optimizer.py 27.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
16
from paddle.fluid.framework import Program
17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26

27 28 29 30
__all__ = [
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad',
    'ModelAverage'
]
Q
Qiao Longfei 已提交
31 32 33 34 35 36


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
37 38
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
39 40
    """

Y
Yu Yang 已提交
41
    def __init__(self, learning_rate, regularization=None):
42 43
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
44
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
45
        self.regularization = regularization
46 47 48
        self._learning_rate = learning_rate
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
49
        self._learning_rate_map = dict()
50 51 52
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
53 54 55 56 57
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
58
        self.helper = None
Q
Qiao Longfei 已提交
59

Q
Qiao Longfei 已提交
60
    def _create_global_learning_rate(self):
61
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
62

63 64 65 66
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
67
                raise TypeError(
68 69
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
70

71 72 73 74 75 76 77 78 79 80
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
            dtype='float32',
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
81 82 83 84
        """
        get global decayed learning rate
        :return:
        """
85 86
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
87
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
88

Q
Qiao Longfei 已提交
89 90 91 92 93
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

94 95 96 97
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
Q
qiaolongfei 已提交
98 99 100 101
        if param_lr == 1.0:
            return self.global_learning_rate()
        else:
            return self.global_learning_rate() * param_lr
102 103 104 105 106 107 108

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
109
        """
110 111
        pass

112 113 114 115 116 117 118 119 120 121 122 123 124
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

125 126 127 128 129 130
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
131 132 133 134 135 136 137 138 139 140 141
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
142
            raise Exception("Accumulator {} already exists for parameter {}".
143
                            format(name, param.name))
144 145
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
146 147
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
148
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
149
            persistable=True,
F
fengjiayi 已提交
150
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
151
            type=param.type,
152
            shape=shape)
Q
Qiao Longfei 已提交
153
        self.helper.set_variable_initializer(
154
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
155
        self._accumulators[name][param.name] = var
156
        return var
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
174 175 176
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
177
                                 startup_program=None):
Q
Qiao Longfei 已提交
178 179 180 181 182 183 184
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
185 186 187 188
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
189
          :param startup_program:
Q
Qiao Longfei 已提交
190
        """
191 192 193 194 195
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
196
        # for parameters and extend _finish_update method to add custom ops.
197 198

        # Create any accumulators
Q
Qiao Longfei 已提交
199
        program = loss.block.program
200
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
201 202
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
203 204 205
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
206
            self._create_global_learning_rate()
207 208 209 210 211 212 213 214 215 216 217

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
218
            self._finish_update(loss.block)
219

Y
Yancey1989 已提交
220 221
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
222

Q
Qiao Longfei 已提交
223 224
    def minimize(self,
                 loss,
225
                 startup_program=None,
Q
Qiao Longfei 已提交
226 227
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
228 229
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
230
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
231 232
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
233
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
234
                                       [error_clip_callback])
Y
Yu Yang 已提交
235

Y
Yu Yang 已提交
236 237
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
238 239
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
240
        # Add regularization if any
D
dzhwinter 已提交
241 242
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
243

Q
Qiao Longfei 已提交
244
        optimize_ops = self.create_optimization_pass(params_grads, loss,
245
                                                     startup_program)
T
typhoonzero 已提交
246
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
247 248 249 250 251 252


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
253
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
254
        assert learning_rate is not None
Q
Qiao Longfei 已提交
255 256
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
257 258
        self.type = "sgd"

259 260
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
261

Q
Qiao Longfei 已提交
262 263 264 265 266 267
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
268
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
269
            },
270
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
271 272

        return sgd_op
273 274 275 276 277 278 279


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
280
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
281 282
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
283 284
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
285 286
        self.type = "momentum"
        self._momentum = momentum
287
        self._use_nesterov = bool(use_nesterov)
288 289 290 291 292

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
293
            self._add_accumulator(self._velocity_acc_str, p)
294 295 296 297 298 299 300 301 302 303 304 305 306

