Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
78465703
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
78465703
编写于
9月 15, 2021
作者:
W
WangXi
提交者:
GitHub
9月 15, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid] out data parallel as optimizer sharding parallel (#35593)
上级
2b88057f
变更
16
展开全部
隐藏空白更改
内联
并排
Showing
16 changed file
with
967 addition
and
177 deletion
+967
-177
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+2
-0
paddle/fluid/operators/amp/check_finite_and_unscale_op.cc
paddle/fluid/operators/amp/check_finite_and_unscale_op.cc
+16
-15
paddle/fluid/operators/amp/check_finite_and_unscale_op.cu
paddle/fluid/operators/amp/check_finite_and_unscale_op.cu
+2
-0
paddle/fluid/operators/amp/update_loss_scaling_op.cc
paddle/fluid/operators/amp/update_loss_scaling_op.cc
+19
-7
paddle/fluid/operators/amp/update_loss_scaling_op.cu
paddle/fluid/operators/amp/update_loss_scaling_op.cu
+2
-0
python/paddle/distributed/fleet/meta_optimizers/sharding/fp16_helper.py
...distributed/fleet/meta_optimizers/sharding/fp16_helper.py
+2
-11
python/paddle/distributed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
...ed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
+28
-2
python/paddle/distributed/fleet/meta_optimizers/sharding/prune.py
...addle/distributed/fleet/meta_optimizers/sharding/prune.py
+12
-5
python/paddle/distributed/fleet/meta_optimizers/sharding/shard.py
...addle/distributed/fleet/meta_optimizers/sharding/shard.py
+6
-4
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
...addle/distributed/fleet/meta_optimizers/sharding/utils.py
+218
-42
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+115
-43
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+69
-47
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/fleet_meta_optimizer_base.py
...paddle/fluid/tests/unittests/fleet_meta_optimizer_base.py
+39
-0
python/paddle/fluid/tests/unittests/test_fleet_hybrid_meta_optimizer.py
...fluid/tests/unittests/test_fleet_hybrid_meta_optimizer.py
+434
-0
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
...uid/tests/unittests/test_fleet_sharding_meta_optimizer.py
+1
-1
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
78465703
...
...
@@ -43,6 +43,8 @@ message ShardingConfig {
optional
bool
pp_allreduce_in_optimize
=
10
[
default
=
false
];
optional
int32
pp_degree
=
11
[
default
=
1
];
optional
bool
optimize_cast
=
12
[
default
=
false
];
// Optimizer sharding. Temporary plans and may be deprecated
optional
bool
_dp_as_optimizer_sharding
=
13
[
default
=
false
];
}
message
HybridConfig
{
...
...
paddle/fluid/operators/amp/check_finite_and_unscale_op.cc
浏览文件 @
78465703
...
...
@@ -26,27 +26,28 @@ class CheckFiniteAndUnscaleOp : public framework::OperatorWithKernel {
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
"X"
),
"Input"
,
"X"
,
"check_finite_and_unscale"
);
OP_INOUT_CHECK
(
ctx
->
HasOutputs
(
"Out"
),
"Output"
,
"Out"
,
"check_finite_and_unscale"
);
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"X"
).
size
(),
ctx
->
Outputs
(
"Out"
).
size
(),
platform
::
errors
::
InvalidArgument
(
"The input(X) and output(Out) should have same size in "
"Operator(check_finite_and_unscale), size of input(X) is %d "
"and size of output(Out) is %d."
,
ctx
->
Inputs
(
"X"
).
size
(),
ctx
->
Outputs
(
"Out"
).
size
()));
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
ctx
->
SetOutputsDim
(
"Out"
,
x_dims
);
if
(
ctx
->
HasInputs
(
"X"
)
||
ctx
->
HasOutputs
(
"Out"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"X"
).
size
(),
ctx
->
Outputs
(
"Out"
).
size
(),
platform
::
errors
::
InvalidArgument
(
"The input(X) and output(Out) should have same size in "
"Operator(check_finite_and_unscale), size of input(X) is %d "
"and size of output(Out) is %d."
,
ctx
->
Inputs
(
"X"
).
size
(),
ctx
->
Outputs
(
"Out"
).
size
()));
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
ctx
->
SetOutputsDim
(
"Out"
,
x_dims
);
}
ctx
->
SetOutputDim
(
"FoundInfinite"
,
{
1
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
auto
dtype
=
framework
::
proto
::
VarType
::
FP32
;
if
(
ctx
.
MultiInputVar
(
"X"
).
size
()
>=
1
)
{
dtype
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
}
return
framework
::
OpKernelType
(
dtype
,
ctx
.
GetPlace
());
}
};
...
...
paddle/fluid/operators/amp/check_finite_and_unscale_op.cu
浏览文件 @
78465703
...
...
@@ -97,6 +97,8 @@ class CheckFiniteAndUnscaleGpuKernel : public framework::OpKernel<T> {
scale_data
,
inverse_scale_v
,
found_inf_data
);
size_t
xs_size
=
xs
.
size
();
if
(
xs_size
==
0
)
return
;
const
auto
&
cpu_place
=
platform
::
CPUPlace
();
// calculate each tensor's start index and copy to device
auto
h_starts_tensor
=
...
...
paddle/fluid/operators/amp/update_loss_scaling_op.cc
浏览文件 @
78465703
...
...
@@ -26,7 +26,6 @@ class UpdateLossScalingOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
"X"
),
"Input"
,
"X"
,
"update_loss_scaling"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"FoundInfinite"
),
"Input"
,
"FoundInfinite"
,
"update_loss_scaling"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"PrevLossScaling"
),
"Input"
,
"PrevLossScaling"
,
...
...
@@ -35,16 +34,25 @@ class UpdateLossScalingOp : public framework::OperatorWithKernel {
"update_loss_scaling"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"InBadSteps"
),
"Input"
,
"InBadSteps"
,
"update_loss_scaling"
);
OP_INOUT_CHECK
(
ctx
->
HasOutputs
(
"Out"
),
"Output"
,
"Out"
,
"update_loss_scaling"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"LossScaling"
),
"Output"
,
"LossScaling"
,
"update_loss_scaling"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"OutGoodSteps"
),
"Output"
,
"OutGoodSteps"
,
"update_loss_scaling"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"OutBadSteps"
),
"Output"
,
"OutBadSteps"
,
"update_loss_scaling"
);
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
ctx
->
SetOutputsDim
(
"Out"
,
x_dims
);
if
(
ctx
->
HasInputs
(
"X"
)
||
ctx
->
HasOutputs
(
"Out"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"X"
).
size
(),
ctx
->
Outputs
(
"Out"
).
size
(),
platform
::
errors
::
InvalidArgument
(
"The input(X) and output(Out) should have same size in "
"Operator(update_loss_scaling), size of input(X) is %d "
"and size of output(Out) is %d."
