 867
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
868 869
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
870 871 872 873 874 875
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
876 877 878 879 880 881 882

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
883 884
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
885 886 887 888 889 890
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
891
                "LearningRate": self._create_param_lr(param_and_grad),
892 893
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
894
                "Beta1Pow": beta1_pow_acc
895 896 897 898 899 900 901 902 903 904 905 906 907 908
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

909
    def _finish_update(self, block, parameters_and_grads):
910 911 912
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
913
        main_block = block.program.global_block()
914 915 916
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
917 918
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
919 920 921 922 923 924 925
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
926 927 928


class DecayedAdagradOptimizer(Optimizer):
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
951 952 953
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
954 955 956 957 958 959

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
960 961 962

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
963 964 965
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
966 967 968 969 970 971
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
972 973 974 975
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
976
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
977 978 979
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
1010 1011


1012
class AdadeltaOptimizer(Optimizer):
1013 1014
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1015

1016
    Simple Adadelta optimizer with average squared grad state and
1017
    average squared update state.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1030
        learning_rate(float): global learning rate
1031 1032
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1033 1034 1035
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1036 1037 1038 1039 1040 1041 1042

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1043 1044 1045

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1046
    """
1047

1048 1049 1050
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1051 1052 1053 1054 1055 1056
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1057 1058 1059 1060 1061 1062
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1063
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1064 1065 1066
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1067 1068 1069 1070 1071
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1072 1073
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1074 1075 1076 1077 1078 1079

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1080 1081
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1118
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1119 1120 1121 1122

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1123
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1124 1125 1126 1127 1128 1129

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1130
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1146 1147 1148 1149
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1150
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1151 1152 1153 1154 1155 1156
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1157
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1158 1159 1160
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1161
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1162
            set 0.0 by default.
1163 1164 1165 1166
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1167 1168 1169
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1183
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1184 1185 1186 1187 1188 1189

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1190
                 centered=False,
X
Xin Pan 已提交
1191 1192
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1193
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1194 1195 1196
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1210
        self._centered = centered
Q
qingqing01 已提交
1211 1212 1213 1214 1215 1216 1217 1218

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1219
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1229 1230
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1231 1232 1233 1234 1235 1236 1237
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1238
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1239 1240 1241 1242 1243
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1244 1245
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1246 1247 1248 1249
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1250 1251
                "momentum": self._momentum,
                "centered": self._centered
Q
qingqing01 已提交
1252 1253 1254 1255 1256
            })

        return rmsprop_op


Q
qiaolongfei 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1302 1303 1304
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1314 1315 1316

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1317 1318 1319 1320 1321
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1322 1323 1324 1325 1326 1327 1328
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1329
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1330 1331 1332
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1392
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1393
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1394
Ftrl = FtrlOptimizer
1395
LarsMomentum = LarsMomentumOptimizer
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1411 1412 1413
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1414
    Examples:
Q
qiaolongfei 已提交
1415 1416 1417

      .. code-block:: python

1418
        optimizer = fluid.optimizer.Momentum()
1419 1420
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1421 1422 1423 1424 1425
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1426 1427 1428 1429

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1430 1431 1432
    """

    def __init__(self,
W
wanghaoshuang 已提交
1433
                 average_window_rate,
1434 1435
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1436 1437 1438 1439
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1440 1441 1442
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1443

1444
        self.params_grads = []
1445 1446
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1447
            if param.do_model_average != False:
1448 1449 1450 1451
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1452
                    stop_gradient=True)
1453
                self.params_grads.append((param, grad))
1454

1455
        for param, grad in self.params_grads:
1456 1457
            if grad is None:
                continue
X
Xin Pan 已提交
1458 1459
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1460
                self._append_average_accumulate_op(param)
1461

1462 1463 1464 1465
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1466
                self._add_average_apply_op(block, param_grad)
1467 1468 1469 1470 1471

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1472
                self._add_average_restore_op(block, param_grad)
1473

1474
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1475 1476 1477 1478 1479 1480
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1481
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1482
        old_num_accumulates = block._clone_variable(
1483
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1484
        num_updates = block._clone_variable(
1485 1486 1487 1488 1489 1490
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1491 1492 1493 1494
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1495
        ops._elementwise_div(x=sum, y=tmp, out=param)
1496 1497

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1498 1499
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1539 1540
    @contextmanager
    def apply(self, executor, need_restore=True):
1541 1542
        """Apply average values to parameters of current model.
        """
1543 1544 1545 1546 1547 1548
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1549 1550 1551 1552

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1553
        executor.run(self.restore_program)