optimizer.py 55.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
18 19
from contextlib import contextmanager

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
33

34
__all__ = [
Q
qiaolongfei 已提交
35
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
36
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
37
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
38 39
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
40
]
Q
Qiao Longfei 已提交
41 42 43 44 45 46


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
47 48
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
49 50
    """

X
Xin Pan 已提交
51
    def __init__(self, learning_rate, regularization=None, name=None):
52
        if not isinstance(learning_rate, float) and \
53 54 55 56
                not isinstance(learning_rate, framework.Variable) and \
                not callable(learning_rate):
            raise TypeError(
                "learning rate should be float or Variable or callable(dtype)")
W
whs 已提交
57
        self._name = name
D
dzhwinter 已提交
58
        self.regularization = regularization
59
        self._learning_rate = learning_rate
D
dzhwinter 已提交
60 61
        # the learning rate type should be inferenced from loss
        self._dtype = None
62
        # each program should have a independent learning rate
63 64
        # program -> Variable(learning_rate) or:
        # program -> callable(return learning_rate Variable)
Q
qiaolongfei 已提交
65
        self._learning_rate_map = dict()
66 67
        if isinstance(self._learning_rate, framework.Variable) or \
            callable(self._learning_rate):
68 69
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
70 71 72 73 74
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
75
        self.helper = None
Q
Qiao Longfei 已提交
76

Q
Qiao Longfei 已提交
77
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
78
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
79

80 81
        if isinstance(lr, framework.Variable):
            return
82 83 84 85 86
        elif callable(lr):
            dtype = 'float32' if self._dtype is None else self._dtype
            self._learning_rate_map[framework.default_main_program()] = lr(
                dtype)
            return
87 88
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
89
                raise TypeError(
90 91
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
92

93 94 95 96 97 98
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
Q
Qiao Longfei 已提交
99
            dtype='float32' if self._dtype is None else self._dtype,
100 101
            persistable=True)

Y
yuyang18 已提交
102
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
103 104 105 106
        """
        get global decayed learning rate
        :return:
        """
107 108
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
109
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
110

Q
Qiao Longfei 已提交
111 112 113 114 115
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

116 117 118 119
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
120 121
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
122
        else:
W
Wu Yi 已提交
123
            if param_lr == 1.0:
Y
yuyang18 已提交
124
                return self._global_learning_rate()
W
Wu Yi 已提交
125
            else:
X
Xin Pan 已提交
126 127 128
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
129
                    return self._global_learning_rate() * param_lr
130 131 132 133 134 135 136

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
137
        """
138 139
        pass

140
    def _finish_update(self, block, parameters_and_grads):
141 142 143 144 145 146 147 148
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
149
            None
150 151 152
        """
        pass

153 154 155 156 157 158
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
159 160 161 162 163 164 165 166 167
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
168 169
        if self._name is not None:
            name = self._name + "_" + name
170 171
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
172
            raise Exception("Accumulator {} already exists for parameter {}".
173
                            format(name, param.name))
174 175
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
176 177
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
178
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
179
            persistable=True,
F
fengjiayi 已提交
180
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
181
            type=param.type,
182
            shape=shape)
Q
Qiao Longfei 已提交
183
        self.helper.set_variable_initializer(
184
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
185
        self._accumulators[name][param.name] = var
186
        return var
187 188 189 190 191 192 193 194 195 196 197

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
198 199
        if self._name is not None:
            name = self._name + "_" + name
200 201 202 203 204 205
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
206 207 208 209
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
210 211 212
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
213 214 215
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
216 217

        Returns:
218 219 220 221
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
222
        """
223 224 225 226 227
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
228
        # for parameters and extend _finish_update method to add custom ops.
229 230

        # Create any accumulators
Q
Qiao Longfei 已提交
231
        program = loss.block.program
D
dzhwinter 已提交
232
        self._dtype = loss.dtype
233
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
234 235
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
236 237 238
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
239
            self._create_global_learning_rate()
240 241 242

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
243 244
                if param_and_grad[1] is None:
                    continue
W
Wu Yi 已提交
245
                with param_and_grad[0].block.program._optimized_guard(
246
                        param_and_grad), name_scope("optimizer"):
247
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
248 249 250
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
251 252 253

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
254
            self._finish_update(loss.block, parameters_and_grads)
255

Y
Yancey1989 已提交
256
            end = len(global_block.ops)
W
Wu Yi 已提交
257
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
258

