optimizer.py 54.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
18 19
from contextlib import contextmanager

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.transpiler.details.distribute_lookuptable_utils import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
33

34
__all__ = [
Q
qiaolongfei 已提交
35
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
36
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
37
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
38 39
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
40
]
Q
Qiao Longfei 已提交
41 42 43 44 45 46


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
47 48
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
49 50
    """

X
Xin Pan 已提交
51
    def __init__(self, learning_rate, regularization=None, name=None):
52 53
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
54
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
55
        self._name = name
D
dzhwinter 已提交
56
        self.regularization = regularization
57
        self._learning_rate = learning_rate
D
dzhwinter 已提交
58 59
        # the learning rate type should be inferenced from loss
        self._dtype = None
60 61
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
62
        self._learning_rate_map = dict()
63 64 65
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
66 67 68 69 70
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
71
        self.helper = None
Q
Qiao Longfei 已提交
72

Q
Qiao Longfei 已提交
73
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
74
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
75

76 77 78 79
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
80
                raise TypeError(
81 82
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
83

84 85 86 87 88 89
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
Q
Qiao Longfei 已提交
90
            dtype='float32' if self._dtype is None else self._dtype,
91 92
            persistable=True)

Y
yuyang18 已提交
93
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
94 95 96 97
        """
        get global decayed learning rate
        :return:
        """
98 99
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
100
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
101

Q
Qiao Longfei 已提交
102 103 104 105 106
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

107 108 109 110
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
111 112
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
113
        else:
W
Wu Yi 已提交
114
            if param_lr == 1.0:
Y
yuyang18 已提交
115
                return self._global_learning_rate()
W
Wu Yi 已提交
116
            else:
X
Xin Pan 已提交
117 118 119
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
120
                    return self._global_learning_rate() * param_lr
121 122 123 124 125 126 127

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
128
        """
129 130
        pass

131
    def _finish_update(self, block, parameters_and_grads):
132 133 134 135 136 137 138 139
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
140
            None
141 142 143
        """
        pass

144 145 146 147 148 149
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
150 151 152 153 154 155 156 157 158
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
159 160
        if self._name is not None:
            name = self._name + "_" + name
161 162
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
163
            raise Exception("Accumulator {} already exists for parameter {}".
164
                            format(name, param.name))
165 166
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
167 168
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
169
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
170
            persistable=True,
F
fengjiayi 已提交
171
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
172
            type=param.type,
173
            shape=shape)
Q
Qiao Longfei 已提交
174
        self.helper.set_variable_initializer(
175
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
176
        self._accumulators[name][param.name] = var
177
        return var
178 179 180 181 182 183 184 185 186 187 188

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
189 190
        if self._name is not None:
            name = self._name + "_" + name
191 192 193 194 195 196
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
197 198 199 200
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
201 202 203
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
204 205 206
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
207 208

        Returns:
209 210 211 212
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
213
        """
214 215 216 217 218
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
219
        # for parameters and extend _finish_update method to add custom ops.
220 221

        # Create any accumulators
Q
Qiao Longfei 已提交
222
        program = loss.block.program
D
dzhwinter 已提交
223
        self._dtype = loss.dtype
224
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
225 226
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
227 228 229
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
230
            self._create_global_learning_rate()
231 232 233

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
234 235
                if param_and_grad[1] is None:
                    continue
W
Wu Yi 已提交
236
                with param_and_grad[0].block.program._optimized_guard(
237
                        param_and_grad), name_scope("optimizer"):
238
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
239 240 241
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
242 243 244

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
245
            self._finish_update(loss.block, parameters_and_grads)
246

Y
Yancey1989 已提交
247
            end = len(global_block.ops)
W
Wu Yi 已提交
248
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
249

Q
Qiao Longfei 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    def _process_distribute_lookuptable(self, param_grads, loss,
                                        startup_program):
        program = loss.block.program
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
            with program_guard(program, startup_program):
                param_and_grad = [table_param, table_grad]
                with table_param.block.program._optimized_guard(param_and_grad), \
                     framework.name_scope("optimizer"):
Q
Qiao Longfei 已提交
272
                    self._create_global_learning_rate()
Q
Qiao Longfei 已提交
273 274 275 276 277 278 279 280 281 282 283 284
                    # create the optimize op
                    sgd_op = loss.block.append_op(
                        type='sgd',
                        inputs={
                            "Param": table_param,
                            "Grad": table_grad,
                            "LearningRate":
                            self._create_param_lr(param_and_grad)
                        },
                        outputs={"ParamOut": param_and_grad[0]})
        return new_param_grads, (table_param, table_grad), sgd_op

