未验证 提交 33173ab4 编写于 作者: Y yuehuayingxueluo 提交者: GitHub

clear fluid apis: square_error_cost (#48029)

* clear fluid apis in fleet and passes

* fix model.py

* fix model.py

* fix cpp_pass.py

* clear loss.py

* change test file

* fix some test_*.py

* fix adaround.py

* fix evaluator.py

* fix CI bug

* fix CI bug

* fix decode.py

* fix detection.py

* fix ci bug

* rm test_sigmoid_cross_entropy_with_logits_op_ipu.py and fix __init__.py

* fix ci bug

* fix ci BUG
上级 f71de378
...@@ -78,7 +78,6 @@ class Momentum(Optimizer): ...@@ -78,7 +78,6 @@ class Momentum(Optimizer):
import numpy as np import numpy as np
paddle.enable_static() paddle.enable_static()
place = fluid.CPUPlace() place = fluid.CPUPlace()
main = fluid.Program() main = fluid.Program()
with fluid.program_guard(main): with fluid.program_guard(main):
......
...@@ -16,6 +16,7 @@ import numpy as np ...@@ -16,6 +16,7 @@ import numpy as np
import time import time
import sys import sys
import logging import logging
import paddle
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -61,7 +62,7 @@ class AdaRoundLoss: ...@@ -61,7 +62,7 @@ class AdaRoundLoss:
self.default_beta_range = default_beta_range self.default_beta_range = default_beta_range
def compute_recon_loss(self, ada_quantized_output, orig_output): def compute_recon_loss(self, ada_quantized_output, orig_output):
square_cost = fluid.layers.square_error_cost( square_cost = paddle.nn.functional.square_error_cost(
ada_quantized_output, orig_output ada_quantized_output, orig_output
) )
recon_loss = paddle.mean(paddle.sum(square_cost, axis=-1)) recon_loss = paddle.mean(paddle.sum(square_cost, axis=-1))
......
...@@ -50,7 +50,7 @@ class TestMovingAverageAbsMaxScaleOp(unittest.TestCase): ...@@ -50,7 +50,7 @@ class TestMovingAverageAbsMaxScaleOp(unittest.TestCase):
name=fc_tmp.name, dtype=fc_tmp.dtype name=fc_tmp.name, dtype=fc_tmp.dtype
) )
fc_tmp_1 = out_scale(fc_tmp) fc_tmp_1 = out_scale(fc_tmp)
cross_entropy = fluid.layers.softmax_with_cross_entropy( cross_entropy = paddle.nn.functional.softmax_with_cross_entropy(
fc_tmp, label fc_tmp, label
) )
loss = paddle.mean(cross_entropy) loss = paddle.mean(cross_entropy)
......
...@@ -127,7 +127,7 @@ def train(net_type, use_cuda, save_dirname, is_local): ...@@ -127,7 +127,7 @@ def train(net_type, use_cuda, save_dirname, is_local):
raise ValueError("%s network is not supported" % net_type) raise ValueError("%s network is not supported" % net_type)
logits = fluid.layers.fc(input=net, size=classdim, act="softmax") logits = fluid.layers.fc(input=net, size=classdim, act="softmax")
cost, predict = fluid.layers.softmax_with_cross_entropy( cost, predict = paddle.nn.functional.softmax_with_cross_entropy(
logits, label, return_softmax=True logits, label, return_softmax=True
) )
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
...@@ -509,7 +509,7 @@ class TestAmpWithNonIterableDataLoader(unittest.TestCase): ...@@ -509,7 +509,7 @@ class TestAmpWithNonIterableDataLoader(unittest.TestCase):
net = vgg16_bn_drop(image) net = vgg16_bn_drop(image)
logits = fluid.layers.fc(input=net, size=10, act="softmax") logits = fluid.layers.fc(input=net, size=10, act="softmax")
cost, predict = fluid.layers.softmax_with_cross_entropy( cost, predict = paddle.nn.functional.softmax_with_cross_entropy(
logits, label, return_softmax=True logits, label, return_softmax=True
) )
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
......
...@@ -110,7 +110,7 @@ def train(use_pure_fp16=True, use_nesterov=False, optimizer=""): ...@@ -110,7 +110,7 @@ def train(use_pure_fp16=True, use_nesterov=False, optimizer=""):
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
net = resnet_cifar10(images) net = resnet_cifar10(images)
logits = fluid.layers.fc(input=net, size=classdim, act="softmax") logits = fluid.layers.fc(input=net, size=classdim, act="softmax")
cost = fluid.layers.softmax_with_cross_entropy( cost = paddle.nn.functional.softmax_with_cross_entropy(
logits, label, return_softmax=False logits, label, return_softmax=False
) )
sum_cost = paddle.sum(cost) sum_cost = paddle.sum(cost)
......
...@@ -21,7 +21,7 @@ from .layer_function_generator import templatedoc ...@@ -21,7 +21,7 @@ from .layer_function_generator import templatedoc
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
from ..framework import Variable, _non_static_mode, static_only, in_dygraph_mode from ..framework import Variable, _non_static_mode, static_only, in_dygraph_mode
from .. import core from .. import core
from .loss import softmax_with_cross_entropy from paddle.fluid.layers import softmax_with_cross_entropy
from . import tensor from . import tensor
from . import nn from . import nn
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
......
...@@ -36,7 +36,6 @@ from paddle import _C_ops, _legacy_C_ops ...@@ -36,7 +36,6 @@ from paddle import _C_ops, _legacy_C_ops
__all__ = [ __all__ = [
'cross_entropy', 'cross_entropy',
'square_error_cost',
'softmax_with_cross_entropy', 'softmax_with_cross_entropy',
] ]
...@@ -144,41 +143,6 @@ def cross_entropy2(input, label, ignore_index=kIgnoreIndex): ...@@ -144,41 +143,6 @@ def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
return out return out
def square_error_cost(input, label):
r"""
Accept input predictions and target label and returns the
squared error cost.
For predictions label, and target label, the equation is:
.. math::
Out = (input - label)^2
Parameters:
input (Tensor): Input tensor, the data type should be float32.
label (Tensor): Label tensor, the data type should be float32.
Returns:
Tensor, The tensor storing the element-wise squared
error difference between input and label.
Examples:
.. code-block:: python
import paddle
input = paddle.to_tensor([1.1, 1.9])
label = paddle.to_tensor([1.0, 2.0])
output = paddle.nn.functional.square_error_cost(input, label)
print(output)
# [0.01, 0.01]
"""
return paddle.nn.functional.square_error_cost(input, label)
def softmax_with_cross_entropy( def softmax_with_cross_entropy(
logits, logits,
label, label,
...@@ -189,49 +153,32 @@ def softmax_with_cross_entropy( ...@@ -189,49 +153,32 @@ def softmax_with_cross_entropy(
axis=-1, axis=-1,
): ):
r""" r"""
This operator implements the cross entropy loss function with softmax. This function This operator implements the cross entropy loss function with softmax. This function
combines the calculation of the softmax operation and the cross entropy loss function combines the calculation of the softmax operation and the cross entropy loss function
to provide a more numerically stable gradient. to provide a more numerically stable gradient.
Because this operator performs a softmax on logits internally, it expects Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results. softmax operator since that would produce incorrect results.
When the attribute :attr:`soft_label` is set :attr:`False`, this operators When the attribute :attr:`soft_label` is set :attr:`False`, this operators
expects mutually exclusive hard labels, each sample in a batch is in exactly expects mutually exclusive hard labels, each sample in a batch is in exactly
one class with a probability of 1.0. Each sample in the batch will have a one class with a probability of 1.0. Each sample in the batch will have a
single label. single label.
The equation is as follows: The equation is as follows:
1) Hard label (one-hot label, so every sample has exactly one class) 1) Hard label (one-hot label, so every sample has exactly one class)
.. math:: .. math::
loss_j = -\\text{logits}_{label_j} + loss_j = -\\text{logits}_{label_j} +
\\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logits}_i)\\right), j = 1,..., K \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logits}_i)\\right), j = 1,..., K
2) Soft label (each sample can have a distribution over all classes) 2) Soft label (each sample can have a distribution over all classes)
.. math:: .. math::
loss_j = -\\sum_{i=0}^{K}\\text{label}_i loss_j = -\\sum_{i=0}^{K}\\text{label}_i
