optimizer.py 94.3 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
from collections import defaultdict
19
from functools import reduce
20

21
from paddle.fluid import core
Q
Qiao Longfei 已提交
22
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
23 24
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program
from paddle.fluid.layers import tensor
25

26 27
from . import framework
from . import layers
28
from . import unique_name
29
from .backward import append_backward
30
from .clip import append_gradient_clip_ops, error_clip_callback
31 32
from .dygraph import base as imperative_base
from .dygraph.learning_rate_scheduler import LearningRateDecay
33 34 35
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
36
from .layers import ops
37
from .regularizer import append_regularization_ops
38
from .wrapped_decorator import signature_safe_contextmanager
39

40
__all__ = [
Q
qiaolongfei 已提交
41
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
42
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
43
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
44
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
45 46
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer',
    'ExponentialMovingAverage'
47
]
Q
Qiao Longfei 已提交
48 49 50 51 52 53


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
54 55
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
56 57
    """

58
    @imperative_base.no_grad
X
Xin Pan 已提交
59
    def __init__(self, learning_rate, regularization=None, name=None):
L
lujun 已提交
60
        if framework.in_dygraph_mode():
M
minqiyang 已提交
61 62 63 64 65 66 67 68 69 70 71 72
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))

W
whs 已提交
73
        self._name = name
D
dzhwinter 已提交
74
        self.regularization = regularization
75
        self._learning_rate = learning_rate
D
dzhwinter 已提交
76 77
        # the learning rate type should be inferenced from loss
        self._dtype = None
78
        # each program should have a independent learning rate
79
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
80
        self._learning_rate_map = dict()
81
        if isinstance(self._learning_rate, framework.Variable):
82 83
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
84 85 86 87 88
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
89
        self.helper = None
90 91 92 93
        self._opti_name_list = []

    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
94

Q
Qiao Longfei 已提交
95
    def _create_global_learning_rate(self):
96 97 98
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
99 100 101 102 103 104 105 106 107 108 109 110
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
111
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
112
            elif isinstance(self._learning_rate, LearningRateDecay):
113 114 115
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
116
                raise TypeError(
117 118
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
119
        else:
120 121 122 123
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
124 125 126 127 128 129
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
130

131 132 133 134 135 136 137 138
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
139

Y
yuyang18 已提交
140
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
141 142 143 144
        """
        get global decayed learning rate
        :return:
        """
145 146
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
147
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
148

Q
Qiao Longfei 已提交
149 150 151 152 153
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

154 155 156 157
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
158 159
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
160
        else:
W
Wu Yi 已提交
161
            if param_lr == 1.0:
Y
yuyang18 已提交
162
                return self._global_learning_rate()
W
Wu Yi 已提交
163
            else:
X
Xin Pan 已提交
164 165 166
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
167
                    return self._global_learning_rate() * param_lr
168 169 170 171 172 173 174

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
175
        """
176 177
        pass

178
    def _finish_update(self, block, parameters_and_grads):
179 180 181 182 183 184 185 186
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
187
            None
188 189 190
        """
        pass

191 192 193 194 195 196
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
197 198 199 200 201 202 203 204 205
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
206 207
        if self._name is not None:
            name = self._name + "_" + name
208 209
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
210
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
211
                return self._accumulators[name][param.name]
212
            raise Exception("Accumulator {} already exists for parameter {}".
213
                            format(name, param.name))
214 215
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
216
        assert isinstance(self.helper, LayerHelper)
217 218 219 220 221

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
222
        var = self.helper.create_global_variable(
223
            name=var_name,
Q
Qiao Longfei 已提交
224
            persistable=True,
F
fengjiayi 已提交
225
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
226
            type=param.type,
227
            shape=shape)
Q
Qiao Longfei 已提交
228
        self.helper.set_variable_initializer(
229
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
230
        self._accumulators[name][param.name] = var
231
        return var
232 233 234 235 236 237 238 239 240 241 242

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
243 244
        if self._name is not None:
            name = self._name + "_" + name
245 246 247 248 249 250
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

