Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c3974d0e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c3974d0e
编写于
3月 26, 2021
作者:
L
lilong12
提交者:
GitHub
3月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[3D-parallel] Reformat pipeline parallel (#31786)
* update, test=develop
上级
01aa2526
变更
8
展开全部
隐藏空白更改
内联
并排
Showing
8 changed file
with
816 addition
and
569 deletion
+816
-569
paddle/fluid/framework/section_worker.cc
paddle/fluid/framework/section_worker.cc
+10
-10
python/paddle/distributed/fleet/meta_optimizers/common.py
python/paddle/distributed/fleet/meta_optimizers/common.py
+38
-3
python/paddle/distributed/fleet/meta_optimizers/pipeline_optimizer.py
...e/distributed/fleet/meta_optimizers/pipeline_optimizer.py
+136
-172
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
+7
-3
python/paddle/fluid/device_worker.py
python/paddle/fluid/device_worker.py
+1
-1
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+15
-8
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+589
-365
python/paddle/fluid/tests/unittests/pipeline_mnist.py
python/paddle/fluid/tests/unittests/pipeline_mnist.py
+20
-7
未找到文件。
paddle/fluid/framework/section_worker.cc
浏览文件 @
c3974d0e
...
...
@@ -39,13 +39,13 @@ void SectionWorker::RunForward(
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
bool
run_first_mbatch
=
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
)
||
(
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)
))
||
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
)
);
bool
run_others
=
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
)
||
(
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)
));
if
((
micro_id
==
0
&&
run_first_mbatch
)
||
(
micro_id
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"Forward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
micro_id
;
...
...
@@ -64,9 +64,9 @@ void SectionWorker::RunBackward(
&
unused_vars_
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
if
(
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
)
||
(
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)
)))
{
VLOG
(
3
)
<<
"Backward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
micro_id
;
op
->
Run
(
*
microbatch_scopes_
[
micro_id
],
place_
);
...
...
python/paddle/distributed/fleet/meta_optimizers/common.py
浏览文件 @
c3974d0e
...
...
@@ -47,7 +47,7 @@ def is_optimizer_op(op):
class
CollectiveHelper
(
object
):
def
__init__
(
self
,
role_maker
,
nrings
=
1
,
wait_port
=
'6174'
):
def
__init__
(
self
,
role_maker
,
nrings
=
1
,
wait_port
=
True
):
self
.
nrings
=
nrings
self
.
wait_port
=
wait_port
self
.
role_maker
=
role_maker
...
...
@@ -65,14 +65,48 @@ class CollectiveHelper(object):
self
.
role_maker
.
_worker_index
(),
ring_id
,
self
.
wait_port
)
self
.
_broadcast_params
()
def
_init_communicator
(
self
,
program
,
current_endpoint
,
endpoints
,
rank
,
ring_id
,
wait_port
):
def
_init_communicator
(
self
,
program
,
current_endpoint
,
endpoints
,
rank
,
ring_id
,
wait_port
,
global_ring_id
=
None
,
sync
=
True
):
nranks
=
len
(
endpoints
)
other_endpoints
=
endpoints
[:]
other_endpoints
.
remove
(
current_endpoint
)
if
rank
==
0
and
wait_port
:
wait_server_ready
(
other_endpoints
)
def
_add_sync_by_allreduce
(
block
):
sync_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'sync_var'
),
dtype
=
core
.
VarDesc
.
VarType
.
INT32
,
persistable
=
False
,
stop_gradient
=
True
)
block
.
append_op
(
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
sync_var
]},
attrs
=
{
'shape'
:
[
1
],
'dtype'
:
sync_var
.
dtype
,
'value'
:
1
,
'force_cpu'
:
False
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
block
.
append_op
(
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
[
sync_var
]},
outputs
=
{
'Out'
:
[
sync_var
]},
attrs
=
{
'ring_id'
:
global_ring_id
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
block
=
program
.
global_block
()
if
core
.
is_compiled_with_cuda
():
comm_id_var
=
block
.
create_var
(
...
