optimizer.py 299.9 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22 23 24 25 26 27 28 29 30
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
31

32 33
from . import framework
from . import layers
34
from . import unique_name
35 36 37 38 39 40
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
41 42 43
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
44
from .dygraph import base as imperative_base
45
from .dygraph import no_grad
46 47 48 49
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
50 51 52
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
53
from functools import cmp_to_key
54
from .wrapped_decorator import signature_safe_contextmanager
55
import warnings
56
from paddle import _C_ops, _legacy_C_ops
57 58 59 60
from ..fluid.framework import (
    in_dygraph_mode,
    _current_expected_place,
)
61

62
__all__ = [
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
90
]
Q
Qiao Longfei 已提交
91 92


93
class Optimizer:
Q
Qiao Longfei 已提交
94 95 96
    """Optimizer Base class.

    Define the common interface of an optimizer.
97 98
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
99 100
    """

101
    @imperative_base.no_grad
102 103 104 105 106 107 108 109 110 111
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
112 113
        """
        Args:
114 115
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
116 117
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
118
        # Because of the loop import, so place it in the function body
119
        from paddle.optimizer.lr import LRScheduler
120 121 122 123

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
124
        self._name = name
姜永久 已提交
125
        if in_dygraph_mode():
126 127 128
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
129
                raise TypeError(
130
                    "learning rate should be float or LRScheduler, got %s here"
131 132
                    % type(learning_rate)
                )
133
            if self._parameter_list is None:
134 135 136
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
137 138 139 140 141 142
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
143 144
                            % regularization.__str__()
                        )
145
                        break
M
minqiyang 已提交
146
        else:
147 148 149
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
150
                raise TypeError(
151
                    "learning rate should be float or LRScheduler, got %s here"
152 153
                    % type(learning_rate)
                )
M
minqiyang 已提交
154

155
        if grad_clip is not None:
156
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
157 158 159
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
160
        self.regularization = regularization
161
        self._grad_clip = grad_clip
162
        self._learning_rate = learning_rate
163 164
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
165

D
dzhwinter 已提交
166
        self._dtype = None
L
Leo Chen 已提交
167 168 169 170
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

171
        # each program should have a independent learning rate
172
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
173
        self._learning_rate_map = dict()
174
        if isinstance(self._learning_rate, framework.Variable):
175
            self._learning_rate_map[
176 177
                framework.default_main_program()
            ] = self._learning_rate
178 179 180 181 182
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
183 184
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
185
        self.helper = LayerHelper(self.__class__.__name__)
186
        self._opti_name_list = []
H
hong 已提交
187
        self._accumulators_holder = {}
188
        self._param_device_map = dict()
189 190
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
191
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
192 193
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
194 195 196 197

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
198 199
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
200 201 202

        Args: None
        Return:
T
tianshuo78520a 已提交
203
            state_dict(dict) : dict contains all the variable used by optimizer
204

H
hong 已提交
205 206 207 208
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
209
                import paddle
210 211

                with fluid.dygraph.guard():
212
                    emb = paddle.nn.Embedding(10, 10)
213 214 215

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
216 217

        '''
218
        from paddle.optimizer.lr import LRScheduler
219

H
hong 已提交
220 221 222 223
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
224 225
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
226
        # global step if use lr decay
227
        if isinstance(self._learning_rate, LRScheduler):
228 229
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
230
        if isinstance(self._learning_rate, LearningRateDecay):
231 232 233 234
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
235 236 237
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
238

239 240 241
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
242

243
                state_dict['global_step'] = var_temp
H
hong 已提交
244 245 246
        return state_dict

    @framework.dygraph_only
247
    def set_state_dict(self, state_dict):
H
hong 已提交
248
        '''
T
tianshuo78520a 已提交
249
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
250

251
        Args:
H
hong 已提交
252 253 254
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
255

H
hong 已提交
256 257
        Examples:
            .. code-block:: python
258

259
                import paddle
260 261 262

                paddle.disable_static()

263
                emb = paddle.nn.Embedding(10, 10)
264

265
                state_dict = emb.state_dict()
266
                paddle.save(state_dict, "paddle_dy.pdparams")
267

