Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f8c6dada
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f8c6dada
编写于
10月 25, 2017
作者:
A
Abhinav Arora
提交者:
GitHub
10月 25, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implementing the python wrapper for Adamax optimizer (#5061)
上级
39a6f43b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
157 addition
and
2 deletion
+157
-2
python/paddle/v2/framework/optimizer.py
python/paddle/v2/framework/optimizer.py
+108
-2
python/paddle/v2/framework/tests/test_optimizer.py
python/paddle/v2/framework/tests/test_optimizer.py
+49
-0
未找到文件。
python/paddle/v2/framework/optimizer.py
浏览文件 @
f8c6dada
...
...
@@ -4,7 +4,8 @@ import paddle.v2.framework.framework as framework
from
paddle.v2.framework.backward
import
append_backward_ops
__all__
=
[
'SGDOptimizer'
,
'MomentumOptimizer'
,
'AdagradOptimizer'
,
'AdamOptimizer'
'SGDOptimizer'
,
'MomentumOptimizer'
,
'AdagradOptimizer'
,
'AdamOptimizer'
,
'AdamaxOptimizer'
]
...
...
@@ -399,7 +400,7 @@ class AdamOptimizer(Optimizer):
param_and_grad
[
0
])
moment2
=
self
.
_get_accumulator
(
self
.
_moment2_acc_str
,
param_and_grad
[
0
])
# create the
momentu
m optimize op
# create the
ada
m optimize op
adam_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
{
...
...
@@ -442,3 +443,108 @@ class AdamOptimizer(Optimizer):
attrs
=
{
"scale"
:
self
.
_beta2
})
return
[
scale_beta1
,
scale_beta2
]
class
AdamaxOptimizer
(
Optimizer
):
"""Implements the Adamax Optimizer
"""
_moment_acc_str
=
"moment"
_inf_norm_acc_str
=
"inf_norm"
def
__init__
(
self
,
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-8
):
assert
learning_rate
is
not
None
assert
beta1
is
not
None
assert
beta2
is
not
None
assert
epsilon
is
not
None
super
(
AdamaxOptimizer
,
self
).
__init__
()
self
.
type
=
"adamax"
self
.
_learning_rate
=
learning_rate
self
.
_beta1
=
beta1
self
.
_beta2
=
beta2
self
.
_epsilon
=
epsilon
def
_initialize_tensors
(
self
,
block
):
assert
isinstance
(
block
,
framework
.
Block
)
lr_shape
=
[
1
]
# create a variable for learning_rate
self
.
_lr
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
lr_shape
,
lod_level
=
0
)
# create an op to init the learning_rate
# FIXME: Fix when Initialization design has been implemented
# https://github.com/PaddlePaddle/Paddle/pull/4852
block
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
self
.
_lr
},
attrs
=
{
"shape"
:
lr_shape
,
"value"
:
self
.
_learning_rate
})
def
_create_accumulators
(
self
,
block
,
parameters
):
assert
isinstance
(
block
,
framework
.
Block
)
global_block
=
block
.
program
.
global_block
()
# Create beta1 power accumulator tensor
beta_shape
=
[
1
]
self
.
_beta1_pow_acc
=
global_block
.
create_var
(
dtype
=
"float32"
,
shape
=
beta_shape
,
lod_level
=
0
)
# Initialize beta1 power accumulator
# FIXME: Fix when Initialization design has been implemented
# https://github.com/PaddlePaddle/Paddle/pull/4852
global_block
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
self
.
_beta1_pow_acc
},
attrs
=
{
"shape"
:
beta_shape
,
"value"
:
self
.
_beta1
})
# Create accumulator tensors for first moment and infinity norm
for
p
in
parameters
:
self
.
_add_accumulator
(
block
,
self
.
_moment_acc_str
,
p
,
'float32'
)
self
.
_add_accumulator
(
block
,
self
.
_inf_norm_acc_str
,
p
,
'float32'
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
assert
isinstance
(
block
,
framework
.