,
ctx
->
Inputs
(
"X"
).
size
(),
ctx
->
Outputs
(
"Out"
).
size
()));
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
ctx
->
SetOutputsDim
(
"Out"
,
x_dims
);
}
ctx
->
SetOutputDim
(
"LossScaling"
,
{
1
});
ctx
->
SetOutputDim
(
"OutGoodSteps"
,
{
1
});
ctx
->
SetOutputDim
(
"OutBadSteps"
,
{
1
});
...
...
@@ -53,8 +61,12 @@ class UpdateLossScalingOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
auto
dtype
=
framework
::
proto
::
VarType
::
FP32
;
if
(
ctx
.
MultiInputVar
(
"X"
).
size
()
>=
1
)
{
dtype
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
}
return
framework
::
OpKernelType
(
dtype
,
ctx
.
GetPlace
());
}
};
...
...
paddle/fluid/operators/amp/update_loss_scaling_op.cu
浏览文件 @
78465703
...
...
@@ -95,6 +95,8 @@ class LazyZeros<platform::CUDADeviceContext, T> {
const
std
::
vector
<
const
framework
::
Tensor
*>&
xs
,
const
std
::
vector
<
framework
::
Tensor
*>&
outs
)
const
{
size_t
xs_size
=
xs
.
size
();
if
(
xs_size
==
0
)
return
;
const
auto
&
cpu_place
=
platform
::
CPUPlace
();
// alloc each tensor's start index and copy to device
auto
h_in_starts_mem
=
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/fp16_helper.py
浏览文件 @
78465703
...
...
@@ -105,7 +105,6 @@ class FP16Utils(object):
if
op
.
type
==
"update_loss_scaling"
:
update_loss_scaling_op_idx
=
idx
inf_var_name
=
op
.
desc
.
input
(
'FoundInfinite'
)[
0
]
op
.
_rename_input
(
inf_var_name
,
inf_var_name
+
"@sharding"
)
if
op
.
type
in
[
"check_finite_and_unscale"
,
"update_loss_scaling"
]:
reversed_x
=
[]
reversed_x_paramname
=
[]
...
...
@@ -142,10 +141,6 @@ class FP16Utils(object):
name
=
inf_var_name
+
"@cast_int32"
,
shape
=
inf_var
.
shape
,
dtype
=
core
.
VarDesc
.
VarType
.
INT32
)
inf_var_sharding
=
block
.
create_var
(
name
=
inf_var_name
+
"@sharding"
,
shape
=
inf_var
.
shape
,
dtype
=
inf_var
.
dtype
)
block
.
_insert_op_without_sync
(
update_loss_scaling_op_idx
,
...
...
@@ -179,10 +174,10 @@ class FP16Utils(object):
update_loss_scaling_op_idx
,
type
=
'cast'
,
inputs
=
{
'X'
:
inf_var_int32
},
outputs
=
{
'Out'
:
inf_var
_sharding
},
outputs
=
{
'Out'
:
inf_var
},
attrs
=
{
"in_dtype"
:
inf_var_int32
.
dtype
,
"out_dtype"
:
inf_var
_sharding
.
dtype
,
"out_dtype"
:
inf_var
.
dtype
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
update_loss_scaling_op_idx
+=
1
...
...
@@ -210,10 +205,6 @@ class FP16Utils(object):
name
=
inf_var_name
+
"@cast_int32"
,
shape
=
inf_var
.
shape
,
dtype
=
core
.
VarDesc
.
VarType
.
INT32
)
inf_var_global
=
block
.
create_var
(
name
=
inf_var_name
+
"@GLOBAL_WORLD"
,
shape
=
inf_var
.
shape
,
dtype
=
inf_var
.
dtype
)
block
.
_insert_op_without_sync
(
update_loss_scaling_op_idx
,
type
=
'cast'
,
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
浏览文件 @
78465703
...
...
@@ -39,6 +39,7 @@ class GradientClipHelper(object):
if
not
self
.
_is_gradient_clip_op
(
op
):
continue
if
op
.
type
==
"sum"
:
global_norm_sum_op_idx
=
idx
continue
deperate_op
=
False
for
input_name
in
op
.
desc
.
input_arg_names
():
...
...
@@ -61,7 +62,10 @@ class GradientClipHelper(object):
if
output_name
not
in
op
.
desc
.
input_arg_names
():
deperated_vars
.
add
(
output_name
)
if
not
deperated_vars
:
# NOTE(wangxi): If only have 2 sharding, and 1 param.
# sharding 0 will not deperated_vars, will return, only
# sharding 1 will insert allreduce, then hang.
if
not
deperated_vars
and
global_norm_sum_op_idx
==
-
1
:
# got no gradient_clip op
return
...
...
@@ -71,8 +75,8 @@ class GradientClipHelper(object):
if
idx
in
deperate_op_idx
:
block
.
_remove_op
(
idx
,
sync
=
False
)
continue
reversed_inputs
=
[]
if
op
.
type
==
"sum"
:
reversed_inputs
=
[]
global_norm_sum_op_idx
=
idx
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
not
in
deperated_vars
:
...
...
@@ -82,6 +86,28 @@ class GradientClipHelper(object):
assert
(
len
(
op
.
desc
.
output_arg_names
())
==
1
)
sum_res
=
op
.
desc
.
output_arg_names
()[
0
]
# NOTE(wangxi): If we have 2 param, but sharding is 4,
# then the sum op in some cards will not have input.
# So we use fill_constant_op to set `sum_var` to zero,
# which does not affect correctness.
if
len
(
reversed_inputs
)
==
0
:
sum_var
=
block
.
var
(
sum_res
)
namescope
=
op
.
attr
(
"op_namescope"
)
block
.
_remove_op
(
idx
,
sync
=
False
)
op
=
block
.
_insert_op_without_sync
(
idx
,
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
'shape'
:
sum_var
.
shape
,
'dtype'
:
sum_var
.
dtype
,
'value'
:
0.0
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
op
.