...
@@ -128,6 +162,7 @@ class CollectiveHelper(object):
raise
ValueError
(
"comm_id must be generated in paddlepaddle-xpu or paddlepaddle-xpu."
)
if
sync
:
_add_sync_by_allreduce
(
block
)
def
_wait
(
self
,
current_endpoint
,
endpoints
):
assert
(
self
.
wait_port
)
...
...
python/paddle/distributed/fleet/meta_optimizers/pipeline_optimizer.py
浏览文件 @
c3974d0e
...
...
@@ -19,130 +19,21 @@ from paddle.fluid import core, unique_name
from
..base.private_helper_function
import
wait_server_ready
from
paddle.fluid.optimizer
import
PipelineOptimizer
as
PO
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_update_op
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
def
_get_node_num
(
endpoints
):
ss
=
set
()
for
ep
in
endpoints
:
ip
=
ep
.
split
(
":"
)[
0
].
strip
()
if
ip
not
in
ss
:
ss
.
add
(
ip
)
return
len
(
ss
)
class
PipelineHelper
(
object
):
def
__init__
(
self
,
role_maker
,
wait_port
=
'6174'
):
self
.
wait_port
=
wait_port
self
.
role_maker
=
role_maker
def
update_startup_program
(
self
,
startup_program
=
None
,
inner_parallelism
=
None
):
self
.
startup_program
=
startup_program
nranks
=
self
.
role_maker
.
_worker_num
()
rank
=
self
.
role_maker
.
_worker_index
()
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
current_endpoint
=
endpoints
[
rank
]
node_num
=
_get_node_num
(
endpoints
)
assert
nranks
%
node_num
==
0
# Create ring 0 for all gpus in the same pipeline
if
inner_parallelism
>
1
:
pipeline_rank
=
rank
%
inner_parallelism
pipeline_id
=
rank
//
inner_parallelism
start_index
=
pipeline_id
*
inner_parallelism
pipeline_endpoints
=
endpoints
[
start_index
:
start_index
+
inner_parallelism
]
self
.
_init_communicator
(
self
.
startup_program
,
current_endpoint
,
pipeline_endpoints
,
pipeline_rank
,
0
,
self
.
wait_port
)
pipeline_num
=
len
(
endpoints
)
//
inner_parallelism
if
pipeline_num
==
1
:
return
# Create rings for gpus with the same pipeline id for data parallel
eps
=
[]
pipeline_rank
=
rank
%
inner_parallelism
ring_id
=
pipeline_rank
+
1
for
i
in
range
(
pipeline_num
):
eps
.
append
(
endpoints
[
i
*
inner_parallelism
+
pipeline_rank
])
# rank in a ring of gpus with the same pipeline id for data parallel
dp_rank
=
rank
//
inner_parallelism
self
.
_init_communicator
(
self
.
startup_program
,
current_endpoint
,
eps
,
dp_rank
,
ring_id
,
self
.
wait_port
)
self
.
_broadcast_params
(
ring_id
)
def
_init_communicator
(
self
,
program
,
current_endpoint
,
endpoints
,
rank
,
ring_id
,
wait_port
):
nranks
=
len
(
endpoints
)
other_endpoints
=
endpoints
[:]
other_endpoints
.
remove
(
current_endpoint
)
if
rank
==
0
and
wait_port
:
wait_server_ready
(
other_endpoints
)
block
=
program
.
global_block
()
nccl_id_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
OP_ROLE_KEY
:
OpRole
.