251
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
252 253 254
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
255
          parameters_and_grads(list(tuple(Variable, Variable))):
256
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
257 258

        Returns:
259
          return_op_list: a list of operators that will complete one step of
260 261 262
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
263
        """
264 265 266 267 268
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
269
        # for parameters and extend _finish_update method to add custom ops.
270

271 272 273 274 275 276 277 278 279
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
M
minqiyang 已提交
280
        if framework.in_dygraph_mode():
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad):
                    if param_and_grad[0].trainable is True:
                        optimize_op = self._append_optimize_op(global_block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
                        optimize_op = self._append_optimize_op(global_block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
300 301 302 303 304 305 306 307 308

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
309 310 311 312 313 314 315 316 317
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
318 319
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
335 336 337 338 339 340 341 342 343 344 345 346 347
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
348 349
        return new_param_grads, (table_param, table_grad), sgd_op

350 351 352
    def _append_dgc_ops(self, param_and_grad):
        pass

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
371

372 373
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
374

375 376 377
        Examples:
            See examples in `apply_gradients`.
        """
C
chengduo 已提交
378
        self._dtype = loss.dtype
L
lujun 已提交
379
        if framework.in_dygraph_mode():
C
chengduo 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
            if parameter_list is not None:
                parameters = parameter_list
            else:
                parameters = framework._dygraph_tracer().all_parameters()

            params_grads = []
            for param in parameters:
                if not param.trainable:
                    continue
                if param._ivar._grad_ivar() is not None:
                    # create gradient variable
                    grad_var = Variable(
                        block=loss.block,
                        name=param._ivar._grad_name(),
                        stop_gradient=True,
                        ivar=param._ivar._grad_ivar())
                    params_grads.append((param, grad_var))
397
        else:
C
chengduo 已提交
398 399 400 401 402 403 404 405 406 407 408 409
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
                                               no_grad_set, callbacks)
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads
410 411 412 413 414 415 416 417

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
418

419 420
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
421

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

C
chengduo 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
464
        if framework.in_dygraph_mode():
C
chengduo 已提交
465 466
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
467 468
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
469 470 471 472 473 474 475
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

476
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
477 478
    def minimize(self,
                 loss,
479
                 startup_program=None,
Q
Qiao Longfei 已提交
480
                 parameter_list=None,
481 482
                 no_grad_set=None,
                 grad_clip=None):
483 484 485 486 487
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
488

489 490 491 492 493 494
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
495
            grad_clip (GradClipBase|None) : Gradient clip strategy
Q
Qiao Longfei 已提交
496

497 498 499
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
500
        """
C
chengduo 已提交
501 502 503 504 505
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
506 507 508 509 510

        if grad_clip is not None and framework.in_dygraph_mode():
            # TODO(hongyu): FIX later, this is only for dygraph, should be work for static mode
            params_grads = grad_clip(params_grads)

C
chengduo 已提交
511 512
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
513

514 515 516
        if framework.in_dygraph_mode():
            framework._dygraph_tracer()._clear_ops()

Q
Qiao Longfei 已提交
517
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
518 519 520


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
521 522 523 524 525 526 527 528 529 530
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
531 532 533
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
534 535 536 537

    Examples:
        .. code-block:: python

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
563 564
    """

X
Xin Pan 已提交
565
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
566
        assert learning_rate is not None
Q
Qiao Longfei 已提交
567
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
568 569 570
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
571 572
        self.type = "sgd"

573 574
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
575

Q
Qiao Longfei 已提交
576 577 578 579 580 581
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
582
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
583
            },
M
minqiyang 已提交
584 585
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
586 587

        return sgd_op
588 589 590


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

605
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
606 607 608

        & else:

Q
qiaolongfei 已提交
609
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
610 611 612 613 614 615

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
616 617 618
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
619 620 621 622

    Examples:
        .. code-block:: python

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

648 649 650
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
651 652 653 654 655 656
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
657 658
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
659
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
660 661 662
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
663 664
        self.type = "momentum"
        self._momentum = momentum
665
        self._use_nesterov = bool(use_nesterov)
666 667 668 669 670

