eager_method.cc 96.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/flags.h"
64
#include "paddle/phi/core/tensor_utils.h"
65
#include "paddle/phi/kernels/funcs/math_function.h"
L
LiYuRio 已提交
66 67 68
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif
J
Jiabin Yang 已提交
69

70
PHI_DECLARE_bool(set_to_1d);
W
wanghuancoder 已提交
71
DECLARE_bool(use_stride_kernel);
72

73 74 75
namespace paddle {
namespace pybind {

76 77
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
78
                                     const paddle::platform::Place& place,
79
                                     bool zero_copy);
80

81
extern PyTypeObject* p_tensor_type;
82

J
Jiabin Yang 已提交
83
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
84
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
85
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
86
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
87
    PADDLE_ENFORCE_EQ(
88 89
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
90 91 92 93 94 95 96 97
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
98
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
99 100 101 102
        "method, when you reach this means we got another type index."));
  }
}

W
wanghuancoder 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
PyDoc_STRVAR(tensor_method_numpy__doc__, R"DOC(numpy($self, /)
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

124 125
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
126 127
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
128 129 130 131 132 133 134 135 136
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
137 138 139 140 141
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
142 143 144 145 146
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
147 148
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
149
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
150 151
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
152
  size_t py_rank = tensor_dims.size();
153
  size_t numel = 1;
154
  if (py_rank == 0) {
155
    Py_ssize_t args_num = PyTuple_Size(args);
156 157
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
158 159 160 161 162 163 164
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
165
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
166 167 168 169 170
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
171 172
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
173
             "modify "
174
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
175
             "possible, "
176
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
177 178 179 180
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
181 182 183 184 185 186 187 188
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
189 190 191 192 193 194
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
195
  }
W
wanghuancoder 已提交
196 197

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
198 199 200 201 202 203 204 205 206 207 208
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

209
    if (tensor_dims.empty()) {
210 211 212
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
213 214 215 216 217 218
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
219 220 221 222 223
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
224 225 226
    return array;
  }

W
wanghuancoder 已提交
227 228 229
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

230
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
231
    eager_gil_scoped_release guard;
232
    platform::CPUPlace place;
233 234 235 236
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
237 238
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
239 240 241 242 243
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
244
      // deep copy
W
wanghuancoder 已提交
245 246 247 248 249
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
250 251 252 253
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
254 255 256 257 258
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
259
      // deep copy
W
wanghuancoder 已提交
260 261 262 263 264
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
265 266
    }

267
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
268
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
269
    eager_gil_scoped_release guard;
270 271 272 273 274
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
275 276 277 278
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
279 280
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
281 282 283 284 285 286 287 288 289
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
290 291 292 293
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
294 295 296 297 298 299 300 301 302
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
303
    }
304
#endif
C
Chen Weihang 已提交
305 306 307 308 309 310 311
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
312 313
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
314 315 316 317 318 319 320 321 322 323
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
324 325 326 327
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
328 329 330 331 332 333 334 335 336 337
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
338 339
    }
#endif
340 341
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
342
    eager_gil_scoped_release guard;
343 344 345 346
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
347 348
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
349 350 351 352 353
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
354
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
355 356 357
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
358 359 360 361
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
362
      // TODO(qili93): temporary for ascend npu performance to be removed along
363
      // with npu_identity op
364
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
365 366 367 368 369
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
370 371 372 373 374
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
375
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
376 377 378
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
379 380
    }
#endif
381 382 383
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
384
    RETURN_PY_NONE
385 386
  }

W
wanghuancoder 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

407 408 409 410
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
426 427 428 429 430
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
444 445
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
469 470 471
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
472 473 474 475
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
476
    RETURN_PY_NONE
J
Jack Zhou 已提交
477 478 479 480
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

481 482 483 484
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
485
  return ToPyObject(self->tensor.initialized());
486 487 488
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

503
static void IncreaseTensorReferenceCountUntilCopyComplete(
504
    const paddle::Tensor& tensor, const platform::Place& place) {
505 506 507 508 509 510 511 512
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
513
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
514 515 516 517 518 519 520
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

521 522
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
523 524
                                        PyObject* kwargs) {
  EAGER_TRY
525 526
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
527
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
528 529 530 531 532 533 534 535 536 537
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
538
  }
539 540 541 542
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