Forward
,
})
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
,
})
def
_broadcast_params
(
self
,
ring_id
):
block
=
self
.
startup_program
.
global_block
()
for
var_name
in
block
.
vars
:
if
"nccl_id"
in
var_name
:
continue
param
=
block
.
var
(
var_name
)
if
not
param
.
persistable
:
continue
block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
class
PipelineOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
PipelineOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[
"RecomputeOptimizer"
,
"AMPOptimizer"
,
]
self
.
meta_optimizers_black_list
=
[
"GraphExecutionOptimizer"
,
]
self
.
global_ring_id
=
1
self
.
dp_ring_id
=
2
self
.
start_pipeline_ring_id
=
20
# Just a magic number
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
...
...
@@ -165,7 +56,11 @@ class PipelineOptimizer(MetaOptimizerBase):
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
pipeline
=
False
dist_strategy
.
pipeline_configs
=
{}
dist_strategy
.
pipeline_configs
=
{
"micro_batch_size"
:
1
,
"accumulate_steps"
:
1
,
"schedule_mode"
:
"1F1B"
,
}
def
_enable_strategy
(
self
,
dist_strategy
,
context
):
dist_strategy
.
pipeline
=
True
...
...
@@ -175,61 +70,134 @@ class PipelineOptimizer(MetaOptimizerBase):
"schedule_mode"
:
"1F1B"
,
}
def
_broadcast_params
(
self
,
ring_id
):
block
=
self
.
startup_program
.
global_block
()
param
=
None
for
param
in
block
.
iter_parameters
():
if
param
.
is_distributed
:
continue
block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
if
not
param
:
return
# no parameter on this device
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
def
_get_process_group_info
(
self
):
# global ring info
self
.
global_endpoints
=
self
.
endpoints
self
.
global_rank
=
self
.
rank
self
.
global_nranks
=
self
.
nranks
# data parallel ring info
if
self
.
pipeline_num
>
1
:
self
.
dp_rank
=
self
.
rank
//
self
.
inner_parallelism
self
.
dp_nranks
=
self
.
nranks
//
self
.
inner_parallelism
start_index
=
self
.
rank
%
self
.
inner_parallelism
self
.
dp_endpoints
=
[
self
.
endpoints
[
start_index
+
i
*
self
.
inner_parallelism
]
for
i
in
range
(
self
.
pipeline_num
)
]
def
_init_process_group
(
self
,
pipeline_pair
,
pipeline_ring_map
):
self
.
_get_process_group_info
()
collective_helper
=
CollectiveHelper
(
self
.
role_maker
,
wait_port
=
False
)
# Create global ring for all gpus (ring_id = 0)
collective_helper
.
_init_communicator
(
self
.
startup_program
,
self
.
current_endpoint
,
self
.
global_endpoints
,
self
.
global_rank
,
self
.
global_ring_id
,
True
,
self
.
global_ring_id
,
True
)
# Create pipeline rings
if
self
.
inner_parallelism
>
1
:
pipeline_id
=
self
.
rank
//
self
.
inner_parallelism
start_index
=
pipeline_id
*
self
.
inner_parallelism
for
pair
in
pipeline_pair
:
pair_key
=
pair
[
0
]
*
1000
+
pair
[
1
]
ring_id
=
pipeline_ring_map
[
pair_key
]
assert
ring_id
>=
self
.
start_pipeline_ring_id
first_node
=
pair
[
0
]
+
start_index
second_node
=
pair
[
1
]
+
start_index
if
self
.
rank
!=
first_node
and
self
.
rank
!=
second_node
:
continue
pipeline_endpoints
=
[
self
.
endpoints
[
first_node
],
self
.
endpoints
[
second_node
]
]
pipeline_rank
=
0
if
self
.
rank
==
first_node
else
1
pipeline_nranks
=
2
collective_helper
.
_init_communicator
(
self
.
startup_program
,
self
.
current_endpoint
,
pipeline_endpoints
,
pipeline_rank
,
ring_id
,
False
,
self
.
global_ring_id
,
True
)
# Create dp rings
if
self
.
pipeline_num
>
1
:
collective_helper
.