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
671
            self._add_accumulator(self._velocity_acc_str, p)
672 673 674 675 676 677 678 679 680 681 682 683 684

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
685
                "LearningRate": self._create_param_lr(param_and_grad)
686 687 688 689 690
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
691
            attrs={"mu": self._momentum,
M
minqiyang 已提交
692 693
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
694 695

        return momentum_op
696 697


698 699 700 701 702
class DGCMomentumOptimizer(MomentumOptimizer):
    """

    Original paper is https://arxiv.org/abs/1712.01887

G
gongweibao 已提交
703
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
704 705
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
706
    To avoid losing information, DGC accumulates the rest of the gradients locally.
707 708 709

    Eventually, these gradients become large enough to be transmitted.

G
gongweibao 已提交
710
    Thus, DGC sends the large gradients immediately but eventually send all of the gradients over time.
711

G
gongweibao 已提交
712
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
713 714 715 716

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
717

718 719
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
720

721 722 723 724 725 726
        2. Call momentum to optimize on the cost.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor.
G
gongweibao 已提交
727
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
728 729 730 731 732 733 734
        rampup_step (int): How long it use the sparsity periods. Default is 1.
            for example: If the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 5, \
                it will use 0.75 at 0 step, and 0.9375 at 1 step, and so on. And when reach sparsity array ends, \
                it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity).
        use_nesterov (bool): Enables Nesterov momentum. True means use nesterov.
        local_grad_clip_norm (float): Clip norm value if needed.
G
gongweibao 已提交
735
        num_trainers: The number of training nodes.
736
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
G
gongweibao 已提交
737
        name: An optional name prefix.
738 739 740 741 742

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
743 744 745 746 747
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

    """

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
                 use_nesterov=False,
                 local_grad_clip_norm=None,
                 num_trainers=None,
                 regularization=None,
                 name=None):
        self._sparsity = sparsity
        self._rampup_step = rampup_step
        self._rampup_step_var = None

        self._rampup_begin_step = rampup_begin_step
        self._rampup_begin_step_var = None

        self._global_step_var = None
        self._local_grad_clip_norm = None
        self._clip_norm = None

        if local_grad_clip_norm is not None:
            assert isinstance(num_trainers, int)
            assert isinstance(local_grad_clip_norm, float)
            assert num_trainers > 0

            self._local_grad_clip_norm = local_grad_clip_norm
            self._num_trainers = num_trainers
            self._clip_norm = local_grad_clip_norm / (num_trainers *
                                                      num_trainers)

        super(DGCMomentumOptimizer, self).__init__(
            learning_rate, momentum, use_nesterov, regularization, name)

        core.init_dgc()

    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

    def _append_dgc_ops(self, param_and_grads):
        start_program = default_startup_program()
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
814
            counter_name=core.dgc.kDGCCounterName(), begin=0)
815 816 817 818 819 820

        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
821
            name=core.dgc.kDGCRampUpBeginStepName(),
822 823 824 825
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

        for param_var, grad_var in param_and_grads:
G
gongweibao 已提交
826
            var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
827 828 829 830 831 832 833 834 835 836
            if var_numel < 16384 or \
                param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
                grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
                    param_var.dtype != core.VarDesc.VarType.FP32 :
                continue

            u_var = tensor.create_global_var(
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
837
                name=param_var.name + core.dgc.kDGCUName(),
838 839 840 841 842
                value=0.0)
            v_var = tensor.create_global_var(
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
843
                name=param_var.name + core.dgc.kDGCVName(),
844 845 846 847 848 849
                value=0.0)

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
850
                name=param_var.name + core.dgc.kDGCKName(),
851 852 853 854 855 856 857
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
858
                name=param_var.name + core.dgc.kDGCEncodedName(),
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
                value=0.0,
                force_cpu=False)

            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
            if self._local_grad_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._clip_norm)
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
                         encoded_var)

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
900 901
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
902 903 904 905 906