\\left(\\text{logits}_i - \\log\\left(\\sum_{i=0}^{K} \\left(\\text{logits}_i - \\log\\left(\\sum_{i=0}^{K}
\\exp(\\text{logits}_i)\\right)\\right), j = 1,...,K \\exp(\\text{logits}_i)\\right)\\right), j = 1,...,K
3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by: 3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:
.. math:: .. math::
max_j &= \\max_{i=0}^{K}{\\text{logits}_i} max_j &= \\max_{i=0}^{K}{\\text{logits}_i}
log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logits_i - max_j) log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logits_i - max_j)
softmax_j &= \\exp(logits_j - max_j - {log\\_max\\_sum}_j) softmax_j &= \\exp(logits_j - max_j - {log\\_max\\_sum}_j)
and then cross entropy loss is calculated by softmax and label. and then cross entropy loss is calculated by softmax and label.
Args: Args:
logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities. logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
label (Tensor): The ground truth ``Tensor`` , data type is the same label (Tensor): The ground truth ``Tensor`` , data type is the same
...@@ -258,7 +205,6 @@ def softmax_with_cross_entropy( ...@@ -258,7 +205,6 @@ def softmax_with_cross_entropy(
axis (int, optional): The index of dimension to perform softmax calculations. It axis (int, optional): The index of dimension to perform softmax calculations. It
should be in range :math:`[-1, rank - 1]`, while :math:`rank` should be in range :math:`[-1, rank - 1]`, while :math:`rank`
is the rank of input :attr:`logits`. Default: -1. is the rank of input :attr:`logits`. Default: -1.
Returns: Returns:
``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \ ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
`return_softmax` is False, otherwise the tuple \ `return_softmax` is False, otherwise the tuple \
...@@ -266,13 +212,10 @@ def softmax_with_cross_entropy( ...@@ -266,13 +212,10 @@ def softmax_with_cross_entropy(
with input logits and cross entropy loss is in \ with input logits and cross entropy loss is in \
the same shape with input logits except shape \ the same shape with input logits except shape \
in dimension :attr:`axis` as 1. in dimension :attr:`axis` as 1.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle import paddle
import numpy as np import numpy as np
data = np.random.rand(128).astype("float32") data = np.random.rand(128).astype("float32")
label = np.random.rand(1).astype("int64") label = np.random.rand(1).astype("int64")
data = paddle.to_tensor(data) data = paddle.to_tensor(data)
......
...@@ -1441,13 +1441,14 @@ class SGDOptimizer(Optimizer): ...@@ -1441,13 +1441,14 @@ class SGDOptimizer(Optimizer):
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
paddle.enable_static()
place = fluid.CPUPlace() place = fluid.CPUPlace()
main = fluid.Program() main = fluid.Program()
with fluid.program_guard(main): with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
...@@ -1642,13 +1643,14 @@ class MomentumOptimizer(Optimizer): ...@@ -1642,13 +1643,14 @@ class MomentumOptimizer(Optimizer):
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
paddle.enable_static()
place = fluid.CPUPlace() place = fluid.CPUPlace()
main = fluid.Program() main = fluid.Program()
with fluid.program_guard(main): with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9) moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
...@@ -2219,13 +2221,14 @@ class AdamOptimizer(Optimizer): ...@@ -2219,13 +2221,14 @@ class AdamOptimizer(Optimizer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
paddle.enable_static()
place = fluid.CPUPlace() place = fluid.CPUPlace()
main = fluid.Program() main = fluid.Program()
with fluid.program_guard(main): with fluid.program_guard(main):
x = fluid.data(name='x', shape=[None, 13], dtype='float32') x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32') y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
adam_optimizer = fluid.optimizer.AdamOptimizer(0.01) adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
...@@ -2247,13 +2250,14 @@ class AdamOptimizer(Optimizer): ...@@ -2247,13 +2250,14 @@ class AdamOptimizer(Optimizer):
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler
paddle.enable_static()
place = fluid.CPUPlace() place = fluid.CPUPlace()
main = fluid.Program() main = fluid.Program()
with fluid.program_guard(main): with fluid.program_guard(main):
x = fluid.data(name='x', shape=[None, 13], dtype='float32') x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32') y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
# define beta decay variable # define beta decay variable
...@@ -3276,13 +3280,14 @@ class RMSPropOptimizer(Optimizer): ...@@ -3276,13 +3280,14 @@ class RMSPropOptimizer(Optimizer):
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
paddle.enable_static()
place = fluid.CPUPlace() place = fluid.CPUPlace()
main = fluid.Program() main = fluid.Program()
with fluid.program_guard(main): with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1) rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
...@@ -3493,13 +3498,15 @@ class FtrlOptimizer(Optimizer): ...@@ -3493,13 +3498,15 @@ class FtrlOptimizer(Optimizer):
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
paddle.enable_static()
place = fluid.CPUPlace() place = fluid.CPUPlace()
main = fluid.Program() main = fluid.Program()
with fluid.program_guard(main): with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1) ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
......
...@@ -56,16 +56,20 @@ def train(use_cuda, save_dirname, is_local, use_bf16, pure_bf16): ...@@ -56,16 +56,20 @@ def train(use_cuda, save_dirname, is_local, use_bf16, pure_bf16):
if not pure_bf16: if not pure_bf16:
with amp.bf16.bf16_guard(): with amp.bf16.bf16_guard():
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
else: else:
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
with amp.bf16.bf16_guard(): with amp.bf16.bf16_guard():
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
else: else:
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
lr = 5e-3 if use_bf16 else 1e-3 lr = 5e-3 if use_bf16 else 1e-3
......
...@@ -167,7 +167,9 @@ def model(): ...@@ -167,7 +167,9 @@ def model():
scale_infer = paddle.scale(x=inference, scale=5.0) scale_infer = paddle.scale(x=inference, scale=5.0)
label = layers.data(name='score', shape=[1], dtype='float32') label = layers.data(name='score', shape=[1], dtype='float32')
square_cost = layers.square_error_cost(input=scale_infer, label=label) square_cost = paddle.nn.functional.square_error_cost(
input=scale_infer, label=label
)
avg_cost = paddle.mean(square_cost) avg_cost = paddle.mean(square_cost)
return scale_infer, avg_cost return scale_infer, avg_cost
......
...@@ -69,7 +69,7 @@ class AutoCheckpointBase(unittest.TestCase): ...@@ -69,7 +69,7 @@ class AutoCheckpointBase(unittest.TestCase):
label = fluid.data(name='label', shape=[-1, 1], dtype='int64') label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
fc_tmp = fluid.layers.fc(image, size=CLASS_NUM) fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
cross_entropy = fluid.layers.softmax_with_cross_entropy( cross_entropy = paddle.nn.functional.softmax_with_cross_entropy(
fc_tmp, label fc_tmp, label
) )
loss = paddle.mean(cross_entropy) loss = paddle.mean(cross_entropy)
......
...@@ -63,7 +63,7 @@ def net(): ...@@ -63,7 +63,7 @@ def net():
hidden = fluid.layers.fc(input=hidden, size=400, act="sigmoid") hidden = fluid.layers.fc(input=hidden, size=400, act="sigmoid")
hidden = fluid.layers.fc(input=hidden, size=3, act=None) hidden = fluid.layers.fc(input=hidden, size=3, act=None)
cost, y_predict = fluid.layers.softmax_with_cross_entropy( cost, y_predict = paddle.nn.functional.softmax_with_cross_entropy(
hidden, y, return_softmax=True hidden, y, return_softmax=True
) )
acc_top1 = paddle.static.accuracy(input=y_predict, label=y, k=1) acc_top1 = paddle.static.accuracy(input=y_predict, label=y, k=1)
