Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4d7af372
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4d7af372
编写于
8月 11, 2021
作者:
W
WangXi
提交者:
GitHub
8月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid] pp+dp support fp16 allreduce (#34762)
上级
3f962e77
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
295 addition
and
78 deletion
+295
-78
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
...addle/distributed/fleet/meta_optimizers/sharding/utils.py
+25
-22
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+32
-19
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+71
-35
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
...uid/tests/unittests/test_fleet_sharding_meta_optimizer.py
+167
-2
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
浏览文件 @
4d7af372
...
...
@@ -14,7 +14,7 @@
import
paddle
from
paddle.fluid
import
core
,
unique_name
from
functools
import
reduce
from
paddle.distributed.fleet.meta_optimizers.common
import
is_loss_grad_op
from
paddle.distributed.fleet.meta_optimizers.common
import
is_loss_grad_op
,
is_backward_op
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
import
re
...
...
@@ -431,15 +431,19 @@ def insert_reduce_ops(block,
reduce_vars
,
shard
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
):
use_calc_stream
=
False
,
rank
=
None
):
"""
_add_allreduce_ops
"""
grad_in_this_device
=
[]
for
var
in
reduce_vars
:
root_id
=
get_grad_device
(
var
,
shard
)
assert
root_id
>=
0
,
"root id should be a positive int, but now root id is {}"
.
format
(
root_id
)
if
rank
is
not
None
and
rank
==
root_id
:
grad_in_this_device
.
append
(
var
)
block
.
_insert_op_without_sync
(
insert_idx
,
type
=
'c_reduce_sum'
,
...
...
@@ -451,16 +455,23 @@ def insert_reduce_ops(block,
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
return
return
grad_in_this_device
def
get_grad_device
(
grad_name
,
shard
):
assert
"@GRAD"
in
grad_name
,
"[{}] should be a grad variable."
.
format
(
grad_name
)
base_name
=
None
#
mind the traversal order
#
NOTE: mind the traversal order
possible_suffixes
=
[
'.cast_fp16@GRAD@MERGED'
,
'.cast_fp16@GRAD'
,
'@GRAD@MERGED'
,
'@GRAD'
# sharding gm
'.cast_fp16@GRAD@MERGED'
,
'.cast_fp16@GRAD'
,
# pipeline
'@GRAD@MERGED@FP16'
,
'@GRAD@MERGED'
,
'@GRAD'
,
]
for
suffix
in
possible_suffixes
:
if
suffix
in
grad_name
:
...
...
@@ -487,6 +498,15 @@ def get_first_check_finite_and_unscale_op_idx(block, raise_error=True):
return
-
1
def
get_first_optimize_op_idx
(
block
):
first_opt_op_idx
=
None
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
break
return
first_opt_op_idx
def
insert_broadcast_ops
(
block
,
insert_idx
,
ring_id
,
broadcast2root
):
"""
_add_broadcast_ops
...
...
@@ -672,23 +692,6 @@ def save_persistables(exe, dirname, main_program, filename=None):
return
def
get_grad_device
(
grad_name
,
shard
):
assert
"@GRAD"
in
grad_name
,
"[{}] should be a grad variable."
.
format
(
grad_name
)
base_name
=
None
# mind the traversal order
possible_suffixes
=
[
'.cast_fp16@GRAD'
,
'@GRAD'
]
for
suffix
in
possible_suffixes
:
if
suffix
in
grad_name
:
base_name
=
re
.
sub
(
suffix
,
''
,
grad_name
)
break
assert
base_name
in
shard
.
global_param2device
,
"[{}] should be a param variable."
.
format
(
base_name
)
return
shard
.
global_param2device
[
base_name
]
def
append_naive_sync
(
block
,
sync_var
,
ring_id
):
# NOTE (JZ-LIANG) update this to use barrier sync for more elegent logic
# sync within global
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
4d7af372
...
...
@@ -294,6 +294,8 @@ class ShardingOptimizer(MetaOptimizerBase):
if
self
.
pp_degree
==
1
:
return
strategy
=
self
.
user_defined_strategy
fp16_allreduce
=
strategy
.
fp16_allreduce
main_block
=
self
.