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
907
            type="dgc_clip_by_norm",
908 909 910 911 912 913 914 915 916 917 918 919
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
920
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
                encoded_var):
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
                "current_step": self._global_step_var
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
                "Grad_out": grad_var
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
                "rampup_step": float(self._rampup_step)
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])


956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
980

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
1036 1037
            },
            stop_gradient=True)
1038 1039 1040 1041

        return momentum_op


1042
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1063 1064 1065
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
X
xuezhong 已提交
1066
        initial_accumulator_value (float): Initial value for moment accumulator.
Q
qiaolongfei 已提交
1067 1068 1069 1070

    Examples:
        .. code-block:: python

1071 1072 1073 1074 1075 1076 1077 1078
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
Q
qiaolongfei 已提交
1079
            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
1080 1081 1082 1083 1084 1085 1086
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1087 1088 1089
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1090 1091 1092 1093
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
1094
                 name=None,
X
xuezhong 已提交
1095
                 initial_accumulator_value=0.0):
1096 1097
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1098
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1099 1100 1101
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1102 1103
        self.type = "adagrad"
        self._epsilon = epsilon
1104
        self.initial_accumulator_value = initial_accumulator_value
1105 1106 1107 1108 1109

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1110
            self._add_accumulator(self._moment_acc_str, p)
1111 1112 1113 1114 1115 1116

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        startup_block = framework.default_startup_program().global_block()
        startup_block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [moment_acc]},
            attrs={
                'dtype': moment_acc.dtype,
                'value': self.initial_accumulator_value,
                'shape': moment_acc.shape,
            })
1127

1128
        # Create the adagrad optimizer op
1129 1130 1131 1132 1133 1134
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1135
                "LearningRate": self._create_param_lr(param_and_grad)
1136 1137 1138
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1139 1140
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1141 1142

        return adagrad_op
1143 1144 1145


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
1173
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
1174
        name: A optional name prefix.
1175 1176 1177 1178 1179 1180
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
1181 1182 1183 1184

    Examples:
        .. code-block:: python

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1208

1209 1210 1211
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1212 1213
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1214 1215 1216 1217 1218

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1219
                 epsilon=1e-8,
X
Xin Pan 已提交
1220
                 regularization=None,
Q
Qiao Longfei 已提交
1221
                 name=None,
Q
Qiao Longfei 已提交
1222
                 lazy_mode=False):
1223 1224 1225 1226
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1227
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1228 1229 1230
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1231 1232 1233 1234
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1235
        self._lazy_mode = lazy_mode
1236 1237 1238 1239 1240 1241

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1242 1243
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
1256 1257 1258 1259 1260 1261 1262 1263

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1264 1265 1266 1267 1268
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

1269
        # create the adam optimize op
1270 1271 1272 1273 1274
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1275
                "LearningRate": self._create_param_lr(param_and_grad),
1276 1277
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
1278 1279
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
1280 1281 1282 1283 1284 1285 1286 1287 1288
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
1289
                "epsilon": self._epsilon,
1290 1291
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
1292 1293
            },
            stop_gradient=True)
1294 1295 1296

        return adam_op

1297
    def _finish_update(self, block, param_and_grads):
1298 1299 1300
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1301
        main_block = block.program.global_block()
1302 1303 1304
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1305 1306
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
1307 1308 1309 1310 1311 1312 1313 1314
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1315 1316
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1317 1318 1319 1320 1321

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
1322 1323
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
1324 1325 1326


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adamax(learning_rate=0.2)
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

Q
qiaolongfei 已提交
1378 1379 1380 1381 1382 1383
    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1384 1385 1386
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1387

C
chengduo 已提交
1388 1389
    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
1390 1391 1392
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
1393
    _beta1_pow_acc_str = "beta1_pow_acc"
1394 1395 1396 1397 1398