Block
)
moment
=
self
.
_get_accumulator
(
self
.
_moment_acc_str
,
param_and_grad
[
0
])
inf_norm
=
self
.
_get_accumulator
(
self
.
_inf_norm_acc_str
,
param_and_grad
[
0
])
# create the adamax optimize op
adamax_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
{
"Param"
:
param_and_grad
[
0
],
"Grad"
:
param_and_grad
[
1
],
"LearningRate"
:
self
.
_lr
,
"Moment"
:
moment
,
"InfNorm"
:
inf_norm
,
"Beta1Pow"
:
self
.
_beta1_pow_acc
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"MomentOut"
:
moment
,
"InfNormOut"
:
inf_norm
},
attrs
=
{
"beta1"
:
self
.
_beta1
,
"beta2"
:
self
.
_beta2
,
"epsilon"
:
self
.
_epsilon
})
return
adamax_op
def
_finish_update
(
self
,
block
):
"""Update Beta1 Power accumulator
"""
assert
isinstance
(
block
,
framework
.
Block
)
global_block
=
block
.
program
.
global_block
()
scale_beta1
=
global_block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
self
.
_beta1_pow_acc
},
outputs
=
{
"Out"
:
self
.
_beta1_pow_acc
},
attrs
=
{
"scale"
:
self
.
_beta1
})
return
[
scale_beta1
]
python/paddle/v2/framework/tests/test_optimizer.py
浏览文件 @
f8c6dada
...
...
@@ -196,5 +196,54 @@ class TestAdamOptimizer(unittest.TestCase):
self
.
assertTrue
(
mul_x
.
name
in
moment2_acc
)
class
TestAdamaxOptimizer
(
unittest
.
TestCase
):
class
MockAdamax
(
optimizer
.
AdamaxOptimizer
):
def
get_accumulators
(
self
):
return
self
.
_accumulators
def
get_moment_str
(
self
):
return
self
.
_moment_acc_str
def
get_inf_norm_str
(
self
):
return
self
.
_inf_norm_acc_str
def
test_adamax_optimizer
(
self
):
program
=
framework
.
Program
()
block
=
program
.
global_block
()
mul_x
=
block
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
5
,
10
],
lod_level
=
0
,
name
=
"mul.x"
)
mul_y
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
10
,
8
],
lod_level
=
0
,
name
=
"mul.y"
)
mul_out
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out"
)
block
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
mul_x
,
"Y"
:
mul_y
},
outputs
=
{
"Out"
:
mul_out
},
attrs
=
{
"x_num_col_dims"
:
1
})
adamax_optimizer
=
self
.
MockAdamax
(
learning_rate
=
0.01
,
beta1
=
0.9
,
beta2
=
0.999
)
params_grads
=
append_backward_ops
(
mul_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
adamax_optimizer
.
get_accumulators
()),
0
)
opts
=
adamax_optimizer
.
create_optimization_pass
(
params_grads
,
mul_out
)
self
.
assertEqual
(
len
(
opts
),
2
)
adam_op
=
opts
[
0
]
self
.
assertEqual
(
adam_op
.
type
,
"adamax"
)
# Check accumulators
accumulators
=
adamax_optimizer
.
get_accumulators
()
self
.
assertEqual
(
len
(
accumulators
),
2
)
self
.
assertTrue
(
adamax_optimizer
.
get_moment_str
()
in
accumulators
)
self
.
assertTrue
(
adamax_optimizer
.
get_inf_norm_str
()
in
accumulators
)
moment_acc
=
accumulators
[
adamax_optimizer
.
get_moment_str
()]
inf_norm_acc
=
accumulators
[
adamax_optimizer
.
get_inf_norm_str
()]
self
.
assertEqual
(
len
(
moment_acc
),
1
)
self
.
assertEqual
(
len
(
inf_norm_acc
),
1
)
self
.
assertTrue
(
mul_x
.
name
in
moment_acc
)
self
.
assertTrue
(
mul_x
.
name
in
inf_norm_acc
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录