提交 f8c6dada 编写于 作者: A Abhinav Arora 提交者: GitHub

Implementing the python wrapper for Adamax optimizer (#5061)

上级 39a6f43b
......@@ -4,7 +4,8 @@ import paddle.v2.framework.framework as framework
from paddle.v2.framework.backward import append_backward_ops
__all__ = [
'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer'
'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
'AdamaxOptimizer'
]
......@@ -399,7 +400,7 @@ class AdamOptimizer(Optimizer):
param_and_grad[0])
moment2 = self._get_accumulator(self._moment2_acc_str,
param_and_grad[0])
# create the momentum optimize op
# create the adam optimize op
adam_op = block.append_op(
type=self.type,
inputs={
......@@ -442,3 +443,108 @@ class AdamOptimizer(Optimizer):
attrs={"scale": self._beta2})
return [scale_beta1, scale_beta2]
class AdamaxOptimizer(Optimizer):
"""Implements the Adamax Optimizer
"""
_moment_acc_str = "moment"
_inf_norm_acc_str = "inf_norm"
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8):
assert learning_rate is not None
assert beta1 is not None
assert beta2 is not None
assert epsilon is not None
super(AdamaxOptimizer, self).__init__()
self.type = "adamax"
self._learning_rate = learning_rate
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
def _initialize_tensors(self, block):
assert isinstance(block, framework.Block)
lr_shape = [1]
# create a variable for learning_rate
self._lr = block.create_var(
dtype="float32", shape=lr_shape, lod_level=0)
# create an op to init the learning_rate
# FIXME: Fix when Initialization design has been implemented
# https://github.com/PaddlePaddle/Paddle/pull/4852
block.append_op(
type="fill_constant",
outputs={"Out": self._lr},
attrs={"shape": lr_shape,
"value": self._learning_rate})
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
global_block = block.program.global_block()
# Create beta1 power accumulator tensor
beta_shape = [1]
self._beta1_pow_acc = global_block.create_var(
dtype="float32", shape=beta_shape, lod_level=0)
# Initialize beta1 power accumulator
# FIXME: Fix when Initialization design has been implemented
# https://github.com/PaddlePaddle/Paddle/pull/4852
global_block.append_op(
type="fill_constant",
outputs={"Out": self._beta1_pow_acc},
attrs={"shape": beta_shape,
"value": self._beta1})
# Create accumulator tensors for first moment and infinity norm
for p in parameters:
self._add_accumulator(block, self._moment_acc_str, p, 'float32')
self._add_accumulator(block, self._inf_norm_acc_str, p, 'float32')
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
inf_norm = self._get_accumulator(self._inf_norm_acc_str,
param_and_grad[0])
# create the adamax optimize op
adamax_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"LearningRate": self._lr,
"Moment": moment,
"InfNorm": inf_norm,
"Beta1Pow": self._beta1_pow_acc
},
outputs={
"ParamOut": param_and_grad[0],
"MomentOut": moment,
"InfNormOut": inf_norm
},
attrs={
"beta1": self._beta1,
"beta2": self._beta2,
"epsilon": self._epsilon
})
return adamax_op
def _finish_update(self, block):
"""Update Beta1 Power accumulator
"""
assert isinstance(block, framework.Block)
global_block = block.program.global_block()
scale_beta1 = global_block.append_op(
type="scale",
inputs={"X": self._beta1_pow_acc},
outputs={"Out": self._beta1_pow_acc},
attrs={"scale": self._beta1})
return [scale_beta1]
......@@ -196,5 +196,54 @@ class TestAdamOptimizer(unittest.TestCase):
self.assertTrue(mul_x.name in moment2_acc)
class TestAdamaxOptimizer(unittest.TestCase):
class MockAdamax(optimizer.AdamaxOptimizer):
def get_accumulators(self):
return self._accumulators
def get_moment_str(self):
return self._moment_acc_str
def get_inf_norm_str(self):
return self._inf_norm_acc_str
def test_adamax_optimizer(self):
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
block.append_op(
type="mul",
inputs={"X": mul_x,
"Y": mul_y},
outputs={"Out": mul_out},
attrs={"x_num_col_dims": 1})
adamax_optimizer = self.MockAdamax(
learning_rate=0.01, beta1=0.9, beta2=0.999)
params_grads = append_backward_ops(mul_out)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out)
self.assertEqual(len(opts), 2)
adam_op = opts[0]
self.assertEqual(adam_op.type, "adamax")
# Check accumulators
accumulators = adamax_optimizer.get_accumulators()
self.assertEqual(len(accumulators), 2)
self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
moment_acc = accumulators[adamax_optimizer.get_moment_str()]
inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
self.assertEqual(len(moment_acc), 1)
self.assertEqual(len(inf_norm_acc), 1)
self.assertTrue(mul_x.name in moment_acc)
self.assertTrue(mul_x.name in inf_norm_acc)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册