......
...@@ -57,7 +57,7 @@ class SimpleNet(Layer): ...@@ -57,7 +57,7 @@ class SimpleNet(Layer):
fc = fluid.layers.matmul(x_emb, self.softmax_weight) fc = fluid.layers.matmul(x_emb, self.softmax_weight)
fc = fluid.layers.elementwise_add(fc, self.softmax_bias) fc = fluid.layers.elementwise_add(fc, self.softmax_bias)
projection = paddle.reshape(fc, shape=[-1, vocab_size]) projection = paddle.reshape(fc, shape=[-1, vocab_size])
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=y1, soft_label=False logits=projection, label=y1, soft_label=False
) )
return loss.mean() return loss.mean()
...@@ -106,7 +106,7 @@ class LossNet(Layer): ...@@ -106,7 +106,7 @@ class LossNet(Layer):
def forward(self, args, y1): def forward(self, args, y1):
projection, x2 = args projection, x2 = args
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=y1[0], soft_label=False logits=projection, label=y1[0], soft_label=False
) )
return loss.mean() return loss.mean()
......
...@@ -67,7 +67,7 @@ class SimpleNet(Layer): ...@@ -67,7 +67,7 @@ class SimpleNet(Layer):
projection = paddle.matmul(projection, self.word_embeddings.weight) projection = paddle.matmul(projection, self.word_embeddings.weight)
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=y1, soft_label=False logits=projection, label=y1, soft_label=False
) )
return loss.mean() return loss.mean()
...@@ -120,7 +120,7 @@ class LossNet(Layer): ...@@ -120,7 +120,7 @@ class LossNet(Layer):
def forward(self, args, y1): def forward(self, args, y1):
projection = args projection = args
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=y1[0], soft_label=False logits=projection, label=y1[0], soft_label=False
) )
return loss.mean() return loss.mean()
......
...@@ -941,7 +941,7 @@ class TransFormer(Layer): ...@@ -941,7 +941,7 @@ class TransFormer(Layer):
epsilon=self._label_smooth_eps, epsilon=self._label_smooth_eps,
) )
cost = fluid.layers.softmax_with_cross_entropy( cost = paddle.nn.functional.softmax_with_cross_entropy(
logits=predict, logits=predict,
label=label_out, label=label_out,
soft_label=True if self._label_smooth_eps else False, soft_label=True if self._label_smooth_eps else False,
......
...@@ -33,7 +33,7 @@ class TestCommunicatorHalfAsyncEnd2End(unittest.TestCase): ...@@ -33,7 +33,7 @@ class TestCommunicatorHalfAsyncEnd2End(unittest.TestCase):
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
return avg_cost, x, y return avg_cost, x, y
......
...@@ -29,7 +29,7 @@ class TestCommunicator(unittest.TestCase): ...@@ -29,7 +29,7 @@ class TestCommunicator(unittest.TestCase):
def net(self): def net(self):
x = fluid.layers.data(name='x', shape=[1], dtype='float32') x = fluid.layers.data(name='x', shape=[1], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=x, label=y) cost = paddle.nn.functional.square_error_cost(input=x, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
return avg_cost return avg_cost
......
...@@ -273,7 +273,7 @@ class TestDebugInfo(unittest.TestCase): ...@@ -273,7 +273,7 @@ class TestDebugInfo(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[1], dtype='float32') x = fluid.layers.data(name='x', shape=[1], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
role = role_maker.UserDefinedRoleMaker( role = role_maker.UserDefinedRoleMaker(
......
...@@ -449,7 +449,7 @@ class TestGlooWithCloudRoleMaker(unittest.TestCase): ...@@ -449,7 +449,7 @@ class TestGlooWithCloudRoleMaker(unittest.TestCase):
x = paddle.fluid.layers.data(name='x', shape=[13], dtype='float32') x = paddle.fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = paddle.fluid.layers.fc(input=x, size=1, act=None) y_predict = paddle.fluid.layers.fc(input=x, size=1, act=None)
y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32') y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = paddle.fluid.layers.square_error_cost( cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y input=y_predict, label=y
) )
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
......
...@@ -1585,7 +1585,7 @@ def transformer( ...@@ -1585,7 +1585,7 @@ def transformer(
epsilon=label_smooth_eps, epsilon=label_smooth_eps,
) )
cost = layers.softmax_with_cross_entropy( cost = paddle.nn.functional.softmax_with_cross_entropy(
logits=paddle.reshape(predict, shape=[-1, trg_vocab_size]), logits=paddle.reshape(predict, shape=[-1, trg_vocab_size]),
label=label, label=label,
soft_label=True if label_smooth_eps else False, soft_label=True if label_smooth_eps else False,
......
...@@ -410,7 +410,7 @@ class PretrainModelLayer(Layer): ...@@ -410,7 +410,7 @@ class PretrainModelLayer(Layer):
else: else:
fc_out = self.out_fc(mask_trans_feat) fc_out = self.out_fc(mask_trans_feat)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy( mask_lm_loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=fc_out, label=mask_label logits=fc_out, label=mask_label
) )
mean_mask_lm_loss = paddle.mean(mask_lm_loss) mean_mask_lm_loss = paddle.mean(mask_lm_loss)
...@@ -420,7 +420,7 @@ class PretrainModelLayer(Layer): ...@@ -420,7 +420,7 @@ class PretrainModelLayer(Layer):
( (
next_sent_loss, next_sent_loss,
next_sent_softmax, next_sent_softmax,
) = fluid.layers.softmax_with_cross_entropy( ) = paddle.nn.functional.softmax_with_cross_entropy(
logits=next_sent_fc_out, label=labels, return_softmax=True logits=next_sent_fc_out, label=labels, return_softmax=True
) )
......
...@@ -294,7 +294,7 @@ class BaseModel(fluid.dygraph.Layer): ...@@ -294,7 +294,7 @@ class BaseModel(fluid.dygraph.Layer):
dec_output = paddle.stack(dec_output) dec_output = paddle.stack(dec_output)
dec_output = self.fc(self._transpose_batch_time(dec_output)) dec_output = self.fc(self._transpose_batch_time(dec_output))
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=dec_output, label=label, soft_label=False logits=dec_output, label=label, soft_label=False
) )
loss = paddle.squeeze(loss, axis=[2]) loss = paddle.squeeze(loss, axis=[2])
...@@ -828,7 +828,7 @@ class AttentionModel(fluid.dygraph.Layer): ...@@ -828,7 +828,7 @@ class AttentionModel(fluid.dygraph.Layer):
dec_output = paddle.stack(dec_output) dec_output = paddle.stack(dec_output)
dec_output = self.fc(self._transpose_batch_time(dec_output)) dec_output = self.fc(self._transpose_batch_time(dec_output))
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=dec_output, label=label, soft_label=False logits=dec_output, label=label, soft_label=False
) )
loss = paddle.squeeze(loss, axis=[2]) loss = paddle.squeeze(loss, axis=[2])
......
...@@ -379,7 +379,7 @@ def bmn_loss_func( ...@@ -379,7 +379,7 @@ def bmn_loss_func(
weights = u_hmask + u_smmask + u_slmask weights = u_hmask + u_smmask + u_slmask
weights.stop_gradient = True weights.stop_gradient = True
loss = fluid.layers.square_error_cost(pred_score, gt_iou_map) loss = paddle.nn.functional.square_error_cost(pred_score, gt_iou_map)
loss = paddle.multiply(loss, weights) loss = paddle.multiply(loss, weights)
loss = 0.5 * paddle.sum(loss) / paddle.sum(weights) loss = 0.5 * paddle.sum(loss) / paddle.sum(weights)
......
...@@ -216,7 +216,7 @@ class PtbModel(fluid.Layer): ...@@ -216,7 +216,7 @@ class PtbModel(fluid.Layer):
projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = paddle.add(projection, self.softmax_bias) projection = paddle.add(projection, self.softmax_bias)
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False logits=projection, label=label, soft_label=False
) )
loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.reshape(loss, shape=[-1, self.num_steps])
......
...@@ -576,7 +576,7 @@ class CrossEntropyCriterion: ...@@ -576,7 +576,7 @@ class CrossEntropyCriterion:
epsilon=self.label_smooth_eps, epsilon=self.label_smooth_eps,
) )
cost = layers.softmax_with_cross_entropy( cost = paddle.nn.functional.softmax_with_cross_entropy(
logits=predict, logits=predict,
label=label_out, label=label_out,
soft_label=True if self.label_smooth_eps else False, soft_label=True if self.label_smooth_eps else False,