_set_attr
(
'op_namescope'
,
namescope
)
# allreduce(mp)->allreduce(sharding)->allreduce(pp)
idx_offset
=
1
for
ring_id
in
ring_ids
:
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/prune.py
浏览文件 @
78465703
...
...
@@ -117,21 +117,28 @@ class ProgramDeps(object):
var_name
]
==
[]:
self
.
_block
.
_remove_var
(
var_name
,
sync
=
False
)
def
remove_op
(
self
,
op_idx
):
def
remove_op
(
self
,
op_idx
,
reserved_vars
=
None
):
# update deps
op
=
self
.
_block
.
ops
[
op_idx
]
for
input_name
in
op
.
desc
.
input_arg_names
():
if
reserved_vars
is
not
None
and
input_name
in
reserved_vars
:
continue
self
.
crop_input_var_from_op
(
op_idx
,
input_name
)
for
output_name
in
op
.
desc
.
output_arg_names
():
if
reserved_vars
is
not
None
and
output_name
in
reserved_vars
:
continue
self
.
crop_output_var_from_op
(
op_idx
,
output_name
)
self
.
_block
.
_remove_op
(
op_idx
,
sync
=
False
)
def
should_remove_op
(
self
,
op_idx
):
op
=
self
.
_block
.
ops
[
op_idx
]
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
# remove check_finite_and_unscale op if its input 'X' is empty
if
op
.
type
==
'check_finite_and_unscale'
and
len
(
op
.
input
(
'X'
))
==
0
:
return
True
# NOTE: At present, it is found that the OP without output is
# only send_v2 and partial_send op, which will be used in
# all device
if
len
(
op
.
desc
.
output_arg_names
())
==
0
:
return
False
for
output_name
in
op
.
desc
.
output_arg_names
():
if
output_name
not
in
self
.
_should_removed_var
:
return
False
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/shard.py
浏览文件 @
78465703
...
...
@@ -24,7 +24,8 @@ class Shard(object):
self
.
global_params
=
set
([])
self
.
worker_idx
=
-
1
self
.
worker_num
=
-
1
self
.
global_param2device
=
{}
self
.
global_param2device
=
dict
()
self
.
device2global_params
=
dict
()
def
setup
(
self
,
params_grads
,
worker_idx
,
worker_num
):
# param names of all devices
...
...
@@ -33,8 +34,9 @@ class Shard(object):
self
.
worker_idx
=
worker_idx
self
.
worker_num
=
worker_num
# global_param2device contains fp32 params and fp16 params
self
.
global_param2device
=
self
.
_split_params
(
params_grads
,
worker_idx
,
worker_num
)
# device2global_params only contains fp32 params
self
.
global_param2device
,
self
.
device2global_params
\
=
self
.
_split_params
(
params_grads
,
worker_idx
,
worker_num
)
def
has_param
(
self
,
var_name
):
return
var_name
in
self
.
global_param2device
and
\
...
...
@@ -64,7 +66,7 @@ class Shard(object):
device2params
[
device_idx
].
append
(
param_name
)
param2device
[
param_name
]
=
device_idx
mem_accu
+=
mem
return
param2device
return
param2device
,
device2params
def
_var_device_id
(
self
,
var_name
):
if
var_name
in
self
.
global_param2device
:
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
浏览文件 @
78465703
...
...
@@ -365,6 +365,65 @@ def insert_allreduce_ops(block,
return
class
FuseHelper
(
object
):
@
staticmethod
def
get_fused_groups
(
block
,
vars_name
,
fuse_size
=
32.
):
""" coalesce tensor, get fused group """
groups
=
[]
cur_size
=
0.
last_dtype
=
None
for
var_name
in
vars_name
:
real_var
=
block
.
var
(
var_name
)
var_size
=
get_var_size
(
real_var
)
if
cur_size
+
var_size
>
fuse_size
\
or
len
(
groups
)
==
0
\
or
real_var
.
dtype
!=
last_dtype
:
groups
.
append
([
real_var
])
cur_size
=
var_size
last_dtype
=
real_var
.
dtype
else
:
groups
[
-
1
].
append
(
real_var
)
cur_size
+=
var_size
return
groups
@
staticmethod
def
insert_coalesce_tensor
(
block
,
index
,
groups
,
op_role
=
OpRole
.
Backward
,
prefix
=
"Output"
):
fused_vars
=
[]
insert_num
=
0
for
group
in
groups
:
assert
len
(
group
)
>=
1
if
len
(
group
)
==
1
:
# no need fuse
fused_vars
.
append
(
group
[
0
])
continue
fused_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'Fused{}_{}'
.
format
(
prefix
,
group
[
0
]
.
name
)),
dtype
=
group
[
0
].
dtype
,
persistable
=
False
,
stop_gradient
=
True
)
fused_vars
.
append
(
fused_var
)
block
.
_insert_op_without_sync
(
index
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
group
},
outputs
=
{
"Output"
:
group
,
"FusedOutput"
:
fused_var
},
attrs
=
{
"copy_data"
:
True
,
"use_align"
:
True
,
"dtype"
:
group
[
0
].
dtype
,
OP_ROLE_KEY
:
op_role
})
insert_num
+=
1
return
fused_vars
,
insert_num
def
insert_fused_allreduce_ops
(
block
,
insert_idx
,
ring_id
,
...
...
@@ -372,46 +431,15 @@ def insert_fused_allreduce_ops(block,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
,
fuse_grad_size_in_MB
=
32
):
segments
=
[]
cur_size
=
0.
last_dtype
=
None
for
var
in
allreduce_vars
:
real_var
=
block
.
var
(
var
)
var_size
=
get_var_size
(
real_var
)
if
cur_size
+
var_size
>
fuse_grad_size_in_MB
\
or
len
(
segments
)
==
0
\
or
real_var
.
dtype
!=
last_dtype
:
segments
.
append
([
real_var
])
cur_size
=
var_size
last_dtype
=
real_var
.
dtype
else
:
segments
[
-
1
].
append
(
real_var
)
cur_size
+=
var_size
fused_vars
=
[]
for
segment
in
segments
:
tmp_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}'
.
format
(
segment
[
0
].
name
)),
dtype
=
segment
[
0
].
dtype
,
persistable
=
False
,
stop_gradient
=
True
)
fused_vars
.
append
(
tmp_var
)
block
.