_init_communicator
(
self
.
startup_program
,
self
.
current_endpoint
,
self
.
dp_endpoints
,
self
.
dp_rank
,
self
.
dp_ring_id
,
True
,
self
.
global_ring_id
,
True
)
self
.
_broadcast_params
(
self
.
dp_ring_id
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
_worker_index
()]
self
.
wrapped_opt
=
PO
(
self
.
inner_opt
,
num_microbatches
=
self
.
num_microbatches
)
node_num
=
_get_node_num
(
endpoints
)
gpus_per_node
=
len
(
endpoints
)
//
node_num
self
.
startup_program
=
startup_program
if
startup_program
is
None
:
self
.
startup_program
=
fluid
.
default_startup_program
()
self
.
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
self
.
current_endpoint
=
self
.
endpoints
[
self
.
role_maker
.
_worker_index
()]
self
.
rank
=
self
.
role_maker
.
_worker_index
()
self
.
nranks
=
self
.
role_maker
.
_worker_num
()
assert
self
.
nranks
%
node_num
==
0
loss
.
block
.
program
.
_pipeline_opt
=
dict
()
loss
.
block
.
program
.
_pipeline_opt
[
'local_rank'
]
=
self
.
rank
loss
.
block
.
program
.
_pipeline_opt
[
'micro_batch_size'
]
=
self
.
micro_batch_size
loss
.
block
.
program
.
_pipeline_opt
[
'schedule_mode'
]
=
self
.
schedule_mode
optimize_ops
,
params_grads
,
prog_list
=
self
.
wrapped_opt
.
minimize
(
self
.
wrapped_opt
=
PO
(
self
.
inner_opt
,
num_microbatches
=
self
.
num_microbatches
)
orig_startup_program
=
startup_program
if
startup_program
else
fluid
.
default_startup_program
(
)
block
=
loss
.
block
program
=
block
.
program
program
.
_pipeline_opt
=
dict
()
program
.
_pipeline_opt
[
'local_rank'
]
=
self
.
rank
program
.
_pipeline_opt
[
'global_ring_id'
]
=
self
.
global_ring_id
program
.
_pipeline_opt
[
'ring_id'
]
=
self
.
start_pipeline_ring_id
program
.
_pipeline_opt
[
'micro_batch_size'
]
=
self
.
micro_batch_size
program
.
_pipeline_opt
[
'schedule_mode'
]
=
self
.
schedule_mode
optimize_ops
,
params_grads
,
prog_list
,
pp_pair
,
ring_map
=
self
.
wrapped_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
assert
prog_list
self
.
main_program_list
=
prog_list
self
.
main_program
=
loss
.
block
.
program
self
.
inner_parallelism
=
loss
.
block
.
program
.
_pipeline_opt
[
'inner_parallelism'
]
self
.
startup_program
=
orig_startup_program
.
_pipeline_opt
[
'startup_program'
]
self
.
inner_parallelism
=
program
.
_pipeline_opt
[
'inner_parallelism'
]
assert
self
.
nranks
%
self
.
inner_parallelism
==
0
assert
prog_list
self
.
pipeline_num
=
len
(
self
.
endpoints
)
//
self
.
inner_parallelism
pipeline_helper
=
PipelineHelper
(
self
.
role_maker
)
pipeline_helper
.
update_startup_program
(
self
.
startup_program
.
_pipeline_opt
[
"startup_program"
],
self
.
inner_parallelism
)
self
.
_init_process_group
(
pp_pair
,
ring_map
)
pipeline_num
=
self
.
nranks
//
self
.
inner_parallelism
self
.
_transpile_main_program
(
loss
,
pipeline_num
,
self
.
inner_parallelism
)
self
.
main_program_list
=
prog_list
self
.
main_program
=
program
if
self
.
pipeline_num
>
1
:
self
.
_transpile_main_program
(
loss
)
return
optimize_ops
,
params_grads
def
_transpile_main_program
(
self
,
loss
,
pipeline_num
,
inner_parallelism
):
if
pipeline_num
<=
1
:
return
self
.