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1399
                 epsilon=1e-8,
X
Xin Pan 已提交
1400 1401
                 regularization=None,
                 name=None):
1402 1403 1404 1405
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1406
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
1407 1408 1409
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1410 1411 1412 1413 1414 1415 1416 1417
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
1418 1419
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
1420 1421 1422 1423 1424 1425
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
1426 1427 1428 1429 1430 1431 1432

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
1433 1434
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
1435 1436 1437 1438 1439 1440
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1441
                "LearningRate": self._create_param_lr(param_and_grad),
1442 1443
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
1444
                "Beta1Pow": beta1_pow_acc
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
1455 1456
            },
            stop_gradient=True)
1457 1458 1459

        return adamax_op

1460
    def _finish_update(self, block, parameters_and_grads):
1461 1462 1463
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1464
        main_block = block.program.global_block()
1465 1466 1467
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1468 1469
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1470 1471 1472 1473 1474 1475
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1476 1477
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1478 1479 1480


class DecayedAdagradOptimizer(Optimizer):
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1503 1504 1505
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1506 1507 1508 1509

    Examples:
        .. code-block:: python

1510 1511 1512 1513 1514 1515 1516
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            from paddle.fluid.optimizer import DecayedAdagrad

            x = layers.data( name='x', shape=[-1, 10], dtype='float32' )
            trans = layers.fc( x, 100 )
            cost = layers.reduce_mean( trans )
1517 1518
            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1519 1520 1521

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1522 1523 1524
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1525 1526 1527 1528 1529 1530
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1531 1532 1533 1534
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1535
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1536 1537 1538
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1566 1567
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1568 1569

        return decayed_adagrad_op
1570 1571


1572
class AdadeltaOptimizer(Optimizer):
1573 1574
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1575

1576
    Simple Adadelta optimizer with average squared grad state and
1577
    average squared update state.
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1590
        learning_rate(float): global learning rate
1591 1592
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1593 1594 1595
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1596 1597 1598 1599 1600 1601 1602

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1603 1604 1605

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1606
    """
1607

1608 1609 1610
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1611 1612 1613 1614 1615 1616
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1617 1618 1619 1620 1621 1622
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1623
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1624 1625 1626
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1627 1628 1629 1630 1631
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1632 1633
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1634 1635 1636 1637 1638 1639

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1640 1641
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1663 1664
                   "rho": self._rho},
            stop_gradient=True)
1665 1666 1667 1668

        return adadelta_op


Q
qingqing01 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1679
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1680 1681 1682 1683

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1684
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1685 1686 1687 1688 1689 1690

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1691
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1692

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1707 1708 1709 1710
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1711
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1712 1713 1714 1715 1716 1717
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1718
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1719 1720 1721
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1722
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1723
            set 0.0 by default.
1724 1725 1726 1727
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1728 1729 1730
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1731 1732 1733 1734 1735 1736 1737

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
1763 1764 1765 1766
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1767
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1768 1769 1770 1771 1772 1773

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1774
                 centered=False,
X
Xin Pan 已提交
1775 1776
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1777
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1778 1779 1780
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1794
        self._centered = centered
Q
qingqing01 已提交
1795 1796 1797 1798 1799 1800 1801 1802

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1803
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1813 1814
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1815 1816 1817 1818 1819 1820 1821
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1822
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1823 1824 1825 1826 1827
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1828 1829
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1830 1831 1832 1833
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1834 1835
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1836 1837
            },
            stop_gradient=True)
Q
qingqing01 已提交
1838 1839 1840 1841

        return rmsprop_op


Q
qiaolongfei 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
M
minqiyang 已提交
1884 1885 1886
        l1 (float): L1 regularization strength.
        l2 (float): L2 regularization strength.
        lr_power (float): Learning Rate Power.
X
Xin Pan 已提交
1887 1888 1889
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1890 1891 1892 1893 1894 1895 1896

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
1921 1922 1923

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1924 1925 1926 1927 1928
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1929 1930 1931 1932 1933 1934 1935
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1936
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1937 1938 1939
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1980 1981
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1982 1983 1984 1985

        return ftrl_op


Y
Yibing Liu 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
    correction. For more information, please refer to `Reducing BERT Pre-Training 
    Time from 3 Days to 76 Minutes <https://arxiv.org/abs/1904.00962>`_ .