543 544
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
545 546
                                   PyObject* kwargs) {
  EAGER_TRY
547
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
548 549 550 551 552 553 554 555
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  }
556 557 558 559
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

560 561 562 563
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
564
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
565
  std::string orig_name = self->tensor.name();
566 567
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
568
  self->tensor = src_tensor;
569 570

  // Recover source name
571
  self->tensor.set_name(orig_name);
572 573

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
574
          << " to " << self->tensor.name();
575 576
  RETURN_PY_NONE

577 578 579
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

580 581
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
582 583
                                     PyObject* kwargs) {
  EAGER_TRY
584
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
585
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
586
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
587
          << self->tensor.name();
588
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
589
    eager_gil_scoped_release guard;
590
    egr::EagerUtils::autograd_meta(&(self->tensor))
591 592
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
593
    egr::EagerUtils::autograd_meta(&(self->tensor))
594 595
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
596
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
597
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
598 599 600
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
601
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
602
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
603
    }
604 605
  }

606
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
607
          << self->tensor.name();
608 609
  RETURN_PY_NONE

610 611 612
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
PyDoc_STRVAR(tensor_method_clone__doc__, R"DOC(clone($self, /)
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

648 649 650 651
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
652
  paddle::Tensor out;
W
wanghuancoder 已提交
653 654 655 656 657 658 659 660 661
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
662

W
wanghuancoder 已提交
663 664
    out = assign_ad_func(self->tensor);
  }
665 666 667 668
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

669 670
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
671
                                     PyObject* kwargs) {
672
  EAGER_TRY
673
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
674
    eager_gil_scoped_release guard;
675
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
676
    if (!meta->GetMutableGradNode()) {
677
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
678
              << "become accumulation node";
679
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
680
    }
681
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
682
  }
683 684
  RETURN_PY_NONE

685 686 687
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
PyDoc_STRVAR(tensor_clear_gradient__doc__,
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

718 719
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
720
                                       PyObject* kwargs) {
721
  EAGER_TRY
722
  VLOG(4) << "ClearGradient " << self->tensor.name();
723

724 725 726
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
727
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
728 729
  }

730
  paddle::Tensor* grad;
731
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
732
  if (is_leaf) {
733 734 735 736 737 738
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
739
  } else {
740
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
741
    grad = meta->MutableGrad();
742 743
  }

744
  if (grad->impl()) {
W
wanghuancoder 已提交
745
    eager_gil_scoped_release guard;
746 747 748 749 750 751 752 753 754 755
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
756 757 758 759
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
760 761 762 763 764
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
765 766 767 768 769 770 771
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
772 773
      }
    }
774
  }
775

776 777
  RETURN_PY_NONE

778 779 780
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

781 782
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
783
                                    PyObject* kwargs) {
784
  EAGER_TRY
785
  VLOG(4) << "ZeroGrads " << self->tensor.name();
786

787
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
788
    eager_gil_scoped_release guard;
789
    // Add RetainGrad as PostHook to AccumulationNode
790
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
791 792 793 794 795 796
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
797 798 799 800 801 802 803
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
804
    }
805
  } else {
W
wanghuancoder 已提交
806
    eager_gil_scoped_release guard;
807
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
808
    if (meta->MutableGrad()->initialized()) {
809 810 811 812 813 814 815 816 817
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
818
    }
819 820
  }

821 822
  RETURN_PY_NONE

823 824 825
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

826 827
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
828 829
                                         PyObject* kwargs) {
  EAGER_TRY
830
  paddle::Tensor* dst_ptr =
831
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
832 833
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
834 835 836
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
837
                        self->tensor.name()));
838
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
839 840 841
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
842
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
843
  dst_tensor->ShareBufferWith(*src_tensor);
844
  dst_tensor->ShareDataTypeWith(*src_tensor);
845 846
  RETURN_PY_NONE

847 848 849
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

850 851 852 853
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
854
  paddle::Tensor* dst_ptr =
855
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
856 857
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
858 859 860
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
861
                        self->tensor.name()));
862
  bool res = false;
863
  if (!self->tensor.defined() || !dst_ptr->defined()) {
864 865
    return ToPyObject(res);
  }
866 867
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
868 869 870 871 872
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