_insert_op_without_sync
(
insert_idx
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
segment
},
outputs
=
{
"Output"
:
segment
,
"FusedOutput"
:
tmp_var
},
attrs
=
{
"copy_data"
:
True
,
"use_align"
:
True
,
"dtype"
:
segment
[
0
].
dtype
,
OP_ROLE_KEY
:
op_role
})
groups
=
FuseHelper
.
get_fused_groups
(
block
,
allreduce_vars
,
fuse_grad_size_in_MB
)
fused_vars
,
insert_num
=
FuseHelper
.
insert_coalesce_tensor
(
block
,
insert_idx
,
groups
,
op_role
,
prefix
=
"Grad"
)
for
fused_var
in
fused_vars
:
block
.
_insert_op_without_sync
(
insert_idx
+
len
(
fused_vars
)
,
insert_idx
+
insert_num
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
...
...
@@ -422,13 +450,61 @@ def insert_fused_allreduce_ops(block,
})
if
not
use_calc_stream
:
block
.
_insert_op_without_sync
(
insert_idx
+
len
(
fused_vars
)
,
insert_idx
+
insert_num
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
OP_ROLE_KEY
:
op_role
})
def
insert_fused_reduce_ops
(
block
,
insert_idx
,
ring_id
,
reduce_vars
,
shard
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
,
rank
=
None
,
fuse_grad_size
=
32
):
nranks
=
shard
.
worker_num
device_to_vars
=
[[]
for
_
in
range
(
nranks
)]
for
var
in
reduce_vars
:
root_id
=
get_grad_device
(
var
,
shard
)
assert
0
<=
root_id
<
nranks
,
"root_id should >=0 and < nranks, "
\
"but now nranks={}, the root_id of var={} is {}"
\
.
format
(
nranks
,
var
,
root_id
)
device_to_vars
[
root_id
].
append
(
var
)
for
root_id
,
vars_name
in
enumerate
(
device_to_vars
):
groups
=
FuseHelper
.
get_fused_groups
(
block
,
vars_name
,
fuse_grad_size
)
fused_vars
,
insert_num
=
FuseHelper
.
insert_coalesce_tensor
(
block
,
insert_idx
,
groups
,
op_role
,
prefix
=
"Grad"
)
for
fused_var
in
fused_vars
:
block
.
_insert_op_without_sync
(
insert_idx
+
insert_num
,
type
=
'c_reduce_sum'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
'ring_id'
:
ring_id
,
'root_id'
:
root_id
,
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
if
not
use_calc_stream
:
block
.
_insert_op_without_sync
(
insert_idx
+
insert_num
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
OP_ROLE_KEY
:
op_role
})
return
[]
if
rank
is
None
else
device_to_vars
[
rank
]
def
insert_reduce_ops
(
block
,
insert_idx
,
ring_id
,
...
...
@@ -436,14 +512,26 @@ def insert_reduce_ops(block,
shard
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
,
rank
=
None
):
rank
=
None
,
strategy
=
None
):
"""
_add_
all
reduce_ops
_add_reduce_ops
"""
if
strategy
and
strategy
.
fuse_all_reduce_ops
and
\
not
strategy
.
fuse_grad_merge
:
return
insert_fused_reduce_ops
(
block
,
insert_idx
,
ring_id
,
reduce_vars
,
shard
,
op_role
,
use_calc_stream
,
rank
,
strategy
.
fuse_grad_size_in_MB
)
grad_in_this_device
=
[]
for
var
in
reduce_vars
:
root_id
=
get_grad_device
(
var
,
shard
)
grad_var
=
var
if
strategy
and
strategy
.
fuse_all_reduce_ops
and
\
strategy
.
fuse_grad_merge
:
# TODO(wangxi): if support fp16_allreduce, need be
# 'FusedMergedGrad.cast_fp16._'
grad_var
=
var
.
replace
(
'FusedMergedGrad_'
,
''
)
root_id
=
get_grad_device
(
grad_var
,
shard
)
assert
root_id
>=
0
,
"root id should be a positive int, but now root id is {}"
.
format
(
root_id
)
if
rank
is
not
None
and
rank
==
root_id
:
...
...
@@ -463,6 +551,94 @@ def insert_reduce_ops(block,
return
grad_in_this_device
def
insert_fused_broadcast_param_ops
(
block
,
insert_idx
,
ring_id
,
params
,
shard
,
op_role
=
OpRole
.
Optimize
,
use_calc_stream
=
False
,
rank
=
None
,
fuse_size
=
32
):
nranks
=
shard
.
worker_num
device_to_vars
=
[[]
for
_
in
range
(
nranks
)]
for
var
in
params
:
root_id
=
shard
.
device
(
var
)
assert
0
<=
root_id
<
nranks
,
"root_id should >=0 and < nranks, "
\
"but now nranks={}, the root_id of var={} is {}"
\
.
format
(
nranks
,
var
,
root_id
)
device_to_vars
[
root_id
].
append
(
var
)
for
root_id
,
vars_name
in
enumerate
(
device_to_vars
):
groups
=
FuseHelper
.
get_fused_groups
(
block
,
vars_name
,
fuse_size
)
fused_vars
,
insert_num
=
FuseHelper
.
insert_coalesce_tensor
(
block
,
insert_idx
,
groups
,
op_role
,
prefix
=
"Param"
)
for
fused_var
in
fused_vars
:
block
.
_insert_op_without_sync
(
insert_idx
+
insert_num
,
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
root_id
,
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
if
not
use_calc_stream
:
block
.
_insert_op_without_sync
(
insert_idx
+
insert_num
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
OP_ROLE_KEY
:
op_role
})
return
[]
if
rank
is
None
else
device_to_vars
[
rank
]
def
insert_broadcast_param_ops
(
block
,
insert_idx
,
ring_id
,
params
,
shard
,
op_role
=
OpRole
.
Optimize
,
use_calc_stream
=
False
,
rank
=
None
,
strategy
=
None
):
"""
add broadcast param ops
"""
if
strategy
and
strategy
.
fuse_all_reduce_ops
:
# TODO(wangxi): put fused var in startup_program, only need exec once
return
insert_fused_broadcast_param_ops
(
block
,
insert_idx
,
ring_id
,
params
,
shard
,
op_role
,
use_calc_stream
,
rank
,
strategy
.
fuse_grad_size_in_MB
)
param_in_this_device
=
[]
for
param
in
params
:
root_id
=
shard
.
device
(
param
)
assert
root_id
>=
0
,
"root id should be a positive int, but now root id is {}"
.
format
(
root_id
)
if
rank
is
not
None
and
rank
==
root_id
:
param_in_this_device
.
append
(
param
)
block
.