......
...@@ -220,7 +220,7 @@ class TestWithoutIdentityLoss1(TestBase): ...@@ -220,7 +220,7 @@ class TestWithoutIdentityLoss1(TestBase):
class TestWithoutIdentityLoss2(TestBase): class TestWithoutIdentityLoss2(TestBase):
def set_op_attrs(self): def set_op_attrs(self):
self.loss_op = paddle.fluid.layers.softmax_with_cross_entropy self.loss_op = paddle.paddle.nn.functional.softmax_with_cross_entropy
def set_data_feed(self): def set_data_feed(self):
self.data = paddle.uniform((8, 3, 10, 10), dtype='float32') self.data = paddle.uniform((8, 3, 10, 10), dtype='float32')
......
...@@ -103,4 +103,4 @@ def TestHuberLossOp3(TestHuberLossOp): ...@@ -103,4 +103,4 @@ def TestHuberLossOp3(TestHuberLossOp):
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
\ No newline at end of file
...@@ -143,7 +143,7 @@ class TestMomentumV2(unittest.TestCase): ...@@ -143,7 +143,7 @@ class TestMomentumV2(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost =paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.Momentum( rms_optimizer = paddle.optimizer.Momentum(
...@@ -268,7 +268,7 @@ class TestMomentumOpWithDecayAPI(unittest.TestCase): ...@@ -268,7 +268,7 @@ class TestMomentumOpWithDecayAPI(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost =paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum( momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
......
...@@ -126,7 +126,7 @@ class TestPowNet(unittest.TestCase): ...@@ -126,7 +126,7 @@ class TestPowNet(unittest.TestCase):
fc_1 = fluid.layers.fc(input=z, size=128) fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2) prediction = fluid.layers.fc(input=fc_1, size=2)
cost = fluid.layers.softmax_with_cross_entropy(prediction, label) cost = paddle.nn.functional.softmax_with_cross_entropy(prediction, label)
loss = paddle.mean(cost) loss = paddle.mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01) sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss) sgd.minimize(loss)
......
...@@ -111,7 +111,7 @@ class TestMomentumV2(unittest.TestCase): ...@@ -111,7 +111,7 @@ class TestMomentumV2(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost =paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.Momentum( rms_optimizer = paddle.optimizer.Momentum(
...@@ -239,7 +239,7 @@ class TestMomentumOpWithDecayAPI(unittest.TestCase): ...@@ -239,7 +239,7 @@ class TestMomentumOpWithDecayAPI(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost =paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum( momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
......
...@@ -275,7 +275,7 @@ class TestSliceNet(unittest.TestCase): ...@@ -275,7 +275,7 @@ class TestSliceNet(unittest.TestCase):
prediction = paddle.static.nn.fc(z, size=2, activation='softmax') prediction = paddle.static.nn.fc(z, size=2, activation='softmax')
cost = paddle.fluid.layers.softmax_with_cross_entropy( cost = paddle.paddle.nn.functional.softmax_with_cross_entropy(
logits=prediction, label=label logits=prediction, label=label
) )
loss = paddle.mean(cost) loss = paddle.mean(cost)
......
...@@ -124,7 +124,7 @@ class TestPowNet(unittest.TestCase): ...@@ -124,7 +124,7 @@ class TestPowNet(unittest.TestCase):
fc_1 = fluid.layers.fc(input=z, size=128) fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2) prediction = fluid.layers.fc(input=fc_1, size=2)
cost = fluid.layers.softmax_with_cross_entropy(prediction, label) cost = paddle.nn.functional.softmax_with_cross_entropy(prediction, label)
loss = paddle.mean(cost) loss = paddle.mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01) sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss) sgd.minimize(loss)
......
...@@ -68,7 +68,7 @@ class SimpleNet(fluid.Layer): ...@@ -68,7 +68,7 @@ class SimpleNet(fluid.Layer):
fc = fluid.layers.matmul(x_emb, self.softmax_weight) fc = fluid.layers.matmul(x_emb, self.softmax_weight)
fc = paddle.add(fc, self.softmax_bias) fc = paddle.add(fc, self.softmax_bias)
projection = paddle.reshape(fc, shape=[-1, self.vocab_size]) projection = paddle.reshape(fc, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False logits=projection, label=label, soft_label=False
) )
loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.reshape(loss, shape=[-1, self.num_steps])
......
...@@ -146,7 +146,9 @@ class TestAdadeltaV2(unittest.TestCase): ...@@ -146,7 +146,9 @@ class TestAdadeltaV2(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.Adadelta(learning_rate=0.1) rms_optimizer = paddle.optimizer.Adadelta(learning_rate=0.1)
......
...@@ -941,7 +941,9 @@ class TestAdamOptimizer(unittest.TestCase): ...@@ -941,7 +941,9 @@ class TestAdamOptimizer(unittest.TestCase):
y_predict = fluid.layers.fc( y_predict = fluid.layers.fc(
input=x, size=1, act=None, param_attr=weight_attr input=x, size=1, act=None, param_attr=weight_attr
) )
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
adam = fluid.optimizer.AdamOptimizer( adam = fluid.optimizer.AdamOptimizer(
......
...@@ -33,7 +33,9 @@ def main_test_func(place, dtype): ...@@ -33,7 +33,9 @@ def main_test_func(place, dtype):
x = fluid.data(name='x', shape=[None, 13], dtype=dtype) x = fluid.data(name='x', shape=[None, 13], dtype=dtype)
y = fluid.data(name='y', shape=[None, 1], dtype=dtype) y = fluid.data(name='y', shape=[None, 1], dtype=dtype)
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
adam_optimizer = fluid.optimizer.AdamOptimizer(0.01) adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
......
...@@ -621,7 +621,9 @@ class TestAdamWOpLayerwiseLR(TestAdamWOp): ...@@ -621,7 +621,9 @@ class TestAdamWOpLayerwiseLR(TestAdamWOp):
fc2_b_mon1 = np.zeros((linear2.bias.shape)).astype("float32") fc2_b_mon1 = np.zeros((linear2.bias.shape)).astype("float32")
fc2_b_mon2 = np.zeros((linear2.bias.shape)).astype("float32") fc2_b_mon2 = np.zeros((linear2.bias.shape)).astype("float32")
cost = fluid.layers.square_error_cost(input=out, label=y) cost = paddle.nn.functional.square_error_cost(
input=out, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
simple_lr_fun = partial( simple_lr_fun = partial(
......
...@@ -262,7 +262,9 @@ class SimpleNet(BackwardNet): ...@@ -262,7 +262,9 @@ class SimpleNet(BackwardNet):
name='fc_no_use', name='fc_no_use',
) )
# loss # loss
cost = fluid.layers.square_error_cost(input=predict, label=label) cost = paddle.nn.functional.square_error_cost(
input=predict, label=label
)
loss = paddle.mean(cost, name='mean_loss') loss = paddle.mean(cost, name='mean_loss')
return loss return loss
...@@ -330,7 +332,7 @@ class TestAppendBackwardWithError(unittest.TestCase): ...@@ -330,7 +332,7 @@ class TestAppendBackwardWithError(unittest.TestCase):
y = fluid.data(name='y', shape=[None, 1], dtype='float32') y = fluid.data(name='y', shape=[None, 1], dtype='float32')
x_emb = fluid.embedding(x, size=[100, 256]) x_emb = fluid.embedding(x, size=[100, 256])
y_predict = fluid.layers.fc(input=x_emb, size=1, name='my_fc') y_predict = fluid.layers.fc(input=x_emb, size=1, name='my_fc')
loss = fluid.layers.square_error_cost(input=y_predict, label=y) loss = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_loss = paddle.mean(loss) avg_loss = paddle.mean(loss)
param_names = [ param_names = [
param.name param.name
......
...@@ -17,6 +17,8 @@ import unittest ...@@ -17,6 +17,8 @@ import unittest
import numpy as np import numpy as np
from op_test import OpTest, randomize_probability from op_test import OpTest, randomize_probability
import paddle
class TestBprLossOp1(OpTest): class TestBprLossOp1(OpTest):
"""Test BprLoss with discrete one-hot labels.""" """Test BprLoss with discrete one-hot labels."""
...@@ -47,4 +49,5 @@ class TestBprLossOp1(OpTest): ...@@ -47,4 +49,5 @@ class TestBprLossOp1(OpTest):
if __name__ == "__main__": if __name__ == "__main__":
paddle.enable_static()
unittest.main() unittest.main()