873 874 875 876
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
877
  paddle::Tensor* src_ptr =
878
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
879 880
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
881 882 883
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
884 885
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
886 887
  RETURN_PY_NONE

888 889 890
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

891 892 893 894
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
895
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
896 897
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
898 899 900 901 902
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
903
  if (!self->tensor.defined() || !src_tensor.defined()) {
904 905
    return ToPyObject(res);
  }
906
  res = (self->tensor.impl().get() == src_tensor.impl().get());
907 908 909 910
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
PyDoc_STRVAR(tensor_method_detach__doc__, R"DOC(detach($self, /)
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

951 952
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
953 954
                                      PyObject* kwargs) {
  EAGER_TRY
955
  PADDLE_ENFORCE_EQ(
956
      self->tensor.defined(),
957
      true,
958
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
959
                                        self->tensor.name()));
960

961
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
962
  if (obj) {
963
    auto v = reinterpret_cast<TensorObject*>(obj);
964
    new (&(v->tensor)) paddle::Tensor();
965 966 967 968
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
969 970 971 972 973 974 975 976 977 978
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

998 999 1000 1001
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
1002
  if (!self->tensor.defined()) {
1003 1004 1005
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
1006
  }
1007
  if (self->tensor.is_dense_tensor()) {
1008
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1009 1010
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
1011 1012
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
1013 1014
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
1015
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1016 1017 1018 1019
    return ToPyObject(tensor);
#else
    RETURN_PY_NONE
#endif
1020
  } else {
1021
    RETURN_PY_NONE
1022 1023 1024 1025
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1026 1027 1028 1029 1030
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1031
    RETURN_PY_NONE
1032 1033 1034 1035 1036 1037
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1038
    RETURN_PY_NONE
1039 1040 1041 1042
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1057 1058
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1059
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1060

1061
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1062 1063 1064 1065 1066 1067 1068
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1069 1070 1071
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1072
  EAGER_TRY
J
Jiabin Yang 已提交
1073 1074 1075
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1076 1077
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1078 1079
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1080 1081
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1082
  PADDLE_ENFORCE_EQ(
1083
      self->tensor.defined(),
1084
      true,
J
Jiabin Yang 已提交
1085 1086 1087 1088 1089
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1101

1102 1103 1104 1105
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1122 1123 1124 1125 1126 1127
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1128
    if (op_type == "slice") {
W
wanghuancoder 已提交
1129
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1130 1131 1132 1133 1134 1135
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1136
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1137
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1138
      out = strided_slice_ad_func(
1139
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1149
  bool set_to_1d = FLAGS_set_to_1d;
1150 1151 1152 1153 1154 1155

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1156
      VLOG(1)
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1169 1170 1171
        none_axes.pop_back();
      }
    }
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1186 1187
          }
        }
1188
        axis -= len;
J
Jiabin Yang 已提交
1189
      }
1190
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1191
    }
1192
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1193 1194 1195 1196
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1197
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1211 1212 1213
  }

  return ToPyObject(out);
1214 1215 1216
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1217 1218
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1219 1220
                                             PyObject* kwargs) {
  EAGER_TRY
1221 1222 1223 1224 1225 1226 1227 1228
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1229 1230 1231
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1232 1233
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1234 1235
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1236 1237 1238 1239 1240 1241 1242
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1243
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1244 1245 1246 1247 1248 1249 1250 1251

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1252 1253
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1254 1255 1256 1257 1258 1259
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1260 1261
        offset,
        numel,
W
wanghuancoder 已提交
1262 1263 1264
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1265 1266
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1267 1268 1269 1270 1271 1272
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1273 1274
          index,
          dims[i],
W
wanghuancoder 已提交
1275
          platform::errors::InvalidArgument(
1276 1277 1278
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1279
              dims[i]));
W
wanghuancoder 已提交
1280
      offset += index * stride[i];
W
wanghuancoder 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1308 1309
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1310
        0,                                                                   \
1311 1312 1313
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1314 1315 1316 1317 1318
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1319 1320
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1372 1373
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1374 1375
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1397
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1398
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1399 1400 1401 1402 1403
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1404 1405
    }