_main_program
.
global_block
()
startup_block
=
self
.
_startup_program
.
global_block
()
...
...
@@ -317,33 +319,44 @@ class ShardingOptimizer(MetaOptimizerBase):
main_block
.
_remove_op
(
idx
)
accumulated_grad_names
=
self
.
_pp_optimizer
.
_accumulate_gradients
(
main_block
)
# accumulated_grad_names = sorted(accumulated_grad_names)
main_block
,
fp16_allreduce
=
fp16_allreduce
)
len_of_ops
=
len
(
main_block
.
ops
)
first_optimize_op_index
=
get_first_optimize_op_idx
(
main_block
)
if
self
.
pp_allreduce_in_optimize
:
print
(
"persistable FP32 grad: "
)
print
(
accumulated_grad_names
)
first_optimize_op_index
=
get_first_check_finite_and_unscale_op_idx
(
main_block
,
raise_error
=
strategy
.
amp
)
insert_reduce_ops
(
logger
.
info
(
"Pipeline Persistable grad is {}"
.
format
(
accumulated_grad_names
))
# FIXME(wangxi): accumulated_grad get from pipeline is not
# include sharding's param@BroadCast grad when
# pp_allreduce_in_optimize
accumulated_grad_names
=
insert_reduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
sharding_ring_id
,
accumulated_grad_names
,
self
.
_shard
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
)
use_calc_stream
=
True
,
rank
=
self
.
sharding_rank
)
logger
.
info
(
"PP-Sharding grad is {}"
.
format
(
accumulated_grad_names
))
first_optimize_op_index
+=
(
len
(
main_block
.
ops
)
-
len_of_ops
)
len_of_ops
=
len
(
main_block
.
ops
)
if
self
.
hybrid_dp
and
self
.
hybrid_dp_mode
==
"pp_hybrid_dp"
:
first_optimize_op_index
=
get_first_check_finite_and_unscale_op_idx
(
main_block
,
raise_error
=
strategy
.
amp
)
if
first_optimize_op_index
>=
0
:
insert_allreduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
dp_ring_id
,
accumulated_grad_names
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
,
user_defined_strategy
=
strategy
)
insert_allreduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
dp_ring_id
,
accumulated_grad_names
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
,
user_defined_strategy
=
strategy
)
first_optimize_op_index
+=
(
len
(
main_block
.
ops
)
-
len_of_ops
)
len_of_ops
=
len
(
main_block
.
ops
)
# FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
def
_adapt_amp_clip_without_sharding
(
self
):
if
self
.
sharding_degree
>
1
:
return
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
4d7af372
...
...
@@ -4528,7 +4528,7 @@ class PipelineOptimizer(object):
op
.
_rename_input
(
old_name
,
new_name
)
op
.
_rename_output
(
old_name
,
new_name
)
def
_create_var
(
self
,
block
,
ref_var
,
name
):
def
_create_var
(
self
,
block
,
ref_var
,
name
,
dtype
=
None
):
"""
Create a new var for block, which has the same type,
shape and dtype as ref_var, then rename it with the
...
...
@@ -4537,7 +4537,7 @@ class PipelineOptimizer(object):
new_var
=
block
.
create_var
(
name
=
name
,
shape
=
ref_var
.
shape
,
dtype
=
ref_var
.
dtype
,
dtype
=
ref_var
.
dtype
if
dtype
is
None
else
dtype
,
type
=
ref_var
.
type
,
lod_level
=
ref_var
.
lod_level
,
persistable
=
ref_var
.
persistable
,
...
...
@@ -5044,7 +5044,10 @@ class PipelineOptimizer(object):
new_grad_name
=
name
+
"@MERGED"
self
.
_rename_arg
(
op
,
name
,
new_grad_name
)
def
_accumulate_gradients
(
self
,
block
,
pp_allreduce_in_optimize
=
False
):
def
_accumulate_gradients
(
self
,
block
,
pp_allreduce_in_optimize
=
False
,
fp16_allreduce
=
False
):
"""
Create a new merged gradient for each parameter and accumulate the
corresponding gradient to it.