268
                scheduler = paddle.optimizer.lr.NoamDecay(
269 270 271 272
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
273
                state_dict = adam.state_dict()
274
                paddle.save(state_dict, "paddle_dy.pdopt")
275

276 277
                para_state_dict = paddle.load("paddle_dy.pdparams")
                opti_state_dict = paddle.load("paddle_dy.pdopt")
H
hong 已提交
278
        '''
279
        from paddle.optimizer.lr import LRScheduler
280

281
        if isinstance(self._learning_rate, LRScheduler):
282
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
283 284

        if isinstance(self._learning_rate, LearningRateDecay):
285 286 287
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
288 289 290
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
291 292 293 294 295
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
296 297 298 299 300
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
301 302 303

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
304 305 306 307 308
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
309 310 311 312
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
313 314
                        type(global_step),
                    )
H
hong 已提交
315

316 317 318 319 320 321 322 323 324 325 326 327
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
328 329 330
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
331

332 333 334 335 336
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
337

338 339 340 341 342
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
343 344 345

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
346 347 348
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
349 350 351
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
352
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
353

354
        for k, v in self._global_accumulators.items():
355 356 357
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
358
            _load_state_para(state_dict, v)
359

360 361 362
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

363 364
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
365

366 367 368 369 370 371 372 373 374
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
375
    def _create_global_learning_rate(self):
376
        from paddle.optimizer.lr import LRScheduler
377

378
        if isinstance(self._learning_rate, LRScheduler):
379 380 381 382 383 384 385 386 387 388
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
389 390
                    dtype='float32' if self._dtype is None else self._dtype,
                )
391 392 393
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
394
                self._learning_rate_map[
395 396
                    framework.default_main_program()
                ] = lr_var
397 398 399

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
400 401
                lr_var, initializer=Constant(value=lr_value)
            )
402 403
            return

404 405 406
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
407 408 409 410 411
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
412 413
                    self._learning_rate_map[
                        framework.default_main_program()
414
                    ] = paddle.static.create_global_var(
M
minqiyang 已提交
415 416 417 418
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
419 420
                        persistable=True,
                    )
421
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
422
            elif isinstance(self._learning_rate, LearningRateDecay):
423
                self._learning_rate_map[
424 425
                    framework.default_main_program()
                ] = self._learning_rate()
426
            else:
Q
qiaolongfei 已提交
427
                raise TypeError(
428 429
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
430
        else:
431 432 433 434
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
435 436 437 438 439 440
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
441

442
            # create learning rate in the current main program
443
            self._learning_rate_map[
444
                framework.default_main_program()
445
            ] = paddle.static.create_global_var(
446 447 448 449 450 451
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
452

453 454 455 456
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
457

458 459 460 461 462 463 464 465
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
466

467 468 469
        Examples:
            .. code-block:: python

470
                import paddle
471
                import paddle.fluid as fluid
472
                import paddle
473

474
                with fluid.dygraph.guard():
475
                    linear = paddle.nn.Linear(10, 10)
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
494
                    lr_var = paddle.static.create_global_var(
495 496 497 498 499 500 501 502 503 504 505 506 507
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
508 509
                % (type(value))
            )
510 511 512 513 514 515 516 517
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
518 519
                if in_dygraph_mode():
                    place = _current_expected_place()
520 521 522 523 524 525 526
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
527
                else:
528 529 530 531 532 533 534 535 536 537 538 539 540
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
541
        else:
542 543 544
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
545 546
            self._learning_rate_map[framework.default_main_program()] = value

547 548 549
    @framework.dygraph_only
    def current_step_lr(self):
        """
550
        :api_attr: imperative
551

552 553 554 555 556 557 558 559 560 561 562
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
563
                import paddle
564 565 566

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
567
                    emb = paddle.nn.Embedding(10, 10)
568 569 570 571 572 573 574
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
575
                    linear = paddle.nn.Linear(10, 10)
576 577
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
578
                    loss = paddle.mean(out)
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
597
        if isinstance(current_lr, framework.Variable):
598 599 600 601
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
602 603 604
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
605 606 607 608 609 610 611
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
612
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
613 614 615 616
        """
        get global decayed learning rate
        :return:
        """
617 618
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
619
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
620

Q
Qiao Longfei 已提交
621
    def _append_optimize_op(self, block, param_and_grad):
622
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
623 624
        raise NotImplementedError()