1406
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1407 1408 1409 1410

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1411
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1412 1413 1414 1415
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1416
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1417 1418 1419
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1420
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1421 1422 1423
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1424
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1425 1426 1427
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1428
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1429 1430 1431
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1432
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1433 1434 1435
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1446 1447 1448 1449
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1450
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1451 1452 1453
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1454 1455 1456 1457 1458
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1459 1460 1461 1462 1463 1464 1465

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1466 1467
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1468
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1469 1470
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1471
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1472 1473
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1474
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1475 1476
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1477
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1478 1479
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1480
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1481 1482
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1483
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1484 1485 1486 1487 1488 1489 1490 1491
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1492 1493 1494 1495
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1496 1497
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1498 1499 1500 1501 1502 1503 1504
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1505
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1506 1507 1508 1509 1510 1511 1512
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1513
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1514 1515
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1516
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1517 1518 1519 1520 1521 1522 1523
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1524 1525 1526
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1527
      }
1528 1529
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1530 1531 1532 1533 1534 1535 1536 1537 1538
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1539 1540
    }
  } else {
1541
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1553
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1554
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1555 1556 1557 1558
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1559
#else
1560 1561 1562 1563
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1564 1565
#endif
    } else {
1566 1567
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1568 1569
    }
  }
1570 1571
  RETURN_PY_NONE

W
wanghuancoder 已提交
1572 1573 1574
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1575 1576
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1577 1578 1579
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1580
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1581
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1594 1595 1596 1597 1598 1599 1600 1601 1602
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1603 1604
        rank_info.first,
        rank_info.second,
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1617 1618
        rank_info.first,
        rank_info.second,
1619 1620 1621 1622 1623 1624
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1625 1626
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1639 1640
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1641 1642 1643 1644 1645 1646
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1647
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1648
                    true,
1649 1650 1651 1652
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1653 1654 1655 1656
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1667
      std::make_shared<PyVoidHook>(hook_func));
1668

1669 1670
  RETURN_PY_NONE

1671 1672 1673
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1674 1675
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1676
                                       PyObject* kwargs) {
1677 1678 1679
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1680
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1681
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1682
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1683
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1684
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1685
  }
1686 1687
  RETURN_PY_NONE

1688 1689 1690
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1691 1692
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1693 1694 1695
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1696 1697
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1698 1699 1700
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1701 1702 1703 1704 1705 1706 1707 1708 1709
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1710 1711
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1712 1713 1714
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1715
  if (self->tensor.initialized()) {
1716 1717
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1718 1719
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1720 1721
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1722 1723 1724 1725 1726
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1727 1728
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1729 1730 1731 1732
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1733 1734
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1735 1736 1737 1738
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1739 1740
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1741 1742
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1743

1744 1745 1746
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1747 1748 1749
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1750
                     "function _use_gpudnn is only effective for DenseTensor"));
1751

1752
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1753

1754
  // Set the same use_gpudnn attribute, return directly
1755 1756 1757 1758
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1759
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1760 1761 1762
    return ToPyObject(self->tensor);
  }

1763
  // Share all other members of Tensor except use_gpudnn
1764
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1765
  target_dense_meta.use_gpudnn = use_gpudnn;
1766 1767 1768 1769
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1770
  paddle::Tensor target_tensor(
1771 1772 1773 1774
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1775
          << " set use_gpudnn = " << use_gpudnn;
1776 1777 1778 1779 1780

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1781 1782
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1783 1784
                                         PyObject* kwargs) {
  EAGER_TRY
1785
  using Vocab = paddle::framework::Vocab;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1798
  using Strings = paddle::framework::Strings;
1799
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1812 1813
      egr::IsVariableCompatTensor(self->tensor),
      true,
1814 1815
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1816
  using Vocab = paddle::framework::Vocab;
1817 1818 1819 1820 1821 1822
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1844 1845 1846 1847 1848 1849 1850 1851 1852
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1853
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1871
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1872 1873 1874 1875 1876
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1877
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1893
  paddle::Tensor tensor(
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1908
  paddle::Tensor tensor(
1909 1910 1911 1912 1913
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1914 1915
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1916 1917 1918 1919 1920 1921 1922 1923 1924
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