_insert_loss_grad_ops
(
loss
,
pipeline_num
)
for
ring_id
in
range
(
1
,
inner_parallelism
+
1
):
self
.
_insert_allreduce_ops
(
ring_id
)
def
_transpile_main_program
(
self
,
loss
):
self
.
_insert_loss_grad_ops
(
loss
,
self
.
pipeline_num
)
self
.
_insert_allreduce_ops
(
self
.
dp_ring_id
)
def
_insert_loss_grad_ops
(
self
,
loss
,
pipeline_num
):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block
=
self
.
main_program_list
[
-
1
]
[
'program'
]
.
global_block
()
block
=
self
.
main_program_list
[
-
1
].
global_block
()
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_loss_grad_op
(
op
):
loss_grad_var
=
block
.
vars
[
op
.
output_arg_names
[
0
]]
...
...
@@ -244,57 +212,53 @@ class PipelineOptimizer(MetaOptimizerBase):
})
def
_insert_allreduce_ops
(
self
,
ring_id
):
block
=
self
.
main_program_list
[
ring_id
-
1
][
'program'
].
global_block
()
block
=
self
.
main_program
.
_pipeline_opt
[
'section_program'
].
global_block
(
)
origin_block
=
self
.
main_program
.
global_block
()
grad
=
None
processed_param_name
=
set
()
first_optimize_op_idx
=
None
add_sync_calc_stream
=
False
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
not
first_optimize_op_idx
:
first_optimize_op_idx
=
idx
+
1
# no optimize phase
if
first_optimize_op_idx
==
len
(
block
.
ops
):
return
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
OP_ROLE_VAR_KEY
]
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
idx
offset
=
0
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param_name
=
op_role_var
[
i
]
param
=
block
.
vars
[
op_role_var
[
i
]]
if
param_name
in
processed_param_name
:
continue
processed_param_name
.
add
(
param_name
)
grad
=
block
.
vars
[
op_role_var
[
i
+
1
]]
grad_name
=
op_role_var
[
i
+
1
]
if
not
'MERGED'
in
grad_name
:
grad_name
+=
'@MERGED'
grad
=
block
.
vars
[
grad_name
]
origin_param
=
origin_block
.
vars
[
op_role_var
[
i
]]
if
origin_param
.
is_distributed
:
continue
if
offset
==
idx
:
offset
+=
1
if
not
add_sync_calc_stream
:
add_sync_calc_stream
=
True
block
.
_insert_op
(
offset
,
first_optimize_op_idx
+
offset
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Optimize
})
offset
+=
1
block
.
_insert_op
(
offset
,
first_optimize_op_idx
+
offset
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
if
grad
is
None
:
return
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
浏览文件 @
c3974d0e
...
...
@@ -123,7 +123,8 @@ def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
outputs
=
{
"Out"
:
out_var
},
attrs
=
{
"in_dtype"
:
in_var
.
dtype
,
"out_dtype"
:
out_var
.
dtype
"out_dtype"
:
out_var
.
dtype
,
"op_device"
:
op
.
attr
(
"op_device"
)
})
num_cast_ops
+=
1
_rename_arg
(
op
,
in_var
.
name
,
out_var
.
name
)
...
...
@@ -171,8 +172,11 @@ def _insert_cast_post_op(block, op, idx, src_dtype, dest_dtype, target_name,
type
=
"cast"
,
inputs
=
{
"X"
:
target_var
},
outputs
=
{
"Out"
:
cast_var
},
attrs
=
{
"in_dtype"
:
target_var
.
dtype
,
"out_dtype"
:
cast_var
.
dtype
})
attrs
=
{
"in_dtype"
:
target_var
.
dtype
,
"out_dtype"
:
cast_var
.
dtype
,
"op_device"
:
op
.
attr
(
"op_device"
)
})
num_cast_ops
+=
1
op_var_rename_map
[
block
.
idx
][
target_var
.
name
]
=
cast_var
.
name
...