    The updating of parameters follows:

    ..  math::

	m_t^l & = \\beta_1 m_{t - 1}^l + (1 - \\beta_1)g_t^l

	v_t^l & = \\beta_2 v_{t - 1}^l + (1 - \\beta_2)g_t^l \odot g_t^l

	\\widehat{m}_t^l & = m_t^l/(1 - \\beta_1^t)

	\\widehat{v}_t^l & = v_t^l/(1 - \\beta_2^t)
	
        r_1 & = \\left \| w_{t-1}^l \\right \|_2
	
        r_2 & = \\left \|  \\frac{\\widehat{m}_t^l}{\\sqrt{\\widehat{v}_t^l+\\epsilon}} + \\lambda w_{t-1}^l \\right \|_2

	r & = r_1 / r_2

	\\eta^l & = r \\times \\eta

	w_t^l & = w_{t-1}^l -\\eta ^l \\times (\\frac{\\widehat{m}_t^l}{\\sqrt{\\widehat{v}_t^l+\\epsilon}} + \\lambda w_{t-1}^l)


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
                                        Can be a float value or a Variable with one \
                                        float value as data element.
        lamb_weight_decay (float): The LAMB weight decay rate.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): A small float value for numerical stability.
        regularization: A Regularizer, such as
                        fluid.regularizer.L1DecayRegularizer.
        name (str|None): An optional name prefix.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

            data = fluid.layers.data(name='x', shape=[5], dtype='float32')
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002)
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": self._weight_decay
            },
            stop_gradient=True)

        return lamb_op


2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
2127
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
2128
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
2129
Ftrl = FtrlOptimizer
2130
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
2131
Lamb = LambOptimizer
2132 2133 2134


class ModelAverage(Optimizer):
2135
    """Accumulate the average of parameters within sliding window. The average
2136 2137
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
2138
    'restore()' method is used to restore the parameter values of current model.
2139 2140 2141 2142 2143 2144 2145 2146

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
2147 2148 2149
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
2150

2151
    Examples:
Q
qiaolongfei 已提交
2152 2153 2154

      .. code-block:: python

2155 2156 2157 2158 2159 2160
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
            data = fluid.layers.data(name='X', shape=[1], dtype='float32')
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
                                                         max_average_window=20000)

            exe.run(startup_program)
            x = numpy.random.random(size=(10, 1)).astype('float32')
            outs = exe.run(program=train_program,
                           feed={'X': x},
                           fetch_list=[loss.name])

            # apply ModelAverage
2184
            with model_average.apply(exe):
2185 2186 2187 2188
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
2189 2190 2191
    """

    def __init__(self,
W
wanghaoshuang 已提交
2192
                 average_window_rate,
2193 2194
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
2195 2196 2197 2198
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
2199 2200 2201
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
2202

2203
        self.params_grads = []
2204 2205
        for param in framework.default_main_program().global_block(
        ).all_parameters():
2206
            if param.do_model_average != False:
2207
                grad = param.block.create_var(
2208 2209
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
2210 2211
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
2212
                    stop_gradient=True)
2213
                self.params_grads.append((param, grad))
2214

2215
        for param, grad in self.params_grads:
2216 2217
            if grad is None:
                continue
X
Xin Pan 已提交
2218 2219
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
2220
                self._append_average_accumulate_op(param)
2221

2222 2223 2224 2225
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
2226
                self._add_average_apply_op(block, param_grad)
2227 2228 2229 2230 2231

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
2232
                self._add_average_restore_op(block, param_grad)
2233

2234
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
2235 2236 2237 2238 2239 2240
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
2241
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
2242
        old_num_accumulates = block._clone_variable(
2243
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
2244
        num_updates = block._clone_variable(
2245 2246 2247 2248 2249 2250
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
2251 2252 2253 2254
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
2255
        ops._elementwise_div(x=sum, y=tmp, out=param)
2256 2257

