未验证 提交 bb84f0e6 编写于 作者: C Chen Weihang 提交者: GitHub

Add new paddle.save/load APIs (#27331)

* init commit of new save/load

* fix failed unittests

* fix save_load_v2 unittest failed

* fix failed unittest & polish doc

* add tests for coverage

* add more tests & move static apis

* fix example code error

* polish emample code

* fix detail example code problem
上级 19a58b3d
......@@ -145,7 +145,7 @@ def load_dygraph(model_path, config=None):
.. note::
Due to some historical reasons, if you load ``state_dict`` from the saved
result of `paddle.io.save_inference_model`, the structured variable name
result of `paddle.static.save_inference_model`, the structured variable name
will cannot be restored. You need to set the argument `use_structured_name=False`
when using `Layer.set_state_dict` later.
......@@ -164,24 +164,24 @@ def load_dygraph(model_path, config=None):
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.disable_static()
emb = paddle.nn.Embedding([10, 10])
emb = paddle.nn.Embedding(10, 10)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy")
fluid.save_dygraph(state_dict, "paddle_dy")
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
state_dict = adam.state_dict()
paddle.save(state_dict, "paddle_dy")
para_state_dict, opti_state_dict = paddle.load("paddle_dy")
fluid.save_dygraph(state_dict, "paddle_dy")
para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
'''
# deal with argument `model_path`
model_prefix = model_path
......@@ -275,7 +275,7 @@ def load_dygraph(model_path, config=None):
# If users save all parameters as one file, the [ variable.name -> variable ]
# mapping info will lost, so users need to give variable list, but users build
# variable list in dygraph mode is difficult, we recommend users to use
# paddle.io.load_program_state in this case
# paddle.static.load_program_state in this case
# Try to load all the files in the directory in VarBase format,
# the file name is used as the name of VarBase
......
......@@ -231,9 +231,7 @@ def declarative(function=None, input_spec=None):
class SaveLoadConfig(object):
"""
The additional configuration options may be used in function
:ref:`api_imperative_jit_save` that save :ref:`api_imperative_TranslatedLayer`
or used in function :ref:`api_imperative_jit_load` that
load :ref:`api_imperative_TranslatedLayer` .
``paddle.jit.save/load`` and ``paddle.load`` .
Examples:
1. Using ``SaveLoadConfig`` when saving model
......@@ -319,7 +317,7 @@ class SaveLoadConfig(object):
@property
def output_spec(self):
"""
Selects the output targets of the saved model ( :ref:`api_imperative_TranslatedLayer` ).
Selects the output targets of the saved model ( ``paddle.jit.TranslatedLayer`` ).
By default, all return variables of original Layer's forward function
are kept as the output of the saved TranslatedLayer.
......@@ -531,11 +529,14 @@ class SaveLoadConfig(object):
def separate_params(self):
"""
Configure whether to save the Layer parameters as separete files.
(In order to be compatible with the behavior of :ref:`api_fluid_io_save_inference_model` )
(In order to be compatible with the behavior of ``paddle.static.save_inference_model`` )
If True, each parameter will be saved to a file separately, the file name is the parameter name,
and the SaveLoadConfig.params_filename configuration will not take effect. Default False.
.. note::
Only used for ``paddle.jit.save`` .
Examples:
.. code-block:: python
......@@ -569,7 +570,7 @@ class SaveLoadConfig(object):
adam.clear_grad()
model_path = "simplenet.example.model.separate_params"
config = paddle.jit.SaveLoadConfig()
config = paddle.SaveLoadConfig()
config.separate_params = True
# saving with configs.separate_params
......@@ -599,12 +600,12 @@ class SaveLoadConfig(object):
def keep_name_table(self):
"""
Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict.
This dict is the debugging information saved when call `paddle.save`.
This dict is the debugging information saved when call ``paddle.save`` .
It is generally only used for debugging and does not affect the actual training or inference.
By default, it will not be retained in `paddle.load` result. Default: False.
By default, it will not be retained in ``paddle.load`` result. Default: False.
.. note::
Only used for ``paddle.load``.
Only used for ``paddle.load`` .
