未验证 提交 464ef48a 编写于 作者: 2 201716010711 提交者: GitHub

delete mean api (#48764)

上级 687ac358
......@@ -119,6 +119,8 @@ class ErrorClipByValue(BaseErrorClipAttr):
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.enable_static()
BATCH_SIZE = 128
CLIP_MAX = 2e-6
CLIP_MIN = -1e-6
......@@ -132,11 +134,12 @@ class ErrorClipByValue(BaseErrorClipAttr):
input=hidden2, size=10, act='softmax')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
prog_clip = prog.clone()
prog_clip.block(0).var(hidden1.name)._set_error_clip(
fluid.clip.ErrorClipByValue(
max=CLIP_MAX, min=CLIP_MIN)
)
"""
def __init__(self, max, min=None):
......
......@@ -1965,6 +1965,8 @@ def fused_bn_add_act(
import paddle
import paddle.fluid as fluid
import paddle
paddle.enable_static()
paddle.enable_static()
# required: gpu
......@@ -1997,7 +1999,7 @@ def fused_bn_add_act(
fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(conv1_2, bn)
prediction = fluid.layers.fc(input=fused_bn_add_act, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=y)
loss = fluid.layers.mean(loss)
loss = paddle.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd = fluid.contrib.mixed_precision.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
......
......@@ -27,10 +27,10 @@ from .... import unique_name
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
from ....framework import _get_paddle_place
from . import utils
import paddle
__all__ = [
'QuantizationTransformPass',
......@@ -927,7 +927,7 @@ class QuantizationTransformPass:
out_node = func(in_node)
graph.out_node_mapping_table[out_node.name] = var_node.name()
# loss shape must be 1 when minimize
loss = mean(out_node)
loss = paddle.mean(out_node)
if not graph._for_test:
assert (
self._optimizer
......
......@@ -86,7 +86,6 @@ __all__ = [
'elementwise_mul',
'clip',
'clip_by_norm',
'mean',
'mul',
'merge_selected_rows',
'get_tensor_from_selected_rows',
......@@ -3368,47 +3367,6 @@ def clip_by_norm(x, max_norm, name=None):
return out
@deprecated(since="2.0.0", update_to="paddle.mean")
@templatedoc()
def mean(x, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_static()
input = fluid.layers.data(
name='data', shape=[2, 3], dtype='float32')
mean = paddle.mean(input)
"""
if _in_legacy_dygraph():
return _legacy_C_ops.mean(x)
if in_dygraph_mode():
return _C_ops.mean_all(x)
helper = LayerHelper("mean", **locals())
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
)
return out
@templatedoc()
def merge_selected_rows(x, name=None):
"""
......
......@@ -1452,7 +1452,7 @@ class SGDOptimizer(Optimizer):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
......@@ -1654,7 +1654,7 @@ class MomentumOptimizer(Optimizer):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
moment_optimizer.minimize(avg_cost)
......@@ -2232,7 +2232,7 @@ class AdamOptimizer(Optimizer):
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
adam_optimizer.minimize(avg_cost)
......@@ -2261,7 +2261,7 @@ class AdamOptimizer(Optimizer):
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
# define beta decay variable
def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
......@@ -2641,6 +2641,8 @@ class AdamaxOptimizer(Optimizer):
import paddle.fluid as fluid
import numpy
import paddle
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
......@@ -2651,7 +2653,7 @@ class AdamaxOptimizer(Optimizer):
with fluid.program_guard(train_program, startup_program):
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
loss = paddle.mean(hidden)
adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
adam.minimize(loss)
......@@ -2816,6 +2818,8 @@ class DpsgdOptimizer(Optimizer):
import paddle.fluid as fluid
import numpy
import paddle
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
......@@ -2826,7 +2830,7 @@ class DpsgdOptimizer(Optimizer):
with fluid.program_guard(train_program, startup_program):
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
loss = paddle.mean(hidden)
optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
optimizer.minimize(loss)
......@@ -3291,7 +3295,7 @@ class RMSPropOptimizer(Optimizer):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
rms_optimizer.minimize(avg_cost)
......@@ -3510,7 +3514,7 @@ class FtrlOptimizer(Optimizer):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
ftrl_optimizer.minimize(avg_cost)
......@@ -3679,11 +3683,13 @@ class LambOptimizer(AdamOptimizer):
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_static()
data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
cost = fluid.layers.mean(hidden)
cost = paddle.mean(hidden)
def exclude_fn(param):
return param.name.endswith('.b_0')
......@@ -3885,8 +3891,10 @@ class ModelAverage(Optimizer):
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
......@@ -3898,7 +3906,7 @@ class ModelAverage(Optimizer):
# build net
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
loss = paddle.mean(hidden)
optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
optimizer.minimize(loss)
......@@ -4064,6 +4072,8 @@ class ModelAverage(Optimizer):
import paddle.fluid as fluid
import numpy
import paddle
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
......@@ -4075,7 +4085,7 @@ class ModelAverage(Optimizer):
# build net
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
loss = paddle.mean(hidden)
optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
optimizer.minimize(loss)
......@@ -4118,6 +4128,8 @@ class ModelAverage(Optimizer):
import paddle.fluid as fluid
import numpy
import paddle
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
......@@ -4129,7 +4141,7 @@ class ModelAverage(Optimizer):
# build net
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
loss = paddle.mean(hidden)
optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
optimizer.minimize(loss)
......