...
...
@@ -5052,6 +5055,9 @@ class PipelineOptimizer(object):
merged_gradient_names
=
[]
first_opt_op_idx
=
None
merged_suffix
=
'@MERGED@FP16'
if
fp16_allreduce
else
'@MERGED'
dtype
=
paddle
.
float16
if
fp16_allreduce
else
None
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
# remove the cast op of fp16 grad to fp32 grad
if
self
.
_is_optimize_op
(
op
)
and
op
.
type
==
'cast'
:
...
...
@@ -5062,12 +5068,10 @@ class PipelineOptimizer(object):
block
.
_remove_op
(
index
)
continue
if
self
.
_is_backward_op
(
op
)
and
not
first_opt_op_idx
:
if
self
.
_is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
# no optimize phase
if
first_opt_op_idx
==
len
(
block
.
ops
):
return
if
block
.
ops
[
first_opt_op_idx
].
type
==
"c_sync_comm_stream"
:
first_opt_op_idx
+=
1
if
self
.
_is_backward_op
(
op
)
and
(
self
.
_op_role_var_key
in
op
.
attr_names
):
...
...
@@ -5079,12 +5083,14 @@ class PipelineOptimizer(object):
param_name
=
op_role_var
[
i
]
if
not
block
.
has_var
(
param_name
):
continue
if
'@BroadCast'
in
param_name
:
continue
param_grad_name
=
param_name
+
core
.
grad_var_suffix
()
merged_param_grad_name
=
param_grad_name
+
'@MERGED'
merged_param_grad_name
=
param_grad_name
+
merged_suffix
if
not
block
.
has_var
(
merged_param_grad_name
):
self
.
_create_var
(
block
,
block
.
vars
[
param_name
],
merged_param_grad_name
)
merged_param_grad_name
,
dtype
)
assert
block
.
has_var
(
merged_param_grad_name
)
param_grad_var
=
block
.
var
(
param_grad_name
)
merged_param_grad_var
=
block
.
var
(
merged_param_grad_name
)
merged_param_grad_var
.
persistable
=
True
...
...
@@ -5103,22 +5109,18 @@ class PipelineOptimizer(object):
offset
+=
1
grad_name
=
op_role_var
[
i
+
1
]
grad_var
=
block
.
vars
[
grad_name
]
if
not
'cast_fp16'
in
grad_name
:
block
.
_insert_op
(
index
=
first_opt_op_idx
+
offset
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
merged_param_grad_var
]},
outputs
=
{
'Out'
:
merged_param_grad_var
},
attrs
=
{
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
})
offset
+=
1
merged_gradient_names
.
append
(
merged_param_grad_name
)
else
:
# cast gradient to fp32 to accumulate to merged gradient
is_fp16_grad
=
'cast_fp16'
in
grad_name
need_cast
=
(
is_fp16_grad
is
not
fp16_allreduce
)
if
need_cast
:
# if fp16_allreduce:
# cast grad to fp16 to accumulate to merged gradient
# else:
# cast grad to fp32 to accumulate to merged gradient
cast_grad_var_name
=
param_grad_name
+
'@TMP'
cast_grad_var
=
self
.
_create_var
(
block
,
param_grad_var
,
cast_grad_var_nam
e
)
cast_grad_var
=
self
.
_create_var
(
block
,
param_grad_var
,
cast_grad_var_name
,
dtyp
e
)
cast_grad_var
.
persistable
=
False
block
.
_insert_op
(
index
=
first_opt_op_idx
+
offset
,
...
...
@@ -5131,18 +5133,52 @@ class PipelineOptimizer(object):
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
})
offset
+=
1
block
.
_insert_op
(
index
=
first_opt_op_idx
+
offset
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
merged_param_grad_var
,
cast_grad_var
]
},
outputs
=
{
'Out'
:
merged_param_grad_var
},
attrs
=
{
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
})
offset
+=
1
merged_gradient_names
.
append
(
merged_param_grad_name
)
grad_var
=
cast_grad_var
block
.