625 626 627 628
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
629 630
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
631
        else:
W
Wu Yi 已提交
632
            if param_lr == 1.0:
Y
yuyang18 已提交
633
                return self._global_learning_rate()
W
Wu Yi 已提交
634
            else:
X
Xin Pan 已提交
635
                with default_main_program()._lr_schedule_guard(
636 637
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
638
                    return self._global_learning_rate() * param_lr
639 640 641 642 643 644 645

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
646
        """
647 648
        pass

649
    def _finish_update(self, block, parameters_and_grads):
650 651 652 653 654 655 656 657
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
658
            None
659 660 661
        """
        pass

662 663 664 665 666 667 668 669 670 671
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
672 673 674 675 676 677 678 679 680
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
681 682
        if self._name is not None:
            name = self._name + "_" + name
683 684 685 686
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
姜永久 已提交
687
            if in_dygraph_mode():
X
polish  
Xin Pan 已提交
688
                return self._accumulators[name][param.name]
689 690
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
691 692 693
                    name, param.name
                )
            )
694
        if shape is None:
695
            shape = param.shape
Q
Qiao Longfei 已提交
696
        assert isinstance(self.helper, LayerHelper)
697 698 699 700 701

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
702
        var = self.helper.create_global_variable(
703
            name=var_name,
Q
Qiao Longfei 已提交
704
            persistable=True,
F
fengjiayi 已提交
705
            dtype=dtype or param.dtype,
706
            type=core.VarDesc.VarType.LOD_TENSOR
姜永久 已提交
707
            if in_dygraph_mode()
708
            else (param.type if type is None else type),
H
hong 已提交
709
            shape=shape,
710 711
            belong_to_optimizer=True,
        )
712 713 714 715
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
716 717
                var, initializer=Constant(value=float(fill_value))
            )
H
hong 已提交
718

姜永久 已提交
719
        if in_dygraph_mode():
H
hong 已提交
720
            if len(self._accumulators_holder) > 0:
721 722 723 724 725
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
726 727
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
728
        self._accumulators[name][param.name] = var
729
        return var
730

731 732 733 734 735 736 737 738 739
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
740 741 742 743 744 745 746 747 748 749 750 751 752
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
753
        if name in self._global_accumulators:
姜永久 已提交
754
            if in_dygraph_mode():
755 756
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
757
        if shape is None:
758 759 760 761 762 763 764 765 766 767 768 769 770
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
771 772
            belong_to_optimizer=True,
        )
773 774 775 776
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
777 778
                var, initializer=Constant(value=float(fill_value))
            )
779

姜永久 已提交
780
        if in_dygraph_mode():
781
            if len(self._accumulators_holder) > 0:
782 783 784 785 786
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
787 788 789 790 791
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

792 793 794 795 796 797 798 799
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
800
            accumulator variable
801
        """
W
whs 已提交
802 803
        if self._name is not None:
            name = self._name + "_" + name
804 805 806 807
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
808 809
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
810 811 812
                    name, param.name
                )
            )
813 814
        return self._accumulators[name][param.name]

815 816 817 818 819 820 821 822 823 824 825
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
826
        if name not in self._global_accumulators:
827 828 829
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

830 831 832 833 834
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
835 836
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
837 838 839 840 841
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
842 843
                            device_attr_name
                        )
844
                        break
845 846 847 848 849 850 851

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

852
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
853 854 855
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
856
          parameters_and_grads(list(tuple(Variable, Variable))):
857
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
858 859

        Returns:
860
          return_op_list: a list of operators that will complete one step of
861 862 863
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
864
        """
865 866 867 868 869
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
870
        # for parameters and extend _finish_update method to add custom ops.
871

872
        # Allways called under program_guard use global block as loss block
873 874 875
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

876
        global_block = framework.default_main_program().global_block()
877 878 879
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
880 881 882
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
883
            target_block = framework.default_main_program().blocks[
884 885
                current_block.backward_block_idx
            ]
886 887

        start = len(target_block.ops)
888

889
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
890
        self._create_accumulators(
891 892
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
893 894
        self._create_global_learning_rate()