L
LiYuRio 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1936 1937
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1938 1939
                                         PyObject* kwargs) {
  EAGER_TRY
1940 1941 1942
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1943 1944 1945 1946 1947
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1948 1949
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1950 1951
                                             PyObject* kwargs) {
  EAGER_TRY
1952 1953 1954
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1955 1956 1957 1958
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1959 1960
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1961 1962
                                             PyObject* kwargs) {
  EAGER_TRY
1963 1964 1965
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1966 1967 1968 1969
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1970 1971
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1985 1986 1987 1988 1989 1990 1991 1992 1993
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1994 1995
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1996 1997 1998 1999 2000 2001 2002 2003
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
PyDoc_STRVAR(tensor_method_element_size__doc__, R"DOC(element_size($self, /)
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2033 2034
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2035 2036
                                            PyObject* kwargs) {
  EAGER_TRY
2037
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2038 2039 2040 2041 2042

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2043 2044 2045 2046 2047
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2048
  RETURN_PY_NONE
2049 2050 2051
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2052 2053 2054 2055
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2056 2057 2058
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2059 2060 2061 2062
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2063 2064
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2086
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2087 2088 2089 2090
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2091 2092
  RETURN_PY_NONE

2093 2094 2095
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2096 2097
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2098 2099 2100
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2101 2102
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2119 2120 2121 2122 2123
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2124 2125 2126 2127 2128
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2129 2130
  RETURN_PY_NONE

W
wanghuancoder 已提交
2131 2132 2133 2134
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2135 2136
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2137 2138 2139 2140
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2141 2142
      t->IsInitialized(),
      true,
2143 2144 2145 2146 2147 2148 2149
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2150 2151
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2152 2153
                                   PyObject* kwargs) {
  EAGER_TRY
2154
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2155 2156
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2157 2158 2159 2160 2161 2162 2163
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2164 2165
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2166 2167
                                    PyObject* kwargs) {
  EAGER_TRY
2168
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2169 2170
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2171 2172 2173 2174 2175
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
2176
    RETURN_PY_NONE
2177 2178
  }
  if (grad->is_dense_tensor()) {
2179
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2180 2181 2182 2183
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2184
    RETURN_PY_NONE
2185 2186 2187 2188
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2189 2190
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2191 2192
                                          PyObject* kwargs) {
  EAGER_TRY
2193
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2194 2195
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
2196 2197 2198 2199
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

2200
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2201 2202 2203 2204 2205 2206 2207 2208 2209
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2210 2211 2212 2213 2214
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2215 2216 2217 2218
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2219 2220 2221 2222 2223
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2295
#if defined(PADDLE_WITH_CUDA)
2296 2297
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2298 2299 2300
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2301 2302
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2303 2304 2305
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2306 2307
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2308 2309 2310 2311
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2312
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2313 2314
  tensor_uva(self_tensor, device_id);