Examples:
.. code-block:: python
......@@ -616,11 +617,11 @@ class SaveLoadConfig(object):
linear = paddle.nn.Linear(5, 1)
state_dict = linear.state_dict()
paddle.save(state_dict, "paddle_dy")
paddle.save(state_dict, "paddle_dy.pdparams")
configs = paddle.SaveLoadConfig()
configs.keep_name_table = True
para_state_dict, _ = paddle.load("paddle_dy", configs)
config = paddle.SaveLoadConfig()
config.keep_name_table = True
para_state_dict = paddle.load("paddle_dy.pdparams", config)
print(para_state_dict)
# the name_table is 'StructuredToParameterName@@'
......
......@@ -970,12 +970,12 @@ class Layer(core.Layer):
paddle.disable_static()
emb = paddle.nn.Embedding([10, 10])
emb = paddle.nn.Embedding(10, 10)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy")
paddle.save(state_dict, "paddle_dy.pdparams")
para_state_dict, _ = paddle.load("paddle_dy")
para_state_dict = paddle.load("paddle_dy.pdparams")
emb.set_state_dict(para_state_dict)
......
......@@ -610,13 +610,13 @@ class DataParallel(layers.Layer):
paddle.disable_static()
emb = paddle.nn.Embedding([10, 10])
emb = paddle.nn.Embedding(10, 10)
emb = fluid.dygraph.DataParallel(emb, strategy)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy")
paddle.save(state_dict, "paddle_dy.pdparams")
para_state_dict, _ = paddle.load("paddle_dy")
para_state_dict = paddle.load("paddle_dy.pdparams")
emb.set_state_dict(para_state_dict)
......
......@@ -182,23 +182,25 @@ class Optimizer(object):
Examples:
.. code-block:: python
import paddle
import paddle
import paddle.fluid as fluid
paddle.disable_static()
emb = paddle.nn.Embedding([10, 10])
emb = paddle.nn.Embedding(10, 10)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy")
fluid.save_dygraph(state_dict, "paddle_dy")
adam = paddle.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000),
parameter_list=emb.parameters())
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
state_dict = adam.state_dict()
fluid.save_dygraph(state_dict, "paddle_dy")
para_state_dict, opti_state_dict = paddle.load("paddle_dy")
adam.set_state_dict(opti_state_dict)
para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
'''
from paddle.optimizer.lr_scheduler import _LRScheduler
if isinstance(self._learning_rate, _LRScheduler):
......
......@@ -292,7 +292,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
np_t = v.numpy()
self.model_base[k] = np_t
paddle.save(self.state_dict, "./test_dy")
fluid.save_dygraph(self.state_dict, "./test_dy")
def testLoadAndSetVarBase(self):
seed = 90
......@@ -373,7 +373,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
if isinstance(adam._learning_rate, LearningRateDecay):
adam._learning_rate.step_num = 0
para_state_dict, opti_state_dict = paddle.load("./test_dy")
para_state_dict, opti_state_dict = fluid.load_dygraph("./test_dy")
adam.set_state_dict(opti_state_dict)
opti_dict = adam.state_dict()
......@@ -898,31 +898,31 @@ class TestDygraphPtbRnn(unittest.TestCase):
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy'))
fluid.save_dygraph(state_dict, os.path.join('saved_dy', 'emb_dy'))
para_state_dict, opti_state_dict = paddle.load(
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy'))
self.assertTrue(opti_state_dict == None)
para_state_dict, opti_state_dict = paddle.load(
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, opti_state_dict = paddle.load(
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy.pdopt'))
def test_load_compatible_with_keep_name_table(self):
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy'))
fluid.save_dygraph(state_dict, os.path.join('saved_dy', 'emb_dy'))
para_state_dict, opti_state_dict = paddle.load(
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy'), True)
self.assertTrue(para_state_dict != None)
self.assertTrue(opti_state_dict == None)
para_state_dict, opti_state_dict = paddle.load(
para_state_dict, opti_state_dict = fluid.load_dygraph(
os.path.join('saved_dy', 'emb_dy'), keep_name_table=True)
self.assertTrue(para_state_dict != None)
self.assertTrue(opti_state_dict == None)
......