Q
Qiao Longfei 已提交
285 286
    def minimize(self,
                 loss,
287
                 startup_program=None,
Q
Qiao Longfei 已提交
288 289
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
290 291
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
292
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
293 294
        `create_optimization_pass()` into one.
        """
Q
Qiao Longfei 已提交
295 296 297 298
        with program_guard(loss.block.program, startup_program):

            params_grads = append_backward(loss, parameter_list, no_grad_set,
                                           [error_clip_callback])
Y
Yu Yang 已提交
299

Q
Qiao Longfei 已提交
300
            params_grads = sorted(params_grads, key=lambda x: x[0].name)
Y
Yu Yang 已提交
301

Q
Qiao Longfei 已提交
302 303
            params_grads, table_param_and_grad, table_optimize_op = \
                self._process_distribute_lookuptable(params_grads, loss, startup_program)
304

Q
Qiao Longfei 已提交
305
            params_grads = append_gradient_clip_ops(params_grads)
Y
Yu Yang 已提交
306

Q
Qiao Longfei 已提交
307 308 309
            # Add regularization if any
            params_grads = append_regularization_ops(params_grads,
                                                     self.regularization)
Y
Yu Yang 已提交
310

Q
Qiao Longfei 已提交
311 312 313 314 315 316
            optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                          startup_program)
            if table_optimize_op is not None:
                optimize_ops.append(table_optimize_op)
                params_grads.append(table_param_and_grad)
            return optimize_ops, params_grads
Q
Qiao Longfei 已提交
317 318 319


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
320 321 322 323 324 325 326 327 328 329
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
330 331 332
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
333 334 335 336

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
337
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
338
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
339 340
    """

X
Xin Pan 已提交
341
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
342
        assert learning_rate is not None
Q
Qiao Longfei 已提交
343
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
344 345 346
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
347 348
        self.type = "sgd"

349 350
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
351

Q
Qiao Longfei 已提交
352 353 354 355 356 357
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
358
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
359
            },
360
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
361 362

        return sgd_op
363 364 365


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

380
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
381 382 383

        & else:

Q
qiaolongfei 已提交
384
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
385 386 387 388 389 390

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
391 392 393
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
394 395 396 397

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
398
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
399
            optimizer.minimize(cost)
400 401 402
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
403 404 405 406 407 408
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
409 410
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
411
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
412 413 414
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
415 416
        self.type = "momentum"
        self._momentum = momentum
417
        self._use_nesterov = bool(use_nesterov)
418 419 420 421 422

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
423
            self._add_accumulator(self._velocity_acc_str, p)
424 425 426 427 428 429 430 431 432 433 434 435 436

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
437
                "LearningRate": self._create_param_lr(param_and_grad)
438 439 440 441 442
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
443
            attrs={"mu": self._momentum,
444
                   "use_nesterov": self._use_nesterov})
445 446

        return momentum_op
447 448


449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
        

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
            })

        return momentum_op


534
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
555 556 557
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
558 559 560 561 562 563

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
564 565 566
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
567 568 569 570 571
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
572 573
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
574
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
575 576 577
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
578 579 580 581 582 583 584
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
585
            self._add_accumulator(self._moment_acc_str, p)
586 587 588 589 590 591 592

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

593
        # Create the adagrad optimizer op
594 595 596 597 598 599
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
600
                "LearningRate": self._create_param_lr(param_and_grad)
601 602 603 604 605 606
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
607 608 609


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
637 638 639
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
640 641 642 643 644 645 646

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

647 648 649
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
650 651
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
652 653 654 655 656

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
657
                 epsilon=1e-8,
X
Xin Pan 已提交
658 659
                 regularization=None,
                 name=None):
660 661 662 663
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
664
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
665 666 667
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
668 669 670 671 672 673 674 675 676 677
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
678 679
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
680 681 682 683 684 685 686 687 688 689 690 691
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
692 693 694 695 696 697 698 699

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
700 701 702 703 704
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

705
        # create the adam optimize op
706 707 708 709 710
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
711
                "LearningRate": self._create_param_lr(param_and_grad),
712 713
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
714 715
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
716 717 718 719 720 721 722 723 724 725 726 727 728 729
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

730
    def _finish_update(self, block, param_and_grads):
731 732 733
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
734
        main_block = block.program.global_block()
735 736 737
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
738 739
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
755 756 757


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
788 789 790
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
791 792 793 794 795 796

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
797 798 799

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
800 801 802
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
803
    _beta1_pow_acc_str = "beta1_pow_acc"
804 805 806 807 808