_insert_op_without_sync
(
insert_idx
,
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
root_id
,
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
return
param_in_this_device
def
get_grad_device
(
grad_name
,
shard
):
assert
"@GRAD"
in
grad_name
,
"[{}] should be a grad variable."
.
format
(
grad_name
)
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
78465703
...
...
@@ -15,19 +15,22 @@
import
paddle
from
paddle.fluid
import
unique_name
,
core
import
paddle.fluid
as
fluid
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
from
paddle.distributed.fleet.meta_optimizers.common
import
is_backward_op
,
is_optimizer_op
,
is_update_op
from
paddle.distributed.fleet.meta_optimizers.meta_optimizer_base
import
MetaOptimizerBase
from
paddle.distributed.fleet.meta_optimizers.sharding.shard
import
Shard
,
ProgramSegment
from
paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper
import
FP16Utils
from
paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper
import
WeightDecayHelper
from
paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper
import
GradientClipHelper
from
.sharding.offload_helper
import
OffloadHelper
from
paddle.distributed.fleet.meta_optimizers.sharding.prune
import
ProgramDeps
from
paddle.distributed.fleet.meta_optimizers.sharding.utils
import
*
from
paddle.fluid.framework
import
Program
,
Variable
,
name_scope
,
default_main_program
,
default_startup_program
,
device_guard
from
paddle.static
import
default_startup_program
,
device_guard
from
paddle.fluid
import
layers
from
.common
import
OpRole
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
from
.common
import
is_backward_op
,
is_optimizer_op
,
is_update_op
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.sharding.shard
import
Shard
,
ProgramSegment
from
.sharding.fp16_helper
import
FP16Utils
from
.sharding.weight_decay_helper
import
WeightDecayHelper
from
.sharding.gradient_clip_helper
import
GradientClipHelper
from
.sharding.offload_helper
import
OffloadHelper
from
.sharding.prune
import
ProgramDeps
from
.sharding
import
utils
# FIXME: import *
from
.sharding.utils
import
*
import
logging
logger
=
logging
.
getLogger
(
__name__
)
formatter
=
logging
.
Formatter
(
...
...
@@ -35,7 +38,6 @@ formatter = logging.Formatter(
ch
=
logging
.
StreamHandler
()
ch
.
setFormatter
(
formatter
)
logger
.
addHandler
(
ch
)
from
functools
import
reduce
__all__
=
[]
...
...
@@ -154,10 +156,11 @@ class ShardingOptimizer(MetaOptimizerBase):
def
_get_hybrid_dp_mode
(
self
):
""" get
self.hybrid_dp_mode
self.gradient_merge_mode
self.hybrid_dp_mode
= 'pp_hybrid_dp' or 'sharding_hybrid_dp'
self.gradient_merge_mode
= 'pp_gm' or 'sharding_gm'
self._gradient_merge_acc_step
self.pp_allreduce_in_optimize
self._optimizer_sharding
"""
strategy
=
self
.
user_defined_strategy
sharding_configs
=
strategy
.
sharding_configs
...
...
@@ -194,9 +197,18 @@ class ShardingOptimizer(MetaOptimizerBase):
logger
.
info
(
"Gradient merge in [{}], acc step = [{}]"
.
format
(
gm_mode
,
gm_acc_step
))
optimizer_sharding
=
False
# TODO(wangxi): need support dp_as_opt_sharding with sharding
# need support without pp in future
if
self
.
sharding_degree
==
1
and
self
.
dp_degree
>
1
\
and
sharding_configs
[
'_dp_as_optimizer_sharding'
]
\
and
self
.
pp_degree
>
1
:
optimizer_sharding
=
True
self
.
hybrid_dp_mode
=
dp_mode
self
.
gradient_merge_mode
=
gm_mode
self
.
_gradient_merge_acc_step
=
gm_acc_step
self
.
_optimizer_sharding
=
optimizer_sharding
# this feature is design for ascend, and should NOT be used in GPU training
self
.
pp_allreduce_in_optimize
=
sharding_configs
[
...
...
@@ -276,7 +288,8 @@ class ShardingOptimizer(MetaOptimizerBase):
startup_block
=
self
.
_startup_program
.
global_block
()
# step1: build shard
self
.
_build_shard
(
params_grads
)
self
.
_build_shard
(
params_grads
,
self
.
sharding_rank
,
self
.
sharding_degree
)
# step2: split_program
self
.
_split_program
(
main_block
)
...
...
@@ -287,14 +300,35 @@ class ShardingOptimizer(MetaOptimizerBase):
startup_block
.
_sync_with_cpp
()
# step4: remove unneeded ops and vars from block
self
.
_prune_main_program
(
main_block
)
self
.
_prune_startup_program
(
startup_block
)
self
.
_prune_main_program
(
main_block
,
self
.
_shard
,
[
self
.
mp_ring_id
,
self
.
sharding_ring_id
,
self
.
pp_ring_id
])
self
.
_prune_startup_program
(
startup_block
,
self
.
_shard
)
def
_apply_opt_sharding_pass
(
self
,
params_grads
):
""" outer dp as optimizer sharding """
if
self
.
_optimizer_sharding
is
False
:
return
main_block
=
self
.
_main_program
.
global_block
()
startup_block
=
self
.
_startup_program
.
global_block
()
def
_insert_allreduce_for_pp
(
self
):
# step1: build shard
self
.
_build_shard
(
params_grads
,
self
.
dp_rank
,
self
.
dp_degree
)
# NOTE(wangxi): prune_main_program will prune cast if not add this
for
param
,
grad
in
params_grads
:
self
.
_reduced_grads_to_param
[
grad
.
name
]
=
param
.
name
# step4: remove unneeded ops and vars from block
self
.
_prune_main_program
(
main_block
,
self
.
_shard
,
[
self
.
mp_ring_id
,
self
.
pp_ring_id
,
self
.
dp_ring_id
])
self
.
_prune_startup_program
(
startup_block
,
self
.
_shard
)
def
_insert_allreduce_for_pp
(
self
,
params_grads
):
if
self
.
pp_degree
==
1
:
return
strategy
=
self
.
user_defined_strategy
fp16_allreduce
=
strategy
.
fp16_allreduce
main_block
=
self
.