...@@ -30,7 +30,7 @@ class TestCommunicator(unittest.TestCase): ...@@ -30,7 +30,7 @@ class TestCommunicator(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[1], dtype='float32') x = fluid.layers.data(name='x', shape=[1], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=x, label=y) cost = paddle.nn.functional.square_error_cost(input=x, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
return avg_cost return avg_cost
......
...@@ -49,7 +49,7 @@ class TestCommunicatorGeoEnd2End(unittest.TestCase): ...@@ -49,7 +49,7 @@ class TestCommunicatorGeoEnd2End(unittest.TestCase):
y_predict = fluid.layers.fc(input=z, size=1, act=None) y_predict = fluid.layers.fc(input=z, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
return avg_cost, x, x1, y return avg_cost, x, x1, y
......
...@@ -55,7 +55,7 @@ class TestCommunicator(unittest.TestCase): ...@@ -55,7 +55,7 @@ class TestCommunicator(unittest.TestCase):
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
slots_vars = [x, y] slots_vars = [x, y]
cost = fluid.layers.square_error_cost(input=x, label=y) cost = paddle.nn.functional.square_error_cost(input=x, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
optimizer = fluid.optimizer.Adam(0.01) optimizer = fluid.optimizer.Adam(0.01)
......
...@@ -47,7 +47,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase): ...@@ -47,7 +47,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32') x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32')
y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32') y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = paddle.fluid.layers.square_error_cost(input=x, label=y) cost = paddle.nn.functional.square_error_cost(input=x, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
strategy = paddle.distributed.fleet.DistributedStrategy() strategy = paddle.distributed.fleet.DistributedStrategy()
...@@ -85,7 +85,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase): ...@@ -85,7 +85,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32') x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32')
y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32') y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = paddle.fluid.layers.square_error_cost(input=x, label=y) cost = paddle.nn.functional.square_error_cost(input=x, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
strategy = paddle.distributed.fleet.DistributedStrategy() strategy = paddle.distributed.fleet.DistributedStrategy()
......
...@@ -40,7 +40,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase): ...@@ -40,7 +40,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32') x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32')
y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32') y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = paddle.fluid.layers.square_error_cost(input=x, label=y) cost = paddle.nn.functional.square_error_cost(input=x, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
strategy = paddle.distributed.fleet.DistributedStrategy() strategy = paddle.distributed.fleet.DistributedStrategy()
......
...@@ -41,7 +41,7 @@ class TestDistStrategyTrainerDescConfig(unittest.TestCase): ...@@ -41,7 +41,7 @@ class TestDistStrategyTrainerDescConfig(unittest.TestCase):
x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32') x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32')
y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32') y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = paddle.fluid.layers.square_error_cost(input=x, label=y) cost = paddle.nn.functional.square_error_cost(input=x, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
strategy = paddle.distributed.fleet.DistributedStrategy() strategy = paddle.distributed.fleet.DistributedStrategy()
......
...@@ -47,7 +47,7 @@ class TranspilerTest(unittest.TestCase): ...@@ -47,7 +47,7 @@ class TranspilerTest(unittest.TestCase):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
sgd_optimizer.minimize(avg_cost) sgd_optimizer.minimize(avg_cost)
...@@ -302,7 +302,7 @@ class TestLRDecay(TranspilerTest): ...@@ -302,7 +302,7 @@ class TestLRDecay(TranspilerTest):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD( sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay( learning_rate=fluid.layers.exponential_decay(
...@@ -471,7 +471,7 @@ class TestDecayedAdagrad(TranspilerTest): ...@@ -471,7 +471,7 @@ class TestDecayedAdagrad(TranspilerTest):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1) opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1)
opt.minimize(avg_cost) opt.minimize(avg_cost)
...@@ -492,7 +492,7 @@ class TestFtrl(TranspilerTest): ...@@ -492,7 +492,7 @@ class TestFtrl(TranspilerTest):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
opt = fluid.optimizer.Ftrl(learning_rate=0.1) opt = fluid.optimizer.Ftrl(learning_rate=0.1)
opt.minimize(avg_cost) opt.minimize(avg_cost)
...@@ -513,7 +513,7 @@ class TestLRDecayConditional(TranspilerTest): ...@@ -513,7 +513,7 @@ class TestLRDecayConditional(TranspilerTest):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD( sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.piecewise_decay( learning_rate=fluid.layers.piecewise_decay(
...@@ -579,7 +579,7 @@ class TestL2Decay(TranspilerTest): ...@@ -579,7 +579,7 @@ class TestL2Decay(TranspilerTest):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
...@@ -616,7 +616,7 @@ class TestL2DecayWithPiecewise(TranspilerTest): ...@@ -616,7 +616,7 @@ class TestL2DecayWithPiecewise(TranspilerTest):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
base_lr = 1.0 base_lr = 1.0
bd = [1, 10, 20, 30] bd = [1, 10, 20, 30]
...@@ -692,7 +692,7 @@ class TestEmptyPserverOptimizeBlocks(TranspilerTest): ...@@ -692,7 +692,7 @@ class TestEmptyPserverOptimizeBlocks(TranspilerTest):
bias_attr=False, bias_attr=False,
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0) sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0)
sgd_optimizer.minimize(avg_cost) sgd_optimizer.minimize(avg_cost)
...@@ -1134,7 +1134,7 @@ class TestRMSPropOptimizer(TranspilerTest): ...@@ -1134,7 +1134,7 @@ class TestRMSPropOptimizer(TranspilerTest):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
optimizer = fluid.optimizer.RMSProp(learning_rate=0.1) optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
optimizer.minimize(avg_cost) optimizer.minimize(avg_cost)
...@@ -1167,7 +1167,7 @@ class TestLoadSliceVar(TranspilerTest): ...@@ -1167,7 +1167,7 @@ class TestLoadSliceVar(TranspilerTest):
bias_attr=fluid.ParamAttr(name='fc_b'), bias_attr=fluid.ParamAttr(name='fc_b'),
) )
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
optimizer = fluid.optimizer.RMSProp(learning_rate=0.1) optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
optimizer.minimize(avg_cost) optimizer.minimize(avg_cost)
...@@ -1452,6 +1452,7 @@ class TestRemoteHsigmoid(TestDistLookupTableBase): ...@@ -1452,6 +1452,7 @@ class TestRemoteHsigmoid(TestDistLookupTableBase):
path_table=path_table, path_table=path_table,
path_code=path_code, path_code=path_code,
) )
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
# optimizer # optimizer
optimizer = fluid.optimizer.SGD(learning_rate=0.003) optimizer = fluid.optimizer.SGD(learning_rate=0.003)
......
...@@ -58,7 +58,9 @@ class TestListenAndServOp(unittest.TestCase): ...@@ -58,7 +58,9 @@ class TestListenAndServOp(unittest.TestCase):
) )
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None) y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
ps_param = pslib.PSParameter() ps_param = pslib.PSParameter()
...@@ -120,7 +122,9 @@ class TestListenAndServOp(unittest.TestCase): ...@@ -120,7 +122,9 @@ class TestListenAndServOp(unittest.TestCase):
) )
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None) y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
ps_param = pslib.PSParameter() ps_param = pslib.PSParameter()
...@@ -180,7 +184,9 @@ class TestListenAndServOp(unittest.TestCase): ...@@ -180,7 +184,9 @@ class TestListenAndServOp(unittest.TestCase):
) )
y_predict = fluid.layers.fc(input=x_emb, size=1, act=None) y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