_insert_op
(
index
=
first_opt_op_idx
+
offset
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
merged_param_grad_var
,
grad_var
]},
outputs
=
{
'Out'
:
merged_param_grad_var
},
attrs
=
{
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
})
offset
+=
1
merged_gradient_names
.
append
(
merged_param_grad_name
)
if
not
fp16_allreduce
:
return
merged_gradient_names
first_opt_op_idx
=
None
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
if
self
.
_is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
break
assert
first_opt_op_idx
is
not
None
# insert cast op from fp16->fp32
# FIXME(wangxi): maybe put in sharding is better, for some grad
# is not in sharding device.
for
fp16_grad_name
in
merged_gradient_names
:
grad_name
=
fp16_grad_name
.
replace
(
'@FP16'
,
''
)
param_name
=
fp16_grad_name
.
replace
(
'@GRAD@MERGED@FP16'
,
''
)
if
not
block
.
has_var
(
grad_name
):
self
.
_create_var
(
block
,
block
.
vars
[
param_name
],
grad_name
)
assert
block
.
has_var
(
grad_name
)
fp16_grad_var
=
block
.
var
(
fp16_grad_name
)
grad_var
=
block
.
var
(
grad_name
)
grad_var
.
persistable
=
False
block
.
_insert_op
(
index
=
first_opt_op_idx
,
type
=
'cast'
,
inputs
=
{
'X'
:
fp16_grad_var
},
outputs
=
{
'Out'
:
grad_var
},
attrs
=
{
'in_dtype'
:
fp16_grad_var
.
dtype
,
'out_dtype'
:
grad_var
.
dtype
,
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
,
})
return
merged_gradient_names
def
_add_sub_blocks
(
self
,
main_block
,
program_list
):
...
...
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
浏览文件 @
4d7af372
...
...
@@ -552,9 +552,9 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
'c_sync_calc_stream'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_sync_comm_stream'
,
'
c_sync_comm_strea
m'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'
fill_constant'
,
'su
m'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'
fill_constant'
,
'su
m'
,
'momentum'
,
'momentum'
,
'momentum'
,
'
c_sync_comm_strea
m'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
])
...
...
@@ -694,6 +694,171 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
def
test_hybrid_with_pp_dp_amp_fp16allreduce
(
self
):
train_prog
,
startup_prog
=
paddle
.
fluid
.
Program
(),
paddle
.
fluid
.
Program
(
)
avg_cost
,
strategy
=
self
.
pp_net
(
train_prog
,
startup_prog
)
strategy
.
amp
=
True
strategy
.
amp_configs
=
{
'custom_black_varnames'
:
[
'fc_6.b_0'
],
}
strategy
.
sharding
=
True
strategy
.
sharding_configs
=
{
"sharding_degree"
:
1
,
"mp_degree"
:
1
,
"pp_degree"
:
2
,
"dp_degree"
:
2
,
}
strategy
.
pipeline
=
True
strategy
.
pipeline_configs
=
{
"schedule_mode"
:
"1F1B"
,
"micro_batch_size"
:
2
,
"accumulate_steps"
:
4
,
}
strategy
.
fp16_allreduce
=
True
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
train_prog
=
train_prog
.
_pipeline_opt
[
'section_program'
]
startup_prog
=
startup_prog
.