_main_program
.
global_block
()
startup_block
=
self
.
_startup_program
.
global_block
()
...
...
@@ -318,10 +352,13 @@ class ShardingOptimizer(MetaOptimizerBase):
if
in_name
not
in
main_block
.
vars
:
main_block
.
_remove_op
(
idx
)
if
self
.
_optimizer_sharding
:
# TODO(wangxi): support fp16_allreduce with optimizer sharding
strategy
.
fp16_allreduce
=
False
shard
=
self
.
_shard
if
self
.
_optimizer_sharding
else
None
accumulated_grad_names
=
self
.
_pp_optimizer
.
_accumulate_gradients
(
main_block
,
fp16_allreduce
=
fp16_allreduce
,
user_defined_strategy
=
strategy
)
main_block
,
strategy
=
strategy
,
shard
=
shard
)
len_of_ops
=
len
(
main_block
.
ops
)
first_optimize_op_index
=
get_first_optimize_op_idx
(
main_block
)
...
...
@@ -346,7 +383,36 @@ class ShardingOptimizer(MetaOptimizerBase):
first_optimize_op_index
+=
(
len
(
main_block
.
ops
)
-
len_of_ops
)
len_of_ops
=
len
(
main_block
.
ops
)
if
self
.
hybrid_dp
and
self
.
hybrid_dp_mode
==
"pp_hybrid_dp"
:
if
self
.
_optimizer_sharding
:
accumulated_grad_names
=
utils
.
insert_reduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
dp_ring_id
,
accumulated_grad_names
,
self
.
_shard
,
OpRole
.
Optimize
,
use_calc_stream
=
True
,
rank
=
self
.
dp_rank
,
strategy
=
strategy
)
logger
.
info
(
"Optimizer grad in this rank {}"
.
format
(
accumulated_grad_names
))
first_optimize_op_index
+=
(
len
(
main_block
.
ops
)
-
len_of_ops
)
len_of_ops
=
len
(
main_block
.
ops
)
optimizer_param
=
utils
.
insert_broadcast_param_ops
(
main_block
,
len_of_ops
,
self
.
dp_ring_id
,
[
x
[
0
].
name
for
x
in
params_grads
],
self
.
_shard
,
OpRole
.
Optimize
,
use_calc_stream
=
True
,
rank
=
self
.
dp_rank
,
strategy
=
strategy
)
logger
.
info
(
"Optimizer param in this rank {}"
.
format
(
optimizer_param
))
if
not
strategy
.
fuse_grad_merge
:
assert
len
(
accumulated_grad_names
)
==
len
(
optimizer_param
)
elif
self
.
hybrid_dp
and
self
.
hybrid_dp_mode
==
"pp_hybrid_dp"
:
insert_allreduce_ops
(
main_block
,
first_optimize_op_index
,
...
...
@@ -361,9 +427,10 @@ class ShardingOptimizer(MetaOptimizerBase):
# FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
def
_adapt_amp_clip_without_sharding
(
self
):
if
self
.
sharding_degree
>
1
:
return
# if not use sharding, adapt amp/clip, for remain parallelism.
# cast --> amp --> clip --> opt
if
self
.
sharding_degree
>
1
:
return
if
self
.
_optimizer_sharding
:
return
main_block
=
self
.
_main_program
.
global_block
()
startup_block
=
self
.
_startup_program
.
global_block
()
...
...
@@ -449,7 +516,9 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
_apply_sharding_pass
(
params_grads
)
self
.
_insert_allreduce_for_pp
()
self
.
_apply_opt_sharding_pass
(
params_grads
)
self
.
_insert_allreduce_for_pp
(
params_grads
)
self
.
_adapt_amp_clip_without_sharding
()
...
...
@@ -630,11 +699,10 @@ class ShardingOptimizer(MetaOptimizerBase):
startup_block
.
_sync_with_cpp
()
def
_build_shard
(
self
,
params_grads
):
def
_build_shard
(
self
,
params_grads
,
shard_rank
,
shard_size
):
# step 2: split params
self
.
_params
=
set
([
x
[
0
].
name
for
x
in
params_grads
])
self
.
_shard
.
setup
(
params_grads
,
self
.
sharding_rank
,
self
.
sharding_degree
)
self
.
_shard
.
setup
(
params_grads
,
shard_rank
,
shard_size
)
# step 3: get broadcast vars
self
.
_broadcast_vars
=
self
.
_shard
.
find_broadcast_params
(
...
...
@@ -787,7 +855,7 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
_segments
[
idx_
].
_end_idx
].
desc
.
input_arg_names
()))
return
def
_prune_main_program
(
self
,
block
):
def
_prune_main_program
(
self
,
block
,
shard
,
rings
):
"""
calculate deps from allredce op to optimize op,
remove ops and vars not needed in this worker
...
...
@@ -799,28 +867,26 @@ class ShardingOptimizer(MetaOptimizerBase):
"""
weightdecay_helper
=
WeightDecayHelper
()
weightdecay_helper
.
prune_weight_decay
(
block
,
s
elf
.
_s
hard
)
weightdecay_helper
.
prune_weight_decay
(
block
,
shard
)
# FIXME(wangxi): mp should prune duplicated param_grads
# NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
# group. and each Data Parallelism group should have its own sync of FoundInfinite
# amp could use global group for sync
FP16Utils
.
prune_fp16
(
block
,
self
.
_shard
,
self
.
_reduced_grads_to_param
,
[
self
.
mp_ring_id
,
self
.
sharding_ring_id
,
self
.
pp_ring_id
])
FP16Utils
.
prune_fp16
(
block
,
shard
,
self
.
_reduced_grads_to_param
,
rings
)
# clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
gradientclip_helper
=
GradientClipHelper
(
None
)
gradientclip_helper
.
prune_gradient_clip
(
block
,
self
.
_shard
,
[
self
.
mp_ring_id
,
self
.
sharding_ring_id
,
self
.
pp_ring_id
])
gradientclip_helper
.
prune_gradient_clip
(
block
,
shard
,
rings
)
# build prog deps
reduced_grads
=
[]
for
idx
,
op
in
enumerate
(
block
.
ops
):
input_names
=
op
.
desc
.
input_arg_names
()
output_names
=
op
.
desc
.
output_arg_names
()
if
op
.
type
==
"c_allreduce_sum"
:
# FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
if
op
.
type
==
"c_allreduce_sum"
and
\
op
.
attr
(
'use_model_parallel'
)
is
False
:
assert
(
len
(
output_names
)
==
1
)
output_name
=
output_names
[
0
]
reduced_grads
.
append
(
output_name
)
...