ps_param = pslib.PSParameter() ps_param = pslib.PSParameter()
......
...@@ -463,7 +463,7 @@ def lm_model( ...@@ -463,7 +463,7 @@ def lm_model(
projection = paddle.add(projection, softmax_bias) projection = paddle.add(projection, softmax_bias)
projection = paddle.reshape(projection, shape=[-1, vocab_size]) projection = paddle.reshape(projection, shape=[-1, vocab_size])
loss = layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=y, soft_label=False logits=projection, label=y, soft_label=False
) )
......
...@@ -43,7 +43,7 @@ class TestExceptionNoCStack(unittest.TestCase): ...@@ -43,7 +43,7 @@ class TestExceptionNoCStack(unittest.TestCase):
x = fluid.layers.data(name='X', shape=[-1, 13], dtype='float32') x = fluid.layers.data(name='X', shape=[-1, 13], dtype='float32')
y = fluid.layers.data(name='Y', shape=[-1, 1], dtype='float32') y = fluid.layers.data(name='Y', shape=[-1, 1], dtype='float32')
predict = fluid.layers.fc(input=x, size=1, act=None) predict = fluid.layers.fc(input=x, size=1, act=None)
loss = fluid.layers.square_error_cost(input=predict, label=y) loss = paddle.nn.functional.square_error_cost(input=predict, label=y)
avg_loss = paddle.mean(loss) avg_loss = paddle.mean(loss)
fluid.optimizer.SGD(learning_rate=0.01).minimize(avg_loss) fluid.optimizer.SGD(learning_rate=0.01).minimize(avg_loss)
......
...@@ -25,7 +25,7 @@ class TestExecutor(unittest.TestCase): ...@@ -25,7 +25,7 @@ class TestExecutor(unittest.TestCase):
y = fluid.data(name="y", shape=[None, 1], dtype='float32') y = fluid.data(name="y", shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
opt = fluid.optimizer.Adam(learning_rate=lr) opt = fluid.optimizer.Adam(learning_rate=lr)
......
...@@ -27,7 +27,7 @@ class TestExecutor(unittest.TestCase): ...@@ -27,7 +27,7 @@ class TestExecutor(unittest.TestCase):
y = fluid.data(name="y", shape=[None, 1], dtype='float32') y = fluid.data(name="y", shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
opt = fluid.optimizer.Adam(learning_rate=lr) opt = fluid.optimizer.Adam(learning_rate=lr)
......
...@@ -96,7 +96,9 @@ class TestDygraphGNN(unittest.TestCase): ...@@ -96,7 +96,9 @@ class TestDygraphGNN(unittest.TestCase):
logits = paddle.reshape(logits, logits.shape[1:]) logits = paddle.reshape(logits, logits.shape[1:])
# In other example, it's nll with log_softmax. However, paddle's # In other example, it's nll with log_softmax. However, paddle's
# log_loss only supports binary classification now. # log_loss only supports binary classification now.
loss = fluid.layers.softmax_with_cross_entropy(logits, labels) loss = paddle.nn.functional.softmax_with_cross_entropy(
logits, labels
)
loss = paddle.sum(loss) loss = paddle.sum(loss)
adam = AdamOptimizer(learning_rate=1e-3) adam = AdamOptimizer(learning_rate=1e-3)
...@@ -134,7 +136,7 @@ class TestDygraphGNN(unittest.TestCase): ...@@ -134,7 +136,7 @@ class TestDygraphGNN(unittest.TestCase):
logits = paddle.reshape(logits, logits.shape[1:]) logits = paddle.reshape(logits, logits.shape[1:])
# In other example, it's nll with log_softmax. However, paddle's # In other example, it's nll with log_softmax. However, paddle's
# log_loss only supports binary classification now. # log_loss only supports binary classification now.
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits, to_variable(labels) logits, to_variable(labels)
) )
loss = paddle.sum(loss) loss = paddle.sum(loss)
...@@ -162,7 +164,7 @@ class TestDygraphGNN(unittest.TestCase): ...@@ -162,7 +164,7 @@ class TestDygraphGNN(unittest.TestCase):
logits2 = paddle.reshape(logits2, logits2.shape[1:]) logits2 = paddle.reshape(logits2, logits2.shape[1:])
# In other example, it's nll with log_softmax. However, paddle's # In other example, it's nll with log_softmax. However, paddle's
# log_loss only supports binary classification now. # log_loss only supports binary classification now.
loss2 = fluid.layers.softmax_with_cross_entropy( loss2 = paddle.nn.functional.softmax_with_cross_entropy(
logits2, to_variable(labels2) logits2, to_variable(labels2)
) )
loss2 = paddle.sum(loss2) loss2 = paddle.sum(loss2)
......
...@@ -69,7 +69,7 @@ class SimpleNet(fluid.Layer): ...@@ -69,7 +69,7 @@ class SimpleNet(fluid.Layer):
) )
projection = paddle.add(projection, self.softmax_bias) projection = paddle.add(projection, self.softmax_bias)
projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) projection = paddle.reshape(projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False logits=projection, label=label, soft_label=False
) )
loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.reshape(loss, shape=[-1, self.num_steps])
......
...@@ -228,7 +228,7 @@ class PtbModel(fluid.Layer): ...@@ -228,7 +228,7 @@ class PtbModel(fluid.Layer):
projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = paddle.add(projection, self.softmax_bias) projection = paddle.add(projection, self.softmax_bias)
projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) projection = paddle.reshape(projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False logits=projection, label=label, soft_label=False
) )
loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.reshape(loss, shape=[-1, self.num_steps])
......
...@@ -224,7 +224,7 @@ class PtbModel(fluid.Layer): ...@@ -224,7 +224,7 @@ class PtbModel(fluid.Layer):
projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = paddle.add(projection, self.softmax_bias) projection = paddle.add(projection, self.softmax_bias)
projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) projection = paddle.reshape(projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False logits=projection, label=label, soft_label=False
) )
loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.reshape(loss, shape=[-1, self.num_steps])
......
...@@ -225,7 +225,7 @@ class PtbModel(fluid.Layer): ...@@ -225,7 +225,7 @@ class PtbModel(fluid.Layer):
projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = paddle.add(projection, self.softmax_bias) projection = paddle.add(projection, self.softmax_bias)
projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) projection = paddle.reshape(projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False logits=projection, label=label, soft_label=False
) )
loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.reshape(loss, shape=[-1, self.num_steps])
......
...@@ -78,7 +78,7 @@ class SimpleNet(fluid.Layer): ...@@ -78,7 +78,7 @@ class SimpleNet(fluid.Layer):
fc, paddle.transpose(self.embedding.weight, perm=[1, 0]) fc, paddle.transpose(self.embedding.weight, perm=[1, 0])
) )
projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) projection = paddle.reshape(projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False logits=projection, label=label, soft_label=False
) )
loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.reshape(loss, shape=[-1, self.num_steps])
......
...@@ -1099,7 +1099,7 @@ class TransFormer(Layer): ...@@ -1099,7 +1099,7 @@ class TransFormer(Layer):
epsilon=self._label_smooth_eps, epsilon=self._label_smooth_eps,
) )
cost = fluid.layers.softmax_with_cross_entropy( cost = paddle.nn.functional.softmax_with_cross_entropy(
logits=predict, logits=predict,
label=label_out, label=label_out,
soft_label=True if self._label_smooth_eps else False, soft_label=True if self._label_smooth_eps else False,
......
...@@ -59,7 +59,9 @@ class TestBook(unittest.TestCase): ...@@ -59,7 +59,9 @@ class TestBook(unittest.TestCase):
y_predict = layers.fc(input=x, size=1, act=None) y_predict = layers.fc(input=x, size=1, act=None)
cost = layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
...@@ -153,7 +155,9 @@ class TestSaveInferenceModel(unittest.TestCase): ...@@ -153,7 +155,9 @@ class TestSaveInferenceModel(unittest.TestCase):
y_predict = layers.fc(input=x, size=1, act=None) y_predict = layers.fc(input=x, size=1, act=None)
cost = layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
place = core.CPUPlace() place = core.CPUPlace()
