Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ed9d603a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ed9d603a
编写于
5月 31, 2019
作者:
L
lujun
提交者:
GitHub
5月 31, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix api doc: Optimizer.ModelAverage (#17395)
上级
90eae0b3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
44 addition
and
14 deletion
+44
-14
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
python/paddle/dataset/mnist.py
python/paddle/dataset/mnist.py
+2
-2
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+40
-10
未找到文件。
paddle/fluid/API.spec
浏览文件 @
ed9d603a
...
...
@@ -500,13 +500,13 @@ paddle.fluid.optimizer.AdadeltaOptimizer.backward (ArgSpec(args=['self', 'loss',
paddle.fluid.optimizer.AdadeltaOptimizer.get_opti_var_name_list (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.AdadeltaOptimizer.minimize (ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'grad_clip'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', 'b15cffad0903fc81af77a0580ceb2a9b'))
paddle.fluid.optimizer.ModelAverage.__init__ (ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window', 'regularization', 'name'], varargs=None, keywords=None, defaults=(10000, 10000, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.ModelAverage.apply (ArgSpec(args=['self', 'executor', 'need_restore'], varargs=None, keywords=None, defaults=(True,)), ('document', '
46234a5470590feb336346f70a3db715
'))
paddle.fluid.optimizer.ModelAverage.apply (ArgSpec(args=['self', 'executor', 'need_restore'], varargs=None, keywords=None, defaults=(True,)), ('document', '
648010d0ac1fa707dac0b89f74b0e35c
'))
paddle.fluid.optimizer.ModelAverage.apply_gradients (ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None), ('document', 'bfe7305918552aaecfdaa22411dbe871'))
paddle.fluid.optimizer.ModelAverage.apply_optimize (ArgSpec(args=['self', 'loss', 'startup_program', 'params_grads'], varargs=None, keywords=None, defaults=None), ('document', '5c46d1926a40f1f873ffe9f37ac89dae'))
paddle.fluid.optimizer.ModelAverage.backward (ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', 'ba3a113d0229ff7bc9d39bda0a6d947f'))
paddle.fluid.optimizer.ModelAverage.get_opti_var_name_list (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.ModelAverage.minimize (ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'grad_clip'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', 'b15cffad0903fc81af77a0580ceb2a9b'))
paddle.fluid.optimizer.ModelAverage.restore (ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None), ('document', '
18db9c70be9c4dd466f9844457b21bfe
'))
paddle.fluid.optimizer.ModelAverage.restore (ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None), ('document', '
5f14ea4adda2791e1c3b37ff327f6a83
'))
paddle.fluid.optimizer.LarsMomentumOptimizer.__init__ (ArgSpec(args=['self', 'learning_rate', 'momentum', 'lars_coeff', 'lars_weight_decay', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.0005, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.LarsMomentumOptimizer.apply_gradients (ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None), ('document', 'bfe7305918552aaecfdaa22411dbe871'))
paddle.fluid.optimizer.LarsMomentumOptimizer.apply_optimize (ArgSpec(args=['self', 'loss', 'startup_program', 'params_grads'], varargs=None, keywords=None, defaults=None), ('document', '5c46d1926a40f1f873ffe9f37ac89dae'))
...
...
python/paddle/dataset/mnist.py
浏览文件 @
ed9d603a
...
...
@@ -90,7 +90,7 @@ def train():
MNIST training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[
0
, 1] and label in [0, 9].
[
-1
, 1] and label in [0, 9].
:return: Training reader creator
:rtype: callable
...
...
@@ -107,7 +107,7 @@ def test():
MNIST test set creator.
It returns a reader creator, each sample in the reader is image pixels in
[
0
, 1] and label in [0, 9].
[
-1
, 1] and label in [0, 9].
:return: Test reader creator.
:rtype: callable
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
ed9d603a
...
...
@@ -2145,22 +2145,45 @@ class ModelAverage(Optimizer):
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Momentum()
optimizer.minimize(cost)
model_average = fluid.optimizer.ModelAverage(0.15,
min_average_window=10000,
max_average_window=20000)
for pass_id in range(args.pass_num):
for data in train_reader():
exe.run(fluid.default_main_program()...)
import paddle.fluid as fluid
import numpy
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
exe = fluid.Executor(place)
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
# build net
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
optimizer.minimize(loss)
# build ModelAverage optimizer
model_average = fluid.optimizer.ModelAverage(0.15,
min_average_window=10000,
max_average_window=20000)
exe.run(startup_program)
x = numpy.random.random(size=(10, 1)).astype('float32')
outs = exe.run(program=train_program,
feed={'X': x},
fetch_list=[loss.name])
# apply ModelAverage
with model_average.apply(exe):
for data in test_reader():
exe.run(inference_program...)
x = numpy.random.random(size=(10, 1)).astype('float32')
exe.run(program=train_program,
feed={'X': x},
fetch_list=[loss.name])
"""
def
__init__
(
self
,
...
...
@@ -2275,6 +2298,10 @@ class ModelAverage(Optimizer):
@
signature_safe_contextmanager
def
apply
(
self
,
executor
,
need_restore
=
True
):
"""Apply average values to parameters of current model.
Args:
executor(fluid.Executor): current executor.
need_restore(bool): If you finally need to do restore, set it to True. Default is True.
"""
executor
.
run
(
self
.
apply_program
)
try
:
...
...
@@ -2285,6 +2312,9 @@ class ModelAverage(Optimizer):
def
restore
(
self
,
executor
):
"""Restore parameter values of current model.
Args:
executor(fluid.Executor): current executor.
"""
executor
.
run
(
self
.
restore_program
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录