...
@@ -828,8 +894,8 @@ class ShardingOptimizer(MetaOptimizerBase):
# prune optimizer state and param
pruned_opti_vars
=
[]
for
var_name
in
list
(
block
.
vars
.
keys
()):
if
s
elf
.
_s
hard
.
is_opti_var
(
var_name
)
and
\
not
s
elf
.
_s
hard
.
has_opt_var
(
var_name
):
if
shard
.
is_opti_var
(
var_name
)
and
\
not
shard
.
has_opt_var
(
var_name
):
pruned_opti_vars
.
append
(
var_name
)
program_deps
=
ProgramDeps
(
block
,
reduced_grads
,
pruned_opti_vars
)
...
...
@@ -881,7 +947,9 @@ class ShardingOptimizer(MetaOptimizerBase):
# if all outputs of this op are in _should_removed_var
# _should_removed_var: opt state not cur shard
if
program_deps
.
should_remove_op
(
idx
):
program_deps
.
remove_op
(
idx
)
# NOTE(wangxi): need reserve all param in optimizer_sharding
reserved_vars
=
self
.
_params
if
self
.
_optimizer_sharding
else
None
program_deps
.
remove_op
(
idx
,
reserved_vars
)
# NOTE (JZ-LIANG) revise and unify logic here
# sharding support fp16_allreduce logic
...
...
@@ -1112,17 +1180,21 @@ class ShardingOptimizer(MetaOptimizerBase):
return
def
_prune_startup_program
(
self
,
block
):
def
_prune_startup_program
(
self
,
block
,
shard
):
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
for
output_name
in
op
.
desc
.
output_arg_names
():
if
self
.
_shard
.
has_var
(
output_name
):
if
shard
.
has_var
(
output_name
):
continue
if
self
.
_optimizer_sharding
and
shard
.
is_param
(
output_name
):
continue
#TODO why do we remove op, when only one var is removed
block
.
_remove_op
(
idx
,
sync
=
False
)
break
for
var_name
in
list
(
block
.
vars
.
keys
()):
if
self
.
_shard
.
has_var
(
var_name
):
if
shard
.
has_var
(
var_name
):
continue
if
self
.
_optimizer_sharding
and
shard
.
is_param
(
var_name
):
continue
block
.
_remove_var
(
var_name
,
sync
=
False
)
block
.
_sync_with_cpp
()
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
78465703
...
...
@@ -5049,16 +5049,16 @@ class PipelineOptimizer(object):
def
_accumulate_gradients
(
self
,
block
,
pp_allreduce_in_optimize
=
False
,
fp16_allreduce
=
Fals
e
,
user_defined_strategy
=
None
):
strategy
=
Non
e
,
shard
=
None
):
"""
Create a new merged gradient for each parameter and accumulate the
corresponding gradient to it.
"""
if
user_defined_strategy
and
user_defined_strategy
.
fuse_grad_merge
:
fp16_allreduce
=
strategy
.
fp16_allreduce
if
strategy
else
False
if
strategy
and
strategy
.
fuse_grad_merge
:
fused_gradient_names
=
self
.
_accumulate_gradients_with_fuse
(
block
,
fp16_allreduce
,
user_defined_strategy
.
fuse_grad_size_in_MB
)
block
,
fp16_allreduce
,
strategy
.
fuse_grad_size_in_MB
,
shard
)
return
fused_gradient_names
merged_gradient_names
=
[]
...
...
@@ -5079,8 +5079,8 @@ class PipelineOptimizer(object):
if
self
.
_is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
#
no optimize phas
e
if
first_opt_op_idx
==
len
(
block
.
ops
):
return
#
maybe have no optimiz
e
#
if first_opt_op_idx == len(block.ops): return
if
self
.
_is_backward_op
(
op
)
and
(
self
.
_op_role_var_key
in
op
.
attr_names
):
...
...
@@ -5190,44 +5190,9 @@ class PipelineOptimizer(object):
return
merged_gradient_names
def
_accumulate_gradients_with_fuse
(
self
,
main_block
,
fp16
,
fused_size
):
first_opt_op_idx
=
None
grad_param_pairs
=
[]
# obtain all param/grad pairs that needed to be fused
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
main_block
.
ops
)))):
# remove the cast op of fp16 grad to fp32 grad
if
self
.
_is_optimize_op
(
op
)
and
op
.
type
==
'cast'
:
in_name
=
op
.
input_arg_names
[
0
]
out_name
=
op
.
output_arg_names
[
0
]
if
out_name
.
strip
(
'@GRAD'
)
in
self
.
_param_device_map
:
assert
in_name
.
replace
(
'.cast_fp16'
,
''
)
==
out_name
main_block
.
_remove_op
(
index
)
continue
if
self
.
_is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
# no optimize phase
if
first_opt_op_idx
==
len
(
main_block
.
ops
):
return
if
self
.
_is_backward_op
(
op
)
and
(
self
.
_op_role_var_key
in
op
.
attr_names
):
op_role_var
=
op
.
attr
(
self
.
_op_role_var_key
)
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param_name
=
op_role_var
[
i
]
if
not
main_block
.
has_var
(
param_name
):
continue
if
'@BroadCast'
in
param_name
:
continue
grad_param_pairs
.
append
(
(
op_role_var
[
i
+
1
],
op_role_var
[
i
]))
if
len
(
grad_param_pairs
)
==
0
:
return
def
_insert_accumulate_gradients_with_fuse
(
self
,
main_block
,
fp16
,
fused_size
,
grad_param_pairs
,
first_opt_op_idx
):
grad_param_pairs
=
self
.
_sort_grad_param_by_dtype
(
main_block
,
grad_param_pairs
)
...
...
@@ -5426,9 +5391,66 @@ class PipelineOptimizer(object):
for
i
in
range
(
len
(
fused_merged_gradients
)):
fused_merged_gradients
[
i
]
=
fused_merged_gradients
[
i
].
name
main_block
.
_sync_with_cpp
()
return
fused_merged_gradients
,
first_opt_op_idx
return
fused_merged_gradients
def
_accumulate_gradients_with_fuse
(
self
,
main_block
,
fp16
,
fused_size
,
shard
=
None
):
first_opt_op_idx
=
None
grad_param_pairs
=
[]
# obtain all param/grad pairs that needed to be fused
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
main_block
.
ops
)))):
# remove the cast op of fp16 grad to fp32 grad
if
self
.