_pipeline_opt
[
'startup_program'
]
startup_prog_ops
=
startup_prog
.
global_block
().
ops
main_prog_ops
=
train_prog
.
global_block
().
ops
# check program
startup_prog_op_types
=
[
op
.
type
for
op
in
startup_prog_ops
]
main_prog_op_types
=
[
op
.
type
for
op
in
main_prog_ops
]
# ring: mp, pp_group, pp_pair, pp_pair
self
.
assertEqual
(
startup_prog_op_types
,
[
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_sync_comm_stream'
])
self
.
assertEqual
(
main_prog_op_types
,
[
'recv_v2'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'tanh'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'tanh'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'tanh'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'softmax'
,
'cross_entropy2'
,
'mean'
,
'elementwise_mul'
,
'fill_constant'
,
'scale'
,
'scale'
,
'elementwise_mul_grad'
,
'mean_grad'
,
'cross_entropy_grad2'
,
'softmax_grad'
,
'elementwise_add_grad'
,
'cast'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'c_sync_calc_stream'
,
'send_v2'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'coalesce_tensor'
,
'c_allreduce_sum'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'c_sync_comm_stream'
,
'check_finite_and_unscale'
,
'cast'
,
'c_allreduce_max'
,
'cast'
,
'update_loss_scaling'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
])
# amp check_finite_and_unscale, allreduce(pp)
self
.
assertEqual
(
main_prog_op_types
.
count
(
'c_allreduce_max'
),
1
)
# should has ring id for pp
created_ring_ids
=
[
op
.
desc
.
attr
(
"ring_id"
)
for
op
in
startup_prog_ops
if
op
.
type
==
"c_comm_init"
]
self
.
assertIn
(
self
.
pp_pair_ring_id
,
created_ring_ids
)
self
.
assertIn
(
self
.
dp_ring_id
,
created_ring_ids
)
# check correctness of pp group
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_0"
:
pp_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36003'
])
# check correctness of dp group
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_3"
:
dp_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
dp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
def
test_hybrid_with_sharding_pp_amp_fp16allreduce_in_optimize
(
self
):
train_prog
,
startup_prog
=
paddle
.
fluid
.
Program
(),
paddle
.
fluid
.
Program
(
)
avg_cost
,
strategy
=
self
.
pp_net
(
train_prog
,
startup_prog
)
strategy
.
amp
=
True
strategy
.
amp_configs
=
{
'custom_black_varnames'
:
[
'fc_6.b_0'
],
}
strategy
.
sharding
=
True
strategy
.
sharding_configs
=
{
"segment_broadcast_MB"
:
0.1
,
"sharding_degree"
:
2
,
"mp_degree"
:
1
,
"pp_degree"
:
2
,
"dp_degree"
:
1
,
'pp_allreduce_in_optimize'
:
True
,
}
strategy
.
pipeline
=
True
strategy
.
pipeline_configs
=
{
"schedule_mode"
:
"1F1B"
,
"micro_batch_size"
:
2
,
"accumulate_steps"
:
4
,
}
strategy
.
fp16_allreduce
=
True
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
train_prog
=
train_prog
.
_pipeline_opt
[
'section_program'
]
startup_prog
=
startup_prog
.
_pipeline_opt
[
'startup_program'
]
startup_prog_ops
=
startup_prog
.
global_block
().
ops
main_prog_ops
=
train_prog
.
global_block
().
ops
# check program
startup_prog_op_types
=
[
op
.
type
for
op
in
startup_prog_ops
]
main_prog_op_types
=
[
op
.
type
for
op
in
main_prog_ops
]
# ring: sharding, pp_group, pp_pair, pp_pair
self
.
assertEqual
(
startup_prog_op_types
,
[
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
])
# FIXME(wangxi): some bug in sharding+pp with pp_allreduce_in_optimize
# self.assertEqual(main_prog_op_types, [])
# amp check_finite_and_unscale, allreduce(pp)
self
.
assertEqual
(
main_prog_op_types
.
count
(
'c_allreduce_max'
),
2
)
# should has ring id for pp
created_ring_ids
=
[
op
.
desc
.
attr
(
"ring_id"
)
for
op
in
startup_prog_ops
if
op
.
type
==
"c_comm_init"
]
self
.
assertIn
(
self
.
sharding_ring_id
,
created_ring_ids
)
self
.
assertIn
(
self
.
pp_pair_ring_id
,
created_ring_ids
)
# check correctness of sharding group
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_0"
:
sharding_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
sharding_group_waiting_ports
,
[
'127.0.0.1:36003'
])
# check correctness of pp group
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_1"
:
pp_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录