......@@ -68,6 +68,8 @@ class L2DecayRegularizer(WeightDecayRegularizer):
# Example1: set Regularizer in optimizer
import paddle.fluid as fluid
import paddle
paddle.enable_static()
main_prog = fluid.Program()
startup_prog = fluid.Program()
......@@ -77,7 +79,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
hidden = fluid.layers.fc(input=data, size=128, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
optimizer = fluid.optimizer.Adagrad(
learning_rate=1e-4,
regularization=fluid.regularizer.L2Decay(
......@@ -87,6 +89,8 @@ class L2DecayRegularizer(WeightDecayRegularizer):
# Example2: set Regularizer both in ParamAttr and optimizer
import paddle.fluid as fluid
import paddle
paddle.enable_static()
l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
......@@ -97,7 +101,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
hidden1 = fluid.layers.fc(x, 8, param_attr=w_param) # fc_0.w_0(L1), fc_0.b_0
hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param) # fc_1.w_0(L1), fc_1.b_0
predict = fluid.layers.fc(hidden2, 32) # fc_3.w_0, fc_3.b_0
avg_loss = fluid.layers.mean(predict)
avg_loss = paddle.mean(predict)
# set L2 regularization in optimizer
optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
......@@ -181,7 +185,8 @@ class L1DecayRegularizer(WeightDecayRegularizer):
# Example1: set Regularizer in optimizer
import paddle.fluid as fluid
import paddle
paddle.enable_static()
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
......@@ -190,7 +195,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
hidden = fluid.layers.fc(input=data, size=128, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
avg_loss = paddle.mean(loss)
optimizer = fluid.optimizer.Adagrad(
learning_rate=1e-4,
regularization=fluid.regularizer.L1DecayRegularizer(
......@@ -200,7 +205,8 @@ class L1DecayRegularizer(WeightDecayRegularizer):
# Example2: set Regularizer both in ParamAttr and optimizer
import paddle.fluid as fluid
import paddle
paddle.enable_static()
l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
x = fluid.layers.uniform_random([3,4])
......@@ -210,7 +216,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
hidden1 = fluid.layers.fc(x, 8, param_attr=w_param) # fc_0.w_0(L1), fc_0.b_0
hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param) # fc_1.w_0(L1), fc_1.b_0
predict = fluid.layers.fc(hidden2, 32) # fc_3.w_0, fc_3.b_0
avg_loss = fluid.layers.mean(predict)
avg_loss = paddle.mean(predict)
# set L2 regularization in optimizer
optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
......
......@@ -66,7 +66,7 @@ class TestPSPassWithBow(unittest.TestCase):
),
loss_op2,
)
avg_cost = fluid.layers.mean(loss_op3)
avg_cost = paddle.mean(loss_op3)
return avg_cost
is_distributed = False
......
......@@ -288,12 +288,12 @@ class DistributeTranspiler:
paddle.enable_static()
x = fluid.data(name='x', shape=[13], dtype='float32')
x = fluid.data(name='x', shape=[1,13], dtype='float32')
y = fluid.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost =paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
avg_loss = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_loss)
......
......@@ -42,7 +42,7 @@ for i in range(num_layers - 1):
)
cost = fluid.layers.square_error_cost(fc_out, label)
avg_cost = fluid.layers.mean(cost)
avg_cost = paddle.mean(cost)
optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimizer.minimize(avg_cost)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册