......@@ -285,7 +285,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
else:
self.base_opti[k] = v
fluid.save_dygraph(self.opti_dict, "./test_dy_v2")
paddle.save(self.opti_dict, "./test_dy_v2.pdopt")
self.state_dict = ptb_model.state_dict()
......@@ -294,7 +294,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
np_t = v.numpy()
self.model_base[k] = np_t
paddle.save(self.state_dict, "./test_dy_v2")
paddle.save(self.state_dict, "./test_dy_v2.pdparams")
def testLoadAndSetVarBase(self):
self.setUp()
......@@ -374,7 +374,8 @@ class TestDygraphPtbRnn(unittest.TestCase):
self.assertTrue(np.sum(np.abs(v.numpy())) == 0)
para_state_dict, opti_state_dict = paddle.load("./test_dy_v2")
para_state_dict = paddle.load("./test_dy_v2.pdparams")
opti_state_dict = paddle.load("./test_dy_v2.pdopt")
adam.set_state_dict(opti_state_dict)
opti_dict = adam.state_dict()
......@@ -905,26 +906,19 @@ class TestDygraphPtbRnn(unittest.TestCase):
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy'))
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, opti_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy'))
self.assertTrue(opti_state_dict == None)
para_state_dict, opti_state_dict = paddle.load(
para_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, opti_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy.pdopt'))
def test_no_state_in_input_dict(self):
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy'))
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, _ = paddle.load(os.path.join('saved_dy', 'emb_dy'))
para_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict.pop('weight')
emb.set_state_dict(para_state_dict)
......@@ -933,9 +927,10 @@ class TestDygraphPtbRnn(unittest.TestCase):
with fluid.dygraph.guard():
emb = fluid.dygraph.Embedding([10, 10])
state_dict = emb.state_dict()
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy'))
paddle.save(state_dict, os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict, _ = paddle.load(os.path.join('saved_dy', 'emb_dy'))
para_state_dict = paddle.load(
os.path.join('saved_dy', 'emb_dy.pdparams'))
para_state_dict['weight'] = np.expand_dims(
para_state_dict['weight'], axis=-1)
......
......@@ -124,52 +124,67 @@ class TestLoadStateDictFromSaveInferenceModel(unittest.TestCase):
self.params_filename = None
orig_param_dict = self.train_and_save_model()
load_param_dict, _ = paddle.load(self.save_dirname)
load_param_dict, _ = fluid.load_dygraph(self.save_dirname)
self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_with_model_filename(self):
self.save_dirname = "static_mnist.load_state_dict.model_filename"
self.model_filename = "static_mnist.model"
self.params_filename = None
orig_param_dict = self.train_and_save_model()
configs = paddle.SaveLoadConfig()
configs.separate_params = True
configs.model_filename = self.model_filename
load_param_dict, _ = paddle.load(self.save_dirname, configs)
config = paddle.SaveLoadConfig()
config.separate_params = True
config.model_filename = self.model_filename
load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_with_param_filename(self):
self.save_dirname = "static_mnist.load_state_dict.param_filename"
self.model_filename = None
self.params_filename = "static_mnist.params"
orig_param_dict = self.train_and_save_model()
configs = paddle.SaveLoadConfig()
configs.params_filename = self.params_filename
load_param_dict, _ = paddle.load(self.save_dirname, configs)
config = paddle.SaveLoadConfig()
config.params_filename = self.params_filename
load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_with_model_and_param_filename(self):
self.save_dirname = "static_mnist.load_state_dict.model_and_param_filename"
self.model_filename = "static_mnist.model"
self.params_filename = "static_mnist.params"
orig_param_dict = self.train_and_save_model()
configs = paddle.SaveLoadConfig()
configs.params_filename = self.params_filename
configs.model_filename = self.model_filename
load_param_dict, _ = paddle.load(self.save_dirname, configs)
config = paddle.SaveLoadConfig()
config.params_filename = self.params_filename
config.model_filename = self.model_filename
load_param_dict, _ = fluid.load_dygraph(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname, config)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
def test_load_state_dict_from_save_params(self):
self.save_dirname = "static_mnist.load_state_dict.save_params"
self.params_filename = None
orig_param_dict = self.train_and_save_model(True)
load_param_dict, _ = paddle.load(self.save_dirname)
load_param_dict, _ = fluid.load_dygraph(self.save_dirname)
self.check_load_state_dict(orig_param_dict, load_param_dict)
new_load_param_dict = paddle.load(self.save_dirname)
self.check_load_state_dict(orig_param_dict, new_load_param_dict)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
SEED = 10
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
np.random.seed(SEED)
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
class TestSaveLoad(unittest.TestCase):
def setUp(self):
# enable dygraph mode
self.place = paddle.CPUPlace()