...@@ -209,7 +213,9 @@ class TestInstance(unittest.TestCase): ...@@ -209,7 +213,9 @@ class TestInstance(unittest.TestCase):
y_predict = layers.fc(input=x, size=1, act=None) y_predict = layers.fc(input=x, size=1, act=None)
cost = layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
place = core.CPUPlace() place = core.CPUPlace()
...@@ -245,7 +251,9 @@ class TestSaveInferenceModelNew(unittest.TestCase): ...@@ -245,7 +251,9 @@ class TestSaveInferenceModelNew(unittest.TestCase):
y_predict = layers.fc(input=x, size=1, act=None) y_predict = layers.fc(input=x, size=1, act=None)
cost = layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
...@@ -422,7 +430,9 @@ class TestSaveInferenceModelNew(unittest.TestCase): ...@@ -422,7 +430,9 @@ class TestSaveInferenceModelNew(unittest.TestCase):
y_predict = layers.fc(input=x, size=1, act=None) y_predict = layers.fc(input=x, size=1, act=None)
cost = layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
...@@ -469,7 +479,9 @@ class TestSaveInferenceModelNew(unittest.TestCase): ...@@ -469,7 +479,9 @@ class TestSaveInferenceModelNew(unittest.TestCase):
y_predict = layers.fc(input=x, size=1, act=None) y_predict = layers.fc(input=x, size=1, act=None)
cost = layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
......
...@@ -16,6 +16,7 @@ import unittest ...@@ -16,6 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -48,7 +49,7 @@ class TestSoftmaxWithXe(unittest.TestCase): ...@@ -48,7 +49,7 @@ class TestSoftmaxWithXe(unittest.TestCase):
dtype='int64' if not self.soft_label else self.dtype, dtype='int64' if not self.soft_label else self.dtype,
append_batch_size=False, append_batch_size=False,
) )
z_d, s_d = fluid.layers.softmax_with_cross_entropy( z_d, s_d = paddle.nn.functional.softmax_with_cross_entropy(
x_d, x_d,
y_d, y_d,
soft_label=self.soft_label, soft_label=self.soft_label,
......
...@@ -126,7 +126,9 @@ class TestLambOpWithCombinedOp(unittest.TestCase): ...@@ -126,7 +126,9 @@ class TestLambOpWithCombinedOp(unittest.TestCase):
x = fluid.layers.data(name='X', shape=[13], dtype='float32') x = fluid.layers.data(name='X', shape=[13], dtype='float32')
y = fluid.layers.data(name='Y', shape=[1], dtype='float32') y = fluid.layers.data(name='Y', shape=[1], dtype='float32')
prediction = fluid.layers.fc(input=x, size=1, act=None) prediction = fluid.layers.fc(input=x, size=1, act=None)
loss = fluid.layers.square_error_cost(input=prediction, label=y) loss = paddle.nn.functional.square_error_cost(
input=prediction, label=y
)
avg_loss = paddle.mean(loss) avg_loss = paddle.mean(loss)
return avg_loss return avg_loss
......
...@@ -3037,7 +3037,9 @@ class TestBook(LayerTest): ...@@ -3037,7 +3037,9 @@ class TestBook(LayerTest):
x = self._get_data(name='x', shape=[13], dtype='float32') x = self._get_data(name='x', shape=[13], dtype='float32')
y_predict = layers.fc(input=x, size=1, act=None) y_predict = layers.fc(input=x, size=1, act=None)
y = self._get_data(name='y', shape=[1], dtype='float32') y = self._get_data(name='y', shape=[1], dtype='float32')
cost = layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
return avg_cost return avg_cost
...@@ -3256,23 +3258,31 @@ class TestBook(LayerTest): ...@@ -3256,23 +3258,31 @@ class TestBook(LayerTest):
): ):
x = self._get_data(name='x', shape=[16], dtype='float32') x = self._get_data(name='x', shape=[16], dtype='float32')
y = self._get_data(name='label', shape=[1], dtype='int64') y = self._get_data(name='label', shape=[1], dtype='int64')
loss, softmax = layers.softmax_with_cross_entropy( loss, softmax = paddle.nn.functional.softmax_with_cross_entropy(
x, y, return_softmax=True x, y, return_softmax=True
) )
self.assertIsNotNone(loss) self.assertIsNotNone(loss)
self.assertIsNotNone(softmax) self.assertIsNotNone(softmax)
loss = layers.softmax_with_cross_entropy(x, y) loss = paddle.nn.functional.softmax_with_cross_entropy(x, y)
self.assertIsNotNone(loss) self.assertIsNotNone(loss)
x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32') x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64') y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64') y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64') y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1) loss1 = paddle.nn.functional.softmax_with_cross_entropy(
loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2) x1, y1, axis=1
loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3) )
loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1) loss2 = paddle.nn.functional.softmax_with_cross_entropy(
x1, y2, axis=2
)
loss3 = paddle.nn.functional.softmax_with_cross_entropy(
x1, y3, axis=3
)
loss4 = paddle.nn.functional.softmax_with_cross_entropy(
x1, y3, axis=-1
)
self.assertIsNotNone(loss1) self.assertIsNotNone(loss1)
self.assertIsNotNone(loss2) self.assertIsNotNone(loss2)
self.assertIsNotNone(loss3) self.assertIsNotNone(loss3)
...@@ -3694,7 +3704,7 @@ class TestBook(LayerTest): ...@@ -3694,7 +3704,7 @@ class TestBook(LayerTest):
): ):
x = self._get_data(name="X", shape=[1], dtype="float32") x = self._get_data(name="X", shape=[1], dtype="float32")
y = self._get_data(name="Y", shape=[1], dtype="float32") y = self._get_data(name="Y", shape=[1], dtype="float32")
out = layers.square_error_cost(input=x, label=y) out = paddle.nn.functional.square_error_cost(input=x, label=y)
return out return out
def test_dynamic_lstmp(self): def test_dynamic_lstmp(self):
......
...@@ -36,7 +36,7 @@ def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id): ...@@ -36,7 +36,7 @@ def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id):
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
# loss function # loss function
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
# optimizer # optimizer
...@@ -73,7 +73,7 @@ def run_pserver_with_empty_block( ...@@ -73,7 +73,7 @@ def run_pserver_with_empty_block(
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
# loss function # loss function
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
# optimizer # optimizer
......
...@@ -216,7 +216,7 @@ class TestLookupTableIsSparse(unittest.TestCase): ...@@ -216,7 +216,7 @@ class TestLookupTableIsSparse(unittest.TestCase):
) )
y = paddle.sum(emb, axis=-1) y = paddle.sum(emb, axis=-1)
loss = fluid.layers.square_error_cost(input=y, label=y_) loss = paddle.nn.functional.square_error_cost(input=y, label=y_)
loss = paddle.mean(loss) loss = paddle.mean(loss)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-4) sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-4)
......
...@@ -30,7 +30,7 @@ def train_simulator(test_batch_size=10): ...@@ -30,7 +30,7 @@ def train_simulator(test_batch_size=10):
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
......
...@@ -532,7 +532,9 @@ class TestMomentumV2(unittest.TestCase): ...@@ -532,7 +532,9 @@ class TestMomentumV2(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.Momentum( rms_optimizer = paddle.optimizer.Momentum(
...@@ -673,7 +675,9 @@ class TestMomentumOpWithDecayAPI(unittest.TestCase): ...@@ -673,7 +675,9 @@ class TestMomentumOpWithDecayAPI(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum( momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
......
...@@ -33,7 +33,9 @@ class TestNetWithDtype(unittest.TestCase): ...@@ -33,7 +33,9 @@ class TestNetWithDtype(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype=self.dtype) x = fluid.layers.data(name='x', shape=[13], dtype=self.dtype)
y = fluid.layers.data(name='y', shape=[1], dtype=self.dtype) y = fluid.layers.data(name='y', shape=[1], dtype=self.dtype)
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost) sgd_optimizer.minimize(avg_cost)
......
...@@ -82,7 +82,7 @@ def static( ...@@ -82,7 +82,7 @@ def static(
def fn_2(opt, avg_loss=None, pred=None, label=None): def fn_2(opt, avg_loss=None, pred=None, label=None):
if avg_loss is None: if avg_loss is None:
loss = layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=pred, label=label logits=pred, label=label