...
python/paddle/fluid/device_worker.py
浏览文件 @
c3974d0e
...
...
@@ -427,7 +427,7 @@ class Section(DeviceWorker):
section_param
.
schedule_mode
=
schedule_mode
cfg
=
section_param
.
section_config
program
=
pipeline_opt
[
"section_program"
]
cfg
.
program_desc
.
ParseFromString
(
program
[
"program"
]
.
_get_desc
()
cfg
.
program_desc
.
ParseFromString
(
program
.
_get_desc
()
.
serialize_to_string
())
# TODO: why does not work
# cfg.program_desc.CopyFrom(program.program._get_desc())
...
...
python/paddle/fluid/executor.py
浏览文件 @
c3974d0e
...
...
@@ -1458,7 +1458,7 @@ class Executor(object):
dataset
.
_prepare_to_run
()
real_fetch_list
=
[]
if
program
.
_pipeline_opt
:
real_program
=
program
.
_pipeline_opt
[
"section_program"
]
[
'program'
]
real_program
=
program
.
_pipeline_opt
[
"section_program"
]
for
fetch_var
in
fetch_list
:
if
isinstance
(
fetch_var
,
Variable
):
fetch_var_name
=
fetch_var
.
name
...
...
@@ -1467,13 +1467,20 @@ class Executor(object):
if
fetch_var_name
in
real_program
.
global_block
().
vars
:
real_fetch_list
.
append
(
fetch_var
)
program
.
_pipeline_opt
[
"section_program"
][
'program'
]
=
self
.
_add_feed_fetch_ops
(
program
=
program
.
_pipeline_opt
[
"section_program"
][
'program'
],
feed
=
[],
fetch_list
=
real_fetch_list
,
feed_var_name
=
'feed'
,
fetch_var_name
=
'fetch'
)
program
.
_pipeline_opt
[
"section_program"
]
=
self
.
_add_feed_fetch_ops
(
program
=
program
.
_pipeline_opt
[
"section_program"
],
feed
=
[],
fetch_list
=
real_fetch_list
,
feed_var_name
=
'feed'
,
fetch_var_name
=
'fetch'
)
main_block
=
program
.
_pipeline_opt
[
"section_program"
].
block
(
0
)
for
op
in
main_block
.
ops
:
# set the op_role of fetch op to Optimize to avoid
# erase the fetched vars by gc for pipeline
if
op
.
type
==
'fetch'
:
op
.
_set_attr
(
'op_role'
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
)
fetch_list
=
None
scope
,
trainer
=
self
.
_prepare_trainer
(
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
c3974d0e
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/pipeline_mnist.py
浏览文件 @
c3974d0e
...
...
@@ -66,12 +66,21 @@ def cnn_model(data):
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)))
with
fluid
.
device_guard
(
"gpu:1"
):
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)))
# To cover @RENAMED@GRADIENT
predict2
=
fluid
.
layers
.
fc
(
input
=
conv_pool_1
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)))
predict
+=
predict2
return
predict
...
...
@@ -108,7 +117,10 @@ class TestDistMnist2x2(TestDistRunnerBase):
bd
=
[
steps_per_pass
*
p
for
p
in
passes
]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
lr_val
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
opt
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
lr_val
,
momentum
=
0.9
)
opt
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
lr_val
,
momentum
=
0.9
,
grad_clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
1.0
))
acc_steps
=
2
# accumulated steps for pipeline
if
dist_strategy
:
...
...
@@ -120,6 +132,7 @@ class TestDistMnist2x2(TestDistRunnerBase):
fleet
.
init
(
is_collective
=
True
)
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
pipeline
=
True
strategy
.
amp
=
True
strategy
.
pipeline_configs
=
{
'micro_batch_size'
:
batch_size
,
'schedule_mode'
:
'1F1B'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录