paddle.disable_static(self.place)
# config seed
paddle.manual_seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def build_and_train_model(self):
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(
dataset,
places=self.place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# train
train(layer, loader, loss_fn, adam)
return layer, adam
def check_load_state_dict(self, orig_dict, load_dict):
for var_name, value in orig_dict.items():
self.assertTrue(np.array_equal(value.numpy(), load_dict[var_name]))
def test_save_load(self):
layer, opt = self.build_and_train_model()
# save
layer_save_path = "linear.pdparams"
opt_save_path = "linear.pdopt"
layer_state_dict = layer.state_dict()
opt_state_dict = opt.state_dict()
paddle.save(layer_state_dict, layer_save_path)
paddle.save(opt_state_dict, opt_save_path)
# load
load_layer_state_dict = paddle.load(layer_save_path)
load_opt_state_dict = paddle.load(opt_save_path)
self.check_load_state_dict(layer_state_dict, load_layer_state_dict)
self.check_load_state_dict(opt_state_dict, load_opt_state_dict)
# test save load in static mode
paddle.enable_static()
static_save_path = "static_mode_test/linear.pdparams"
paddle.save(layer_state_dict, static_save_path)
load_static_state_dict = paddle.load(static_save_path)
self.check_load_state_dict(layer_state_dict, load_static_state_dict)
# error test cases, some tests relay base test above
# 1. test save obj not dict error
test_list = [1, 2, 3]
with self.assertRaises(NotImplementedError):
paddle.save(test_list, "not_dict_error_path")
# 2. test save path format error
with self.assertRaises(ValueError):
paddle.save(layer_state_dict, "linear.model/")
# 3. test load path not exist error
with self.assertRaises(ValueError):
paddle.load("linear.params")
# 4. test load old save path error
with self.assertRaises(ValueError):
paddle.load("linear")
if __name__ == '__main__':
unittest.main()
......@@ -48,8 +48,8 @@ from paddle.fluid import core #DEFINE_ALIAS
from ..fluid.dygraph.base import no_grad #DEFINE_ALIAS
from ..fluid.dygraph.base import to_variable #DEFINE_ALIAS
from ..fluid.dygraph.base import grad #DEFINE_ALIAS
from ..fluid.dygraph.checkpoint import load_dygraph as load #DEFINE_ALIAS
from ..fluid.dygraph.checkpoint import save_dygraph as save #DEFINE_ALIAS
from .io import save
from .io import load
from ..fluid.dygraph.jit import SaveLoadConfig #DEFINE_ALIAS
from ..fluid.dygraph.parallel import DataParallel #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import collections
import pickle
import six
import warnings
import paddle
# deprecated module import
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers, EXTRA_VAR_INFO_FILENAME
__all__ = [
'save',
'load',
]
def _build_saved_state_dict(state_dict):
save_dict = {}
name_table = {}
for key, value in state_dict.items():
if isinstance(value, (Variable, core.VarBase)):
save_dict[key] = value.numpy()
name_table[key] = value.name
else:
save_dict[key] = value
save_dict["StructuredToParameterName@@"] = name_table
return save_dict
def _load_state_dict_from_save_inference_model(model_path, config):
# 1. load program desc & construct _ProgramHolder
programs = _construct_program_holders(model_path, config.model_filename)
# 2. load layer parameters & buffers
with fluid.dygraph.guard():
persistable_var_dict = _construct_params_and_buffers(
model_path,
programs,
config.separate_params,
config.params_filename,
append_suffix=False)
# 3. construct state_dict
load_param_dict = dict()
for var_name in persistable_var_dict:
load_param_dict[var_name] = persistable_var_dict[var_name].numpy()
# if __variables.info__ exists, we can recover structured_name
var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
if os.path.exists(var_info_path):
with open(var_info_path, 'rb') as f:
extra_var_info = pickle.load(f)
structured_para_dict = dict()
for var_name in load_param_dict:
structured_name = extra_var_info[var_name].get(
'structured_name', None)
assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
structured_para_dict[structured_name] = load_param_dict[
var_name]
load_param_dict = structured_para_dict
return load_param_dict
def _load_state_dict_from_save_params(model_path):
# Try to load all the files in the directory in VarBase format,
# the file name is used as the name of VarBase
load_var_list = []
# 1. load file names
var_name_list = []
for root, _, files in os.walk(model_path):
for filename in files:
file_path = os.path.join(root, filename)
tmp_var_name = os.path.relpath(file_path, model_path)
var_name = tmp_var_name.replace("\\", "/")
var_name_list.append(var_name)
# 2. create and load VarBase
with fluid.dygraph.guard():
for name in var_name_list:
new_var = _varbase_creator(name=name, persistable=True)
_dygraph_tracer().trace_op(
type='load',
inputs={},
outputs={'Out': new_var},
attrs={'file_path': os.path.join(model_path, name)})
load_var_list.append(new_var)
# 3. construct state_dict
load_param_dict = dict()
for var in load_var_list:
load_param_dict[var.name] = var.numpy()
return load_param_dict
def save(obj, path):
'''
Save an object to the specified path.