姜永久 已提交
895
        if in_dygraph_mode():
896 897 898
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
899 900
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
901 902 903 904 905
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
906 907
                    param_and_grad
                ), name_scope("optimizer"):
908
                    if param_and_grad[0].trainable is True:
909
                        device = self._get_device_for_param(
910 911
                            param_and_grad[0].name
                        )
912 913
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
914 915
                                target_block, param_and_grad
                            )
916 917 918

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
919
        self._finish_update(target_block, parameters_and_grads)
920

921 922
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
923 924

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
925 926 927 928 929 930 931 932 933
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
934 935
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
936 937 938 939 940 941 942 943
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
944 945
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
946 947 948 949 950 951
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
952
            param_and_grad = [table_param, table_grad]
953 954 955
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
956 957 958 959 960 961 962
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
963
                        "LearningRate": self._create_param_lr(param_and_grad),
964
                    },
965 966
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
967 968
        return new_param_grads, (table_param, table_grad), sgd_op

969 970 971 972 973 974 975 976
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
977
        """
978
        The first part of ``minimize``, do auto-diff to append backward operations for
979 980 981
        the current program.

        Args:
982 983 984 985
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
986
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
987 988
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
989
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
990 991 992
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
993

994
        Return:
995 996
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
997

998
        Examples:
999
            See examples in ``apply_gradients``.
1000
        """
1001
        act_no_grad_set = None
姜永久 已提交
1002
        if in_dygraph_mode():
1003
            pass
L
Leo Chen 已提交
1004 1005
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1006

L
Leo Chen 已提交
1007 1008 1009 1010
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

姜永久 已提交
1011
        if in_dygraph_mode():
1012 1013 1014
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1015

C
chengduo 已提交
1016
            params_grads = []
1017
            for param in parameter_list:
C
chengduo 已提交
1018 1019
                if not param.trainable:
                    continue
1020
                if param._grad_ivar() is not None:
C
chengduo 已提交
1021
                    # create gradient variable
1022
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1023
                    params_grads.append((param, grad_var))
1024
        else:
C
chengduo 已提交
1025
            if callbacks is None:
1026
                callbacks = [paddle.nn.clip.error_clip_callback]
C
chengduo 已提交
1027
            else:
1028
                assert isinstance(callbacks, list)
C
chengduo 已提交
1029
            program = loss.block.program
1030 1031
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
1032
                "Maybe that you should call paddle.mean to process the current loss.".format(
1033 1034 1035 1036 1037 1038
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1039
            with program_guard(program, startup_program):
1040 1041 1042
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1043
        return params_grads
1044

1045
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1046
        """Create and add backward regularization Operators
1047

1048 1049 1050
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1051
        if grad is None or (
1052 1053 1054 1055 1056 1057
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

姜永久 已提交
1068
        if in_dygraph_mode():
1069
            return _legacy_C_ops.sum([grad, regularization_term])
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1082 1083
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1084 1085 1086

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1087
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1088 1089 1090

        return new_grad

1091 1092 1093
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1094
        r"""Create and add backward regularization Operators
1095

1096 1097 1098 1099
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1100

1101 1102 1103 1104 1105
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1106

1107 1108 1109
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1110

1111 1112 1113 1114
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
姜永久 已提交
1115
        if in_dygraph_mode():
1116
            for param, grad in parameters_and_grads:
1117
                new_grad = self._create_regularization_of_grad(
1118 1119
                    param, grad, regularization
                )
1120 1121 1122 1123 1124
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1125 1126 1127 1128 1129
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1130 1131 1132 1133
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1134 1135
                            % regularization.__str__()
                        )
1136 1137
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1138 1139
                            param, grad, regularization
                        )
1140 1141 1142
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1143 1144 1145 1146 1147 1148 1149
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1150 1151 1152 1153
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1154 1155
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1156 1157
                    "the regularizer is set".format(p.name)
                )
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1172 1173
            belong_to_optimizer=True,
        )
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1184 1185
            belong_to_optimizer=True,
        )
1186 1187

        with program_guard(default_main_program()):
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1217

1218
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1219
        # so the shape of flatten_param and flatten_grad will be inferred.
1220 1221 1222 1223 1224 1225
        self.helper.set_variable_initializer(
            flatten_param, initializer=Constant(0.0)
        )
        self.helper.set_variable_initializer(
            flatten_grad, initializer=Constant(0.0)
        )
1226 1227 1228

        return [(flatten_param, flatten_grad)]