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
809
                 epsilon=1e-8,
X
Xin Pan 已提交
810 811
                 regularization=None,
                 name=None):
812 813 814 815
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
816
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
817 818 819
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
820 821 822 823 824 825 826 827
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
828 829
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
830 831 832 833 834 835
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
836 837 838 839 840 841 842

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
843 844
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
845 846 847 848 849 850
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
851
                "LearningRate": self._create_param_lr(param_and_grad),
852 853
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
854
                "Beta1Pow": beta1_pow_acc
855 856 857 858 859 860 861 862 863 864 865 866 867 868
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

869
    def _finish_update(self, block, parameters_and_grads):
870 871 872
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
873
        main_block = block.program.global_block()
874 875 876
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
877 878
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
879 880 881 882 883 884 885
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
886 887 888


class DecayedAdagradOptimizer(Optimizer):
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
911 912 913
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
914 915 916 917 918 919

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
920 921 922

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
923 924 925
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
926 927 928 929 930 931
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
932 933 934 935
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
936
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
937 938 939
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
970 971


972
class AdadeltaOptimizer(Optimizer):
973 974
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
975

976
    Simple Adadelta optimizer with average squared grad state and
977
    average squared update state.
978 979 980 981 982 983 984 985 986 987 988 989
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
990
        learning_rate(float): global learning rate
991 992
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
993 994 995
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
996 997 998 999 1000 1001 1002

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1003 1004 1005

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1006
    """
1007

1008 1009 1010
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1011 1012 1013 1014 1015 1016
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1017 1018 1019 1020 1021 1022
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1023
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1024 1025 1026
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1027 1028 1029 1030 1031
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1032 1033
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1034 1035 1036 1037 1038 1039

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1040 1041
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1078
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1079 1080 1081 1082

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1083
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1084 1085 1086 1087 1088 1089

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1090
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1106 1107 1108 1109
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1110
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1111 1112 1113 1114 1115 1116
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1117
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1118 1119 1120
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1121
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1122
            set 0.0 by default.
1123 1124 1125 1126
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1127 1128 1129
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1143
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1144 1145 1146 1147 1148 1149

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1150
                 centered=False,
X
Xin Pan 已提交
1151 1152
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1153
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1154 1155 1156
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1170
        self._centered = centered
Q
qingqing01 已提交
1171 1172 1173 1174 1175 1176 1177 1178

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1179
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1189 1190
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1191 1192 1193 1194 1195 1196 1197
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1198
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1199 1200 1201 1202 1203
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1204 1205
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1206 1207 1208 1209
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1210 1211
                "momentum": self._momentum,
                "centered": self._centered
Q
qingqing01 已提交
1212 1213 1214 1215 1216
            })

        return rmsprop_op


Q
qiaolongfei 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1262 1263 1264
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1274 1275 1276

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1277 1278 1279 1280 1281
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1282 1283 1284 1285 1286 1287 1288
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1289
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1290 1291 1292
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1352
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1353
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1354
Ftrl = FtrlOptimizer
1355
LarsMomentum = LarsMomentumOptimizer
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1371 1372 1373
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1374
    Examples:
Q
qiaolongfei 已提交
1375 1376 1377

      .. code-block:: python

1378
        optimizer = fluid.optimizer.Momentum()
1379 1380
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1381 1382 1383 1384 1385
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1386 1387 1388 1389

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1390 1391 1392
    """

    def __init__(self,
W
wanghaoshuang 已提交
1393
                 average_window_rate,
1394 1395
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1396 1397 1398 1399
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1400 1401 1402
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1403

1404
        self.params_grads = []
1405 1406
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1407
            if param.do_model_average != False:
1408 1409 1410 1411
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1412
                    stop_gradient=True)
1413
                self.params_grads.append((param, grad))
1414

1415
        for param, grad in self.params_grads:
1416 1417
            if grad is None:
                continue
X
Xin Pan 已提交
1418 1419
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1420
                self._append_average_accumulate_op(param)
1421

1422 1423 1424 1425
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1426
                self._add_average_apply_op(block, param_grad)
1427 1428 1429 1430 1431

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1432
                self._add_average_restore_op(block, param_grad)
1433

1434
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1435 1436 1437 1438 1439 1440
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1441
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1442
        old_num_accumulates = block._clone_variable(
1443
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1444
        num_updates = block._clone_variable(
1445 1446 1447 1448 1449 1450
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1451 1452 1453 1454
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1455
        ops._elementwise_div(x=sum, y=tmp, out=param)
1456 1457

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1458 1459
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1499 1500
    @contextmanager
    def apply(self, executor, need_restore=True):
1501 1502
        """Apply average values to parameters of current model.
        """
1503 1504 1505 1506 1507 1508
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1509 1510 1511 1512

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1513
        executor.run(self.restore_program)