.. note::
Now only supports save ``state_dict`` of Layer or Optimizer.
Args:
obj(Object) : The object to be saved.
path(str) : The path of the object to be saved.
If saved in the current directory, the input path string will be used as the file name.
Returns:
None
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
paddle.save(layer_state_dict, "emb.pdparams")
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
opt_state_dict = adam.state_dict()
paddle.save(opt_state_dict, "adam.pdopt")
'''
# 1. input check
if not isinstance(obj, dict):
raise NotImplementedError(
"Now only supports save state_dict of Layer or Optimizer, "
"expect dict, but received %s." % type(obj))
if len(obj) == 0:
warnings.warn("The input state dict is empty, no need to save.")
filename = os.path.basename(path)
if filename == "":
raise ValueError("The input path MUST be format of dirname/filename "
"[dirname\\filename in Windows system], but received "
"filename is empty string.")
# 2. save object
dirname = os.path.dirname(path)
if dirname and not os.path.exists(dirname):
os.makedirs(dirname)
# TODO(chenweihang): supports save other object
saved_obj = _build_saved_state_dict(obj)
with open(path, 'wb') as f:
pickle.dump(saved_obj, f, protocol=2)
def load(path, config=None):
'''
Load an object can be used in paddle from specified path.
.. note::
Now only supports load ``state_dict`` of Layer or Optimizer.
.. note::
``paddle.load`` supports loading ``state_dict`` from the result of several
paddle1.x save APIs in static mode, but due to some historical reasons,
if you load ``state_dict`` from the saved result of
``paddle.static.save_inference_model/paddle.fluid.io.save_params/paddle.fluid.io.save_persistables`` ,
the structured variable name will cannot be restored. You need to set the argument
``use_structured_name=False`` when using ``Layer.set_state_dict`` later.
Args:
path(str) : The path to load the target object. Generally, the path is the target
file path, when compatible with loading the saved results of
``paddle.jit.save/paddle.static.save_inference_model`` , the path is a directory.
config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig`
object that specifies additional configuration options, these options
are for compatibility with ``paddle.jit.save/paddle.static.save_inference_model``
formats. Default None.
Returns:
Object(Object): a target object can be used in paddle
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
paddle.save(layer_state_dict, "emb.pdparams")
scheduler = paddle.optimizer.lr_scheduler.NoamLR(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
opt_state_dict = adam.state_dict()
paddle.save(opt_state_dict, "adam.pdopt")
load_layer_state_dict = paddle.load("emb.pdparams")
load_opt_state_dict = paddle.load("adam.pdopt")
'''
# 1. input check
if not os.path.exists(path):
error_msg = "The path `%s` does not exist."