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
307
                "LearningRate": self._create_param_lr(param_and_grad)
308 309 310 311 312
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
313
            attrs={"mu": self._momentum,
314
                   "use_nesterov": self._use_nesterov})
315 316

        return momentum_op
317 318 319 320 321 322 323


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
324
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
325 326
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
327 328
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
329 330 331 332 333 334 335
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
336
            self._add_accumulator(self._moment_acc_str, p)
337 338 339 340 341 342 343

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

344
        # Create the adagrad optimizer op
345 346 347 348 349 350
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
351
                "LearningRate": self._create_param_lr(param_and_grad)
352 353 354 355 356 357
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
358 359 360 361 362 363 364 365 366 367 368 369


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
370
                 epsilon=1e-8,
D
dzhwinter 已提交
371
                 **kwargs):
372 373 374 375
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
376 377
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
378 379 380 381 382 383 384 385
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
386
        main_block = block.program.global_block()
387 388
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
389
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
390
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
391 392 393 394 395
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
396
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
397 398

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
399
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
400 401 402 403 404 405
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
406
            self._beta2_pow_acc, initializer=Constant(self._beta2))
407 408 409

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
410 411
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
412 413 414 415 416 417 418 419

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
420
        # create the adam optimize op
421 422 423 424 425
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
426
                "LearningRate": self._create_param_lr(param_and_grad),
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
449 450
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
451 452 453 454 455
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
456
        scale_beta2 = main_block.append_op(
457 458 459 460 461 462
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
463 464 465 466 467 468 469 470 471 472 473 474


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
475
                 epsilon=1e-8,
D
dzhwinter 已提交
476
                 **kwargs):
477 478 479 480
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
481 482
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
483 484 485 486 487 488 489 490
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
491
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
492
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
493 494 495 496 497
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
498
            self._beta1_pow_acc, initializer=Constant(self._beta1))
499 500 501

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
502 503
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
504 505 506 507 508 509 510 511 512 513 514 515 516

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
517
                "LearningRate": self._create_param_lr(param_and_grad),
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
539 540
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
541 542 543 544 545 546
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
547 548 549 550 551 552 553


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
554
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
555 556 557 558
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
559 560
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        params_grads: A list of parameter-grad variable pairs.
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.

    Examples:
        ...
        optimizer = fluid.optimizer.Momentum()
        _, params_grads = optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(params_grads, 0.15,
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
            model_average.apply()
            for data in test_reader():
                exe.run(inference_program...)
            model_average.restore(exe)
    """

    def __init__(self,
                 params_grads,
                 average_window_rate,
                 min_average_window=10000,
                 max_average_window=10000,
                 **kwargs):
        super(ModelAverage, self).__init__(0.0, **kwargs)
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
        self.params_grads = params_grads
        for param, _ in self.params_grads:
            self._append_average_accumulate_op(param)

    def _add_average_apply_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        sum_1 = block.clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block.clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block.clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block.clone_variable(
            self._get_accumulator('num_accumulates', param))
        old_num_accumulates = block.clone_variable(
            self._get_accumulator('old_num_accumulates', param))
        num_updates = block.clone_variable(
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
        tmp = layers.cast(x=tmp, dtype='float32')
        sum = layers.cast(x=sum, dtype='float32')
        layers.elementwise_div(x=sum, y=tmp, out=param)

    def _add_average_restore_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

    def apply(self, executor):
        """Apply average values to parameters of current model.
        """
        apply_program = Program()
        block = apply_program.global_block()
        with program_guard(main_program=apply_program):
            for param_grad in self.params_grads:
                self._add_average_apply_op(block, param_grad)
        executor.run(apply_program)

    def restore(self, executor):
        """Restore parameter values of current model.
        """
        restore_program = Program()
        block = restore_program.global_block()
        with program_guard(main_program=restore_program):
            for param_grad in self.params_grads:
                self._add_average_restore_op(block, param_grad)
        executor.run(restore_program)