Q
Qiao Longfei 已提交
259 260
    def _process_distribute_lookuptable(self, param_grads, loss,
                                        startup_program):
Q
Qiao Longfei 已提交
261 262 263 264 265 266 267 268 269
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
Q
Qiao Longfei 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        program = loss.block.program
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
            with program_guard(program, startup_program):
                param_and_grad = [table_param, table_grad]
                with table_param.block.program._optimized_guard(param_and_grad), \
                     framework.name_scope("optimizer"):
Q
Qiao Longfei 已提交
290
                    self._create_global_learning_rate()
Q
Qiao Longfei 已提交
291 292 293 294 295 296 297 298 299 300 301 302
                    # create the optimize op
                    sgd_op = loss.block.append_op(
                        type='sgd',
                        inputs={
                            "Param": table_param,
                            "Grad": table_grad,
                            "LearningRate":
                            self._create_param_lr(param_and_grad)
                        },
                        outputs={"ParamOut": param_and_grad[0]})
        return new_param_grads, (table_param, table_grad), sgd_op

Q
Qiao Longfei 已提交
303 304
    def minimize(self,
                 loss,
305
                 startup_program=None,
Q
Qiao Longfei 已提交
306 307
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
308 309
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
310
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
311 312
        `create_optimization_pass()` into one.
        """
Q
Qiao Longfei 已提交
313 314
        params_grads = append_backward(loss, parameter_list, no_grad_set,
                                       [error_clip_callback])
Q
Qiao Longfei 已提交
315

Q
Qiao Longfei 已提交
316
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
Y
Yu Yang 已提交
317

Q
Qiao Longfei 已提交
318 319
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads, loss, startup_program)
Y
Yu Yang 已提交
320

Q
Qiao Longfei 已提交
321
        params_grads = append_gradient_clip_ops(params_grads)
322

Q
Qiao Longfei 已提交
323 324 325
        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
326

Q
Qiao Longfei 已提交
327 328 329 330 331 332
        optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                      startup_program)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
333 334 335


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
336 337 338 339 340 341 342 343 344 345
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
346 347 348
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
349 350 351 352

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
353
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
354
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
355 356
    """

X
Xin Pan 已提交
357
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
358
        assert learning_rate is not None
Q
Qiao Longfei 已提交
359
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
360 361 362
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
363 364
        self.type = "sgd"

365 366
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
367

Q
Qiao Longfei 已提交
368 369 370 371 372 373
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
374
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
375
            },
376
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
377 378

        return sgd_op
379 380 381


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

396
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
397 398 399

        & else:

Q
qiaolongfei 已提交
400
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
401 402 403 404 405 406

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
407 408 409
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
410 411 412 413

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
414
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
415
            optimizer.minimize(cost)
416 417 418
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
419 420 421 422 423 424
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
425 426
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
427
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
428 429 430
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
431 432
        self.type = "momentum"
        self._momentum = momentum
433
        self._use_nesterov = bool(use_nesterov)
434 435 436 437 438

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
439
            self._add_accumulator(self._velocity_acc_str, p)
440 441 442 443 444 445 446 447 448 449 450 451 452

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
453
                "LearningRate": self._create_param_lr(param_and_grad)
454 455 456 457 458
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
459
            attrs={"mu": self._momentum,
460
                   "use_nesterov": self._use_nesterov})
461 462

        return momentum_op
463 464


465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
        

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
            })

        return momentum_op


550
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
571 572 573
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
574 575 576 577 578 579

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
580 581 582
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
583 584 585 586 587
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
588 589
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
590
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
591 592 593
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
594 595 596 597 598 599 600
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
601
            self._add_accumulator(self._moment_acc_str, p)
602 603 604 605 606 607 608

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

609
        # Create the adagrad optimizer op
610 611 612 613 614 615
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
616
                "LearningRate": self._create_param_lr(param_and_grad)
617 618 619 620 621 622
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
623 624 625


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
653
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
654
        name: A optional name prefix.
655 656 657 658 659 660
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
661 662 663 664 665 666 667

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

668 669 670
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
671 672
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
673 674 675 676 677

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
678
                 epsilon=1e-8,
X
Xin Pan 已提交
679
                 regularization=None,
Q
Qiao Longfei 已提交
680
                 name=None,
Q
Qiao Longfei 已提交
681
                 lazy_mode=False):
682 683 684 685
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
686
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
687 688 689
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
690 691 692 693
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
694
        self._lazy_mode = lazy_mode
695 696 697 698 699 700

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
701 702
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
703 704 705 706 707 708 709 710 711 712 713 714
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
715 716 717 718 719 720 721 722

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
723 724 725 726 727
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

728
        # create the adam optimize op
729 730 731 732 733
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
734
                "LearningRate": self._create_param_lr(param_and_grad),
735 736
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
737 738
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
739 740 741 742 743 744 745 746 747
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
748
                "epsilon": self._epsilon,
Q
Qiao Longfei 已提交
749
                "lazy_mode": self._lazy_mode
750 751 752 753
            })

        return adam_op

754
    def _finish_update(self, block, param_and_grads):
755 756 757
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
758
        main_block = block.program.global_block()
759 760 761
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
762 763
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
779 780 781


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
812 813 814
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
815 816 817 818 819 820