) )
avg_loss = paddle.mean(loss, name='mean_softmax_loss') avg_loss = paddle.mean(loss, name='mean_softmax_loss')
...@@ -108,7 +108,7 @@ def static( ...@@ -108,7 +108,7 @@ def static(
else: else:
loss_1 = layers.cross_entropy(input=prediction, label=label) loss_1 = layers.cross_entropy(input=prediction, label=label)
avg_loss_1 = paddle.mean(loss_1) avg_loss_1 = paddle.mean(loss_1)
loss_2 = layers.softmax_with_cross_entropy( loss_2 = paddle.nn.functional.softmax_with_cross_entropy(
logits=prediction, label=label logits=prediction, label=label
) )
avg_loss_2 = paddle.mean(loss_2) avg_loss_2 = paddle.mean(loss_2)
...@@ -193,7 +193,7 @@ def dynamic(train_data, use_cuda=False, use_parallel_exe=False): ...@@ -193,7 +193,7 @@ def dynamic(train_data, use_cuda=False, use_parallel_exe=False):
loss.backward() loss.backward()
adam.minimize(loss) adam.minimize(loss)
else: else:
softmax_loss = layers.softmax_with_cross_entropy( softmax_loss = paddle.nn.functional.softmax_with_cross_entropy(
prediction, var_label prediction, var_label
) )
loss = paddle.mean(softmax_loss) loss = paddle.mean(softmax_loss)
......
...@@ -92,7 +92,9 @@ def cond_net(use_feed=None): ...@@ -92,7 +92,9 @@ def cond_net(use_feed=None):
return avg_loss return avg_loss
def loss2(pred, label): def loss2(pred, label):
loss = fluid.layers.softmax_with_cross_entropy(logits=pred, label=label) loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=pred, label=label
)
avg_loss = paddle.mean(loss, name='mean_softmax_loss') avg_loss = paddle.mean(loss, name='mean_softmax_loss')
return avg_loss return avg_loss
...@@ -119,7 +121,9 @@ def optimization_in_cond_net(with_optimize=False): ...@@ -119,7 +121,9 @@ def optimization_in_cond_net(with_optimize=False):
return avg_loss return avg_loss
def loss2(opt, pred, label, with_optimize): def loss2(opt, pred, label, with_optimize):
loss = fluid.layers.softmax_with_cross_entropy(logits=pred, label=label) loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=pred, label=label
)
avg_loss = paddle.mean(loss, name='mean_softmax_loss') avg_loss = paddle.mean(loss, name='mean_softmax_loss')
if with_optimize: if with_optimize:
opt.minimize(avg_loss) opt.minimize(avg_loss)
......
...@@ -280,7 +280,9 @@ class TestRMSPropV2(unittest.TestCase): ...@@ -280,7 +280,9 @@ class TestRMSPropV2(unittest.TestCase):
x = fluid.layers.data(name='x', shape=[13], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.RMSProp(learning_rate=0.1) rms_optimizer = paddle.optimizer.RMSProp(learning_rate=0.1)
......
...@@ -631,7 +631,7 @@ def def_seq2seq_model( ...@@ -631,7 +631,7 @@ def def_seq2seq_model(
) )
# loss # loss
loss = layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=logits, label=label, soft_label=False logits=logits, label=label, soft_label=False
) )
loss = layers.unsqueeze(loss, axes=[2]) loss = layers.unsqueeze(loss, axes=[2])
......
...@@ -204,7 +204,7 @@ class TestSGDOpWithLargeInput(unittest.TestCase): ...@@ -204,7 +204,7 @@ class TestSGDOpWithLargeInput(unittest.TestCase):
emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32') emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32')
out = fluid.layers.l2_normalize(x=emb, axis=-1) out = fluid.layers.l2_normalize(x=emb, axis=-1)
cost = fluid.layers.square_error_cost(input=out, label=label) cost = paddle.nn.functional.square_error_cost(input=out, label=label)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost) sgd_optimizer.minimize(avg_cost)
......
...@@ -16,6 +16,7 @@ import unittest ...@@ -16,6 +16,7 @@ import unittest
import numpy as np import numpy as np
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
...@@ -32,7 +33,9 @@ class TestSquareErrorCost(unittest.TestCase): ...@@ -32,7 +33,9 @@ class TestSquareErrorCost(unittest.TestCase):
input_var = layers.create_tensor(dtype="float32", name="input") input_var = layers.create_tensor(dtype="float32", name="input")
label_var = layers.create_tensor(dtype="float32", name="label") label_var = layers.create_tensor(dtype="float32", name="label")
output = layers.square_error_cost(input=input_var, label=label_var) output = paddle.nn.functional.square_error_cost(
input=input_var, label=label_var
)
for use_cuda in ( for use_cuda in (
[False, True] if core.is_compiled_with_cuda() else [False] [False, True] if core.is_compiled_with_cuda() else [False]
...@@ -54,14 +57,14 @@ class TestSquareErrorInvalidInput(unittest.TestCase): ...@@ -54,14 +57,14 @@ class TestSquareErrorInvalidInput(unittest.TestCase):
def test_invalid_input(): def test_invalid_input():
input = [256, 3] input = [256, 3]
label = fluid.data(name='label1', shape=[None, 3], dtype='float32') label = fluid.data(name='label1', shape=[None, 3], dtype='float32')
loss = fluid.layers.square_error_cost(input, label) loss = paddle.nn.functional.square_error_cost(input, label)
self.assertRaises(TypeError, test_invalid_input) self.assertRaises(TypeError, test_invalid_input)
def test_invalid_label(): def test_invalid_label():
input = fluid.data(name='input2', shape=[None, 3], dtype='float32') input = fluid.data(name='input2', shape=[None, 3], dtype='float32')
label = [256, 3] label = [256, 3]
loss = fluid.layers.square_error_cost(input, label) loss = paddle.nn.functional.square_error_cost(input, label)
self.assertRaises(TypeError, test_invalid_label) self.assertRaises(TypeError, test_invalid_label)
......
...@@ -237,7 +237,7 @@ class PtbModel(fluid.Layer): ...@@ -237,7 +237,7 @@ class PtbModel(fluid.Layer):
projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = paddle.add(projection, self.softmax_bias) projection = paddle.add(projection, self.softmax_bias)
projection = paddle.reshape(projection, shape=[-1, self.vocab_size]) projection = paddle.reshape(projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy( loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False logits=projection, label=label, soft_label=False
) )
loss = paddle.reshape(loss, shape=[-1, self.num_steps]) loss = paddle.reshape(loss, shape=[-1, self.num_steps])
......
...@@ -171,7 +171,9 @@ class XPUTestAdadelta(XPUOpTestWrapper): ...@@ -171,7 +171,9 @@ class XPUTestAdadelta(XPUOpTestWrapper):
x = fluid.layers.data(name='x', shape=[13], dtype=self.dtype) x = fluid.layers.data(name='x', shape=[13], dtype=self.dtype)
y = fluid.layers.data(name='y', shape=[1], dtype=self.dtype) y = fluid.layers.data(name='y', shape=[1], dtype=self.dtype)
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost = paddle.nn.functional.square_error_cost(
input=y_predict, label=y
)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
rms_optimizer = paddle.optimizer.Adadelta(learning_rate=0.1) rms_optimizer = paddle.optimizer.Adadelta(learning_rate=0.1)
......
...@@ -75,7 +75,7 @@ class TestSGDOpWithLargeInput(unittest.TestCase): ...@@ -75,7 +75,7 @@ class TestSGDOpWithLargeInput(unittest.TestCase):
emb = fluid.embedding(input=data, size=(10000, 150), dtype='float32') emb = fluid.embedding(input=data, size=(10000, 150), dtype='float32')
out = fluid.layers.l2_normalize(x=emb, axis=-1) out = fluid.layers.l2_normalize(x=emb, axis=-1)
cost = fluid.layers.square_error_cost(input=out, label=label) cost = paddle.nn.functional.square_error_cost(input=out, label=label)
avg_cost = paddle.mean(cost) avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost) sgd_optimizer.minimize(avg_cost)
......
...@@ -283,11 +283,16 @@ class DistributeTranspiler: ...@@ -283,11 +283,16 @@ class DistributeTranspiler:
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_static()
x = fluid.data(name='x', shape=[13], dtype='float32') x = fluid.data(name='x', shape=[13], dtype='float32')
y = fluid.data(name='y', shape=[1], dtype='float32') y = fluid.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None) y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y) cost =paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost) avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册