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
2258 2259
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
2297 2298
            },
            stop_gradient=True)
2299

S
rename  
sneaxiy 已提交
2300
    @signature_safe_contextmanager
2301
    def apply(self, executor, need_restore=True):
2302
        """Apply average values to parameters of current model.
2303 2304 2305 2306

        Args:
            executor(fluid.Executor): current executor.
            need_restore(bool): If you finally need to do restore, set it to True. Default is True.
2307
        """
2308 2309 2310 2311 2312 2313
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
2314 2315 2316

    def restore(self, executor):
        """Restore parameter values of current model.
2317 2318 2319
        
        Args:
            executor(fluid.Executor): current executor.
2320
        """
2321
        executor.run(self.restore_program)
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331


class ExponentialMovingAverage(object):
    """
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

2332
        \\text{EMA}_0 & = 0
2333

2334 2335
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
2336 2337 2338 2339
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
2361 2362 2363


    Args:
2364 2365 2366
	decay (float): The exponential decay rate, usually close to 1, such as 
                       0.999, 0.9999, ... .
        thres_steps (Variable|None): If not `None`, schedule the decay rate.
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	name (str|None): An optional name prefix.


    Examples:

	.. code-block:: python
	     
	     import paddle.fluid as fluid 

	     data = fluid.layers.data(name='x', shape=[5], dtype='float32')
	     hidden = fluid.layers.fc(input=data, size=10)
	     cost = fluid.layers.mean(hidden)

	     optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	     optimizer.minimize(cost)

2383 2384
             global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter()
             ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
Y
Yibing Liu 已提交
2385
             ema.update()
2386 2387 2388 2389 2390

	     # pseudo code
	     for pass_id in range(args.pass_num):
		 for data in train_reader():
		     exe.run(fluid.default_main_program()...)
2391 2392
                 
                 # usage 1
2393 2394 2395
		 with ema.apply(exe):
		     for data in test_reader():
			 exe.run(inference_program...)
2396 2397 2398 2399 2400 2401 2402

                 # usage 2
		 with ema.apply(exe, need_restore=False):
		     for data in test_reader():
			 exe.run(inference_program...)
                 ...
                 ema.restore(exe)
2403 2404
    """

2405
    def __init__(self, decay=0.999, thres_steps=None, name=None):
2406
        self._decay = decay
2407
        self._thres_steps = thres_steps
2408
        self._name = name if name is not None else ''
2409 2410
        self._decay_var = self._get_ema_decay()

Y
Yibing Liu 已提交
2411
        self._params_tmps = []
2412
        for param in default_main_program().global_block().all_parameters():
2413 2414 2415 2416 2417 2418 2419
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
2420
                self._params_tmps.append((param, tmp))
2421

Y
Yibing Liu 已提交
2422 2423
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
2424 2425
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
2426
                self._ema_vars[param.name] = self._create_ema_vars(param)
2427 2428 2429 2430

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
2431
            decay_pow = self._get_decay_pow(block)
Y
Yibing Liu 已提交
2432
            for param, tmp in self._params_tmps:
2433 2434
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
2435
                ema = block._clone_variable(self._ema_vars[param.name])
2436
                layers.assign(input=param, output=tmp)
2437 2438
                # bias correction
                ema = ema / (1.0 - decay_pow)
2439 2440 2441 2442 2443
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
2444
            for param, tmp in self._params_tmps:
2445 2446 2447 2448
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
        global_steps = layers.learning_rate_scheduler._decay_step_counter()
        decay_var = block._clone_variable(self._decay_var)
        decay_pow_acc = layers.elementwise_pow(decay_var, global_steps + 1)
        return decay_pow_acc

Y
Yibing Liu 已提交
2476
    def _create_ema_vars(self, param):
2477 2478 2479 2480 2481 2482 2483 2484 2485
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
                ema_t = param_ema * self._decay_var + param * (1 -
                                                               self._decay_var)
                layers.assign(input=ema_t, output=param_ema)

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
            need_restore (bool): Whether to restore parameters after applying.
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)