2315 2316
  RETURN_PY_NONE

2317 2318 2319
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2332

2333
PyMethodDef variable_methods[] = {
2334
    {"numpy",
2335
     (PyCFunction)(void (*)())tensor_method_numpy,
2336
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2337
     tensor_method_numpy__doc__},
2338
    {"_is_initialized",
2339
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2340 2341
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2342
    {"_is_dense_tensor_hold_allocation",
2343 2344
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2345 2346 2347
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
2348
     (PyCFunction)(void (*)())tensor_method__copy_to,
2349 2350 2351
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
2352
     (PyCFunction)(void (*)())tensor_method_copy_,
2353 2354
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2355
    {"clone",
2356
     (PyCFunction)(void (*)())tensor_method_clone,
2357
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2358
     tensor_method_clone__doc__},
2359
    {"reconstruct_from_",
2360
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2361 2362 2363
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
2364
     (PyCFunction)(void (*)())tensor_retain_grads,
2365 2366 2367
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
2368
     (PyCFunction)(void (*)())tensor_clear_gradient,
2369
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2370
     tensor_clear_gradient__doc__},
2371
    {"is_dense",
2372
     (PyCFunction)(void (*)())tensor_method_is_dense,
2373 2374
     METH_VARARGS | METH_KEYWORDS,
     NULL},
L
LiYuRio 已提交
2375
    {"is_dist",
2376
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2377 2378
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2379
    {"_zero_grads",
2380
     (PyCFunction)(void (*)())tensor__zero_grads,
2381 2382 2383
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
2384
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2385 2386
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2387
    {"_is_shared_buffer_with",
2388
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2389 2390
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2391
    {"_share_underline_tensor_to",
2392
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2393 2394
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2395
    {"_is_shared_underline_tensor_with",
2396
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2397 2398 2399
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
2400
     (PyCFunction)(void (*)())tensor_method_detach,
2401
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2402
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2403 2404 2405 2406
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2407
    {"get_tensor",
2408
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2409 2410
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2411
    {"get_selected_rows",
2412
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2413 2414
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2415
    {"_get_tensor_from_selected_rows",
2416
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2417 2418
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2419
    {"_getitem_index_not_tensor",
2420
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2421 2422
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2423
    {"_getitem_from_offset",
2424
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2425 2426
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2427
    {"__setitem_eager_tensor__",
2428
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
2429 2430
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2431
    {"_register_grad_hook",
2432
     (PyCFunction)(void (*)())tensor_register_grad_hook,
2433 2434 2435
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
2436
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
2437 2438
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2439
    {"_register_backward_hook",
2440
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
2441 2442 2443
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
2444
     (PyCFunction)(void (*)())tensor__set_grad_type,
2445 2446 2447
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
2448
     (PyCFunction)(void (*)())tensor__clear,
2449 2450
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2451
    {"_clear_dataptr",
2452
     (PyCFunction)(void (*)())tensor__clear_dataptr,
2453 2454
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2455
    {"_copy_gradient_from",
2456
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
2457 2458
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2459
    {"_tensor_use_gpudnn",
2460
     (PyCFunction)(void (*)())tensor__use_gpudnn,
2461 2462
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2463 2464
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
2465
     (PyCFunction)(void (*)())tensor_method_set_string_list,
2466 2467 2468
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
2469
     (PyCFunction)(void (*)())tensor_method_set_vocab,
2470 2471
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2472
    {"get_map_tensor",
2473
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
2474 2475
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2476
    /***the method of sparse tensor****/
2477
    {"nnz",
2478
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
2479 2480
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2481
    {"indices",
2482
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
2483 2484 2485
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
2486
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
2487 2488 2489
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
2490
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
2491 2492 2493
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
2494
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
2495 2496 2497
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
2498
     (PyCFunction)(void (*)())tensor_method_is_sparse,
2499 2500 2501
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
2502
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
2503 2504 2505
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
2506
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
2507 2508
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2509
    {"is_same_shape",
2510
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
2511 2512
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2513
    {"to_sparse_csr",
2514
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
2515 2516 2517
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
2518
     (PyCFunction)(void (*)())tensor_method_element_size,
2519
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2520
     tensor_method_element_size__doc__},
2521
    /***the method of sparse tensor****/
2522
    {"_inplace_version",
2523
     (PyCFunction)(void (*)())tensor__inplace_version,
2524 2525
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2526
    {"_bump_inplace_version",
2527
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
2528 2529
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2530
    {"is_selected_rows",
2531
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
2532 2533 2534
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
2535
     (PyCFunction)(void (*)())tensor_method_get_rows,
2536 2537
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2538
    {"_reset_grad_inplace_version",
2539
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
2540 2541 2542
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
2543
     (PyCFunction)(void (*)())tensor_method__share_memory,
2544 2545 2546
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
2547
     (PyCFunction)(void (*)())tensor__offset,
2548 2549 2550
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
2551
     (PyCFunction)(void (*)())tensor__grad_name,
2552 2553 2554
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
2555
     (PyCFunction)(void (*)())tensor__grad_value,
2556 2557 2558
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
2559
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
2560 2561
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2562
    {"data_ptr",
2563
     (PyCFunction)(void (*)())tensor_data_ptr,
2564 2565
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2566
    {"_grad_ivar",
2567
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
2568 2569
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2582
#if defined(PADDLE_WITH_CUDA)
2583
    {"_tensor_uva",
2584
     (PyCFunction)(void (*)())tensor_method__uva,
2585 2586
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2587
#endif
2588 2589
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2590 2591 2592
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
2593
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
2594 2595
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2596
    {"_is_initialized",
2597
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2598 2599
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2600
    {"_is_string_tensor_hold_allocation",
2601 2602
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2603 2604
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2605 2606 2607
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2608 2609
}  // namespace pybind
}  // namespace paddle