# if current path is a prefix, and the path.pdparams or path.pdopt
# is exist, users may want use `paddle.load` load the result of
# `fluid.save_dygraph`, we raise error here for users
params_file_path = path + ".pdparams"
opti_file_path = path + ".pdopt"
if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
"please specify the full file name, not just the file name prefix. For " \
"example, it should be written as `paddle.load('model.pdparams')` instead of " \
"`paddle.load('model')`."
raise ValueError(error_msg % path)
if config is None:
config = paddle.SaveLoadConfig()
# 2. load target
load_result = None
if os.path.isfile(path):
# we think path is file means this file is created by paddle.save
with open(path, 'rb') as f:
load_result = pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
del load_result["StructuredToParameterName@@"]
elif os.path.isdir(path):
# we think path is directory means compatible with loading
# store results of static mode related save APIs
# check whether model file exists
if config.model_filename is None:
model_filename = '__model__'
else:
model_filename = config.model_filename
model_file_path = os.path.join(path, model_filename)
if os.path.exists(model_file_path):
# Load state dict by `jit.save/io.save_inference_model` save format
# NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
# The model saved by `save_inference_model` does not completely correspond to
# the information required by the `state_dict` under the dygraph.
# `save_inference_model` not save structured name, we need to remind
# the user to configure the `use_structured_name` argument when `set_state_dict`
# NOTE(chenweihang): `jit.save` doesn't save optimizer state
load_result = _load_state_dict_from_save_inference_model(path,
config)
else:
# load state dict by `io.save_params/persistables` save format
# TODO(chenweihang): [ Now only supports loading parameters seperately ]
# If users save all parameters as one file, the [ variable.name -> variable ]
# mapping info will lost, so users need to give variable list, but users build
# variable list in dygraph mode is difficult, we recommend users to use
# paddle.static.load_program_state in this case
load_result = _load_state_dict_from_save_params(path)
else:
raise ValueError(
"Unsupported path format, now only supports file or directory.")
return load_result
......@@ -25,16 +25,8 @@ __all__ = [
'Sampler',
'SequenceSampler',
'RandomSampler',
'load',
'save',
'load_program_state',
'set_program_state',
'load_inference_model',
'save_inference_model',
]
from ..fluid.io import DataLoader
from ..fluid.dataloader import Dataset, IterableDataset, BatchSampler, get_worker_info, \
TensorDataset, Sampler, SequenceSampler, RandomSampler, DistributedBatchSampler
from ..fluid.io import load, save, load_program_state, set_program_state, \
load_inference_model, save_inference_model, batch
......@@ -17,8 +17,9 @@ __all__ = [
'append_backward', 'gradients', 'Executor', 'global_scope', 'scope_guard',
'BuildStrategy', 'CompiledProgram', 'Print', 'py_func', 'ExecutionStrategy',
'name_scope', 'ParallelExecutor', 'program_guard', 'WeightNormParamAttr',
'default_main_program', 'default_startup_program', 'Program', 'save',
'load', 'data', 'InputSpec'
'default_main_program', 'default_startup_program', 'Program', 'data',
'InputSpec', 'save', 'load', 'save_inference_model', 'load_inference_model',
'load_program_state', 'set_program_state'
]
from . import nn
......@@ -41,5 +42,9 @@ from ..fluid.layers.control_flow import Print #DEFINE_ALIAS
from ..fluid.layers.nn import py_func #DEFINE_ALIAS
from ..fluid.parallel_executor import ParallelExecutor #DEFINE_ALIAS
from ..fluid.param_attr import WeightNormParamAttr #DEFINE_ALIAS
from ..tensor.io import save #DEFINE_ALIAS
from ..tensor.io import load #DEFINE_ALIAS
from ..fluid.io import save #DEFINE_ALIAS
from ..fluid.io import load #DEFINE_ALIAS
from ..fluid.io import save_inference_model #DEFINE_ALIAS
from ..fluid.io import load_inference_model #DEFINE_ALIAS
from ..fluid.io import load_program_state #DEFINE_ALIAS
from ..fluid.io import set_program_state #DEFINE_ALIAS
......@@ -42,8 +42,6 @@ from .creation import tril #DEFINE_ALIAS
from .creation import meshgrid #DEFINE_ALIAS
from .creation import empty #DEFINE_ALIAS
from .creation import empty_like #DEFINE_ALIAS
from .io import save #DEFINE_ALIAS
from .io import load #DEFINE_ALIAS
from .linalg import matmul #DEFINE_ALIAS
from .linalg import dot #DEFINE_ALIAS
# from .linalg import einsum #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define functions to save & load a tensor
from ..fluid import save #DEFINE_ALIAS
from ..fluid.io import load #DEFINE_ALIAS
__all__ = ['save', 'load']
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册