_is_optimize_op
(
op
)
and
op
.
type
==
'cast'
:
in_name
=
op
.
input_arg_names
[
0
]
out_name
=
op
.
output_arg_names
[
0
]
if
out_name
.
strip
(
'@GRAD'
)
in
self
.
_param_device_map
:
assert
in_name
.
replace
(
'.cast_fp16'
,
''
)
==
out_name
main_block
.
_remove_op
(
index
)
continue
if
self
.
_is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
# no optimize phase
if
first_opt_op_idx
==
len
(
main_block
.
ops
):
return
if
self
.
_is_backward_op
(
op
)
and
(
self
.
_op_role_var_key
in
op
.
attr_names
):
op_role_var
=
op
.
attr
(
self
.
_op_role_var_key
)
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param_name
=
op_role_var
[
i
]
if
not
main_block
.
has_var
(
param_name
):
continue
if
'@BroadCast'
in
param_name
:
continue
grad_param_pairs
.
append
(
(
op_role_var
[
i
+
1
],
op_role_var
[
i
]))
if
len
(
grad_param_pairs
)
==
0
:
return
nranks
=
shard
.
worker_num
if
shard
else
1
device_to_pairs
=
[[]
for
_
in
range
(
nranks
)]
for
pair
in
grad_param_pairs
:
root_id
=
shard
.
device
(
pair
[
1
])
if
shard
else
0
assert
0
<=
root_id
<
nranks
device_to_pairs
[
root_id
].
append
(
pair
)
all_fused_merged_gradients
=
[]
for
pairs
in
device_to_pairs
:
fused_merged_gradients
,
first_opt_op_idx
=
\
self
.
_insert_accumulate_gradients_with_fuse
(
main_block
,
fp16
,
fused_size
,
pairs
,
first_opt_op_idx
)
all_fused_merged_gradients
+=
fused_merged_gradients
main_block
.
_sync_with_cpp
()
return
all_fused_merged_gradients
def
_sort_grad_param_by_dtype
(
self
,
main_block
,
grad_param_pairs
):
# sort the grad param paris by the dtype
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
78465703
...
...
@@ -70,6 +70,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_amp_meta_optimizer)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_amp_init
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_gradient_merge_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_sharding_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_hybrid_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_localsgd_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_lars_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_lamb_meta_optimizer
)
...
...
@@ -568,6 +569,7 @@ if(WITH_DISTRIBUTE)
py_test_modules
(
test_fleet_graph_executor MODULES test_fleet_graph_executor ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_gradient_merge_meta_optimizer MODULES test_fleet_gradient_merge_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_sharding_meta_optimizer MODULES test_fleet_sharding_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_hybrid_meta_optimizer MODULES test_fleet_hybrid_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_amp_meta_optimizer MODULES test_fleet_amp_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_amp_init MODULES test_fleet_amp_init ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_fp16_allreduce_meta_optimizer MODULES test_fleet_fp16_allreduce_meta_optimizer ENVS
${
dist_ENVS
}
)
...
...
python/paddle/fluid/tests/unittests/fleet_meta_optimizer_base.py
浏览文件 @
78465703
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
inspect
import
unittest
import
paddle
from
paddle
import
fluid
...
...
@@ -25,6 +26,23 @@ class TestFleetMetaOptimizer(unittest.TestCase):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001,127.0.0.1:36002"
self
.
_debug
=
False
def
debug_program
(
self
,
main_prog
,
startup_prog
):
if
not
self
.
_debug
:
return
main_prog_ops
=
main_prog
.
global_block
().
ops
startup_prog_ops
=
startup_prog
.
global_block
().
ops
main_prog_op_types
=
[
op
.
type
for
op
in
main_prog_ops
]
startup_prog_op_types
=
[
op
.
type
for
op
in
startup_prog_ops
]
print
(
"=== debug program and ops in func [{}] ==="
.
format
(
inspect
.
stack
()[
1
].
function
))
print
(
main_prog
)
print
(
main_prog_op_types
)
print
(
startup_prog
)
print
(
startup_prog_op_types
)
def
net
(
self
,
main_prog
,
startup_prog
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
...
...
@@ -82,6 +100,20 @@ class TestFleetMetaOptimizer(unittest.TestCase):
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
return
avg_cost
,
strategy
def
boundary_net
(
self
,
main_prog
,
startup_prog
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
fleet
.
init
(
is_collective
=
True
)
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
4
],
dtype
=
'float32'
)
with
paddle
.
static
.
device_guard
(
'gpu:0'
):
linear
=
fluid
.
Linear
(
4
,
8
,
bias_attr
=
False
)
out
=
linear
(
x
)
with
paddle
.
static
.
device_guard
(
'gpu:1'
):
linear
=
fluid
.
Linear
(
8
,
5
,
bias_attr
=
False
)
out
=
linear
(
out
)
avg_cost
=
paddle
.
mean
(
out
)
strategy
=
fleet
.
DistributedStrategy
()
return
avg_cost
,
strategy
def
optimizer
(
self
,
loss
,
strategy
,
...
...
@@ -190,5 +222,12 @@ class TestFleetMetaOptimizer(unittest.TestCase):
"enable_offload"
:
True
,
"checkpoint_shape"
:
[
256
]
}
elif
name
==
"pipeline"
:
strategy
.
pipeline
=
True
strategy
.
pipeline_configs
=
{
"schedule_mode"
:
"1F1B"
,
"micro_batch_size"
:
2
,
"accumulate_steps"
:
4
,
}
else
:
raise
NotImplementedError
()
python/paddle/fluid/tests/unittests/test_fleet_hybrid_meta_optimizer.py
0 → 100755
浏览文件 @
78465703
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
浏览文件 @
78465703
...
...
@@ -612,7 +612,7 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
for
op
in
main_prog_ops
:
if
op
.
type
==
'c_allreduce_sum'
:
assert
'Fused
Output
'
in
op
.
input_arg_names
[
0
]
assert
'Fused
Grad
'
in
op
.
input_arg_names
[
0
]
def
test_hybrid_with_mp_pp_amp_gclip
(
self
):
train_prog
,
startup_prog
=
paddle
.
fluid
.
Program
(),
paddle
.
fluid
.
Program
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录