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
821 822 823

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
824 825 826
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
827
    _beta1_pow_acc_str = "beta1_pow_acc"
828 829 830 831 832

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
833
                 epsilon=1e-8,
X
Xin Pan 已提交
834 835
                 regularization=None,
                 name=None):
836 837 838 839
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
840
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
841 842 843
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
844 845 846 847 848 849 850 851
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
852 853
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
854 855 856 857 858 859
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
860 861 862 863 864 865 866

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
867 868
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
869 870 871 872 873 874
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
875
                "LearningRate": self._create_param_lr(param_and_grad),
876 877
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
878
                "Beta1Pow": beta1_pow_acc
879 880 881 882 883 884 885 886 887 888 889 890 891 892
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

893
    def _finish_update(self, block, parameters_and_grads):
894 895 896
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
897
        main_block = block.program.global_block()
898 899 900
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
901 902
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
903 904 905 906 907 908 909
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
910 911 912


class DecayedAdagradOptimizer(Optimizer):
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
935 936 937
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
938 939 940 941 942 943

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
944 945 946

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
947 948 949
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
950 951 952 953 954 955
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
956 957 958 959
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
960
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
961 962 963
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
994 995


996
class AdadeltaOptimizer(Optimizer):
997 998
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
999

1000
    Simple Adadelta optimizer with average squared grad state and
1001
    average squared update state.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1014
        learning_rate(float): global learning rate
1015 1016
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1017 1018 1019
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1020 1021 1022 1023 1024 1025 1026

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1027 1028 1029

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1030
    """
1031

1032 1033 1034
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1035 1036 1037 1038 1039 1040
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1041 1042 1043 1044 1045 1046
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1047
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1048 1049 1050
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1051 1052 1053 1054 1055
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1056 1057
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1058 1059 1060 1061 1062 1063

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1064 1065
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1102
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1103 1104 1105 1106

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1107
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1108 1109 1110 1111 1112 1113

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1114
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1130 1131 1132 1133
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1134
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1135 1136 1137 1138 1139 1140
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1141
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1142 1143 1144
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1145
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1146
            set 0.0 by default.
1147 1148 1149 1150
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1151 1152 1153
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1167
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1168 1169 1170 1171 1172 1173

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1174
                 centered=False,
X
Xin Pan 已提交
1175 1176
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1177
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1178 1179 1180
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1194
        self._centered = centered
Q
qingqing01 已提交
1195 1196 1197 1198 1199 1200 1201 1202

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1203
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1213 1214
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1215 1216 1217 1218 1219 1220 1221
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1222
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1223 1224 1225 1226 1227
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1228 1229
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1230 1231 1232 1233
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1234 1235
                "momentum": self._momentum,
                "centered": self._centered
Q
qingqing01 已提交
1236 1237 1238 1239 1240
            })

        return rmsprop_op


Q
qiaolongfei 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1286 1287 1288
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1298 1299 1300

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1301 1302 1303 1304 1305
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1306 1307 1308 1309 1310 1311 1312
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1313
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1314 1315 1316
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1376
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1377
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1378
Ftrl = FtrlOptimizer
1379
LarsMomentum = LarsMomentumOptimizer
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1395 1396 1397
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1398
    Examples:
Q
qiaolongfei 已提交
1399 1400 1401

      .. code-block:: python

1402
        optimizer = fluid.optimizer.Momentum()
1403 1404
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1405 1406 1407 1408 1409
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1410 1411 1412 1413

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1414 1415 1416
    """

    def __init__(self,
W
wanghaoshuang 已提交
1417
                 average_window_rate,
1418 1419
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1420 1421 1422 1423
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1424 1425 1426
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1427

1428
        self.params_grads = []
1429 1430
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1431
            if param.do_model_average != False:
1432 1433 1434 1435
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1436
                    stop_gradient=True)
1437
                self.params_grads.append((param, grad))
1438

1439
        for param, grad in self.params_grads:
1440 1441
            if grad is None:
                continue
X
Xin Pan 已提交
1442 1443
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1444
                self._append_average_accumulate_op(param)
1445

1446 1447 1448 1449
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1450
                self._add_average_apply_op(block, param_grad)
1451 1452 1453 1454 1455

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1456
                self._add_average_restore_op(block, param_grad)
1457

1458
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1459 1460 1461 1462 1463 1464
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1465
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1466
        old_num_accumulates = block._clone_variable(
1467
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1468
        num_updates = block._clone_variable(
1469 1470 1471 1472 1473 1474
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1475 1476 1477 1478
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1479
        ops._elementwise_div(x=sum, y=tmp, out=param)
1480 1481

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1482 1483
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1523 1524
    @contextmanager
    def apply(self, executor, need_restore=True):
1525 1526
        """Apply average values to parameters of current model.
        """
1527 1528 1529 1530 1531 1532
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1533 1534 1535 1536

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1537
        executor.run(self.restore_program)