1229 1230 1231 1232 1233 1234 1235
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1236

1237 1238
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1239

1240 1241 1242
        Examples:
            .. code-block:: python

1243
                import paddle.fluid as fluid
1244 1245 1246 1247 1248 1249 1250 1251 1252
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1253 1254
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1255
            if self._grad_clip is None or isinstance(
1256
                self._grad_clip, paddle.nn.ClipGradByGlobalNorm
1257
            ):
1258 1259
                params_grads = self.flatten_param_grads(params_grads)

1260
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1261 1262 1263
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
1264
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
1265 1266

        # Add regularization if any
1267 1268 1269
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1270 1271 1272 1273

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
姜永久 已提交
1286
        if in_dygraph_mode():
1287 1288 1289 1290
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1291 1292
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1293
                params_grads = self.append_regularization_ops(
1294 1295
                    params_grads, self.regularization
                )
C
chengduo 已提交
1296 1297 1298 1299 1300 1301 1302
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1303
    def _get_no_grad_set(self, loss, no_grad_set=None):
1304
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1305 1306
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1307 1308
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1309 1310 1311 1312 1313
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1314 1315 1316 1317
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1318 1319

        If not, new gradient will accumulat on previous gradient.
1320

1321 1322
        Returns:
            None
1323

1324 1325 1326 1327
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1328
                import paddle
1329 1330 1331 1332 1333
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
1334
                    linear = paddle.nn.Linear(13, 5)
1335
                    # This can be any optimizer supported by dygraph.
1336
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1348
    @imperative_base.no_grad
1349 1350 1351
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1352
        """
1353
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1354

1355
        Args:
1356 1357 1358 1359
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1360
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1361 1362
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1363
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1364
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1365

1366
        Returns:
1367 1368 1369
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1370 1371
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1372
            ``fetch_list`` before run, see details in ``Executor``.
1373 1374 1375

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1376
        """
C
chengduo 已提交
1377
        assert isinstance(loss, Variable), "The loss should be an Variable."
1378

1379 1380 1381
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1382

1383 1384 1385 1386 1387 1388
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1389

1390 1391 1392
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1393

Q
Qiao Longfei 已提交
1394
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1395 1396 1397


class SGDOptimizer(Optimizer):
1398
    r"""
Q
qiaolongfei 已提交
1399 1400 1401 1402 1403 1404
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1405 1406 1407
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1408
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1409
            This parameter is required in dygraph mode. \
1410
            The default value is None in static graph mode, at this time all parameters will be updated.
1411 1412 1413 1414 1415
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1416 1417 1418
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1419
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1420 1421
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1422 1423 1424 1425

    Examples:
        .. code-block:: python

1426 1427 1428 1429
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1430
            paddle.enable_static()
1431 1432 1433 1434 1435
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
C
Charles-hit 已提交
1436
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1437
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1438
                avg_cost = paddle.mean(cost)
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1452 1453
    """

1454 1455 1456 1457 1458 1459 1460 1461 1462
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1463
        assert learning_rate is not None
1464
        super().__init__(
1465 1466 1467 1468 1469 1470
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1471
        self.type = "sgd"
1472
        self._use_mkldnn = False
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1484
            var = paddle.static.create_global_var(
1485 1486 1487 1488 1489 1490
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1491
            block = self.helper.startup_program.global_block()
1492 1493 1494 1495 1496 1497 1498 1499 1500
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
1514 1515 1516 1517
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1518 1519 1520 1521
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1522

1523
    @no_grad
1524
    def _append_optimize_op(self, block, param_and_grad):
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1535

1536
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1537
        if in_dygraph_mode():
1538 1539 1540 1541 1542 1543 1544
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1545
            return None
姜永久 已提交
1546 1547 1548 1549 1550 1551 1552 1553
        else:
            assert isinstance(block, framework.Block)
            # create the optimize op
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
            }
1554

姜永久 已提交
1555
            outputs = {"ParamOut": param_and_grad[0]}
1556

姜永久 已提交
1557
            attrs = {"multi_precision": find_master}
1558

姜永久 已提交
1559 1560 1561
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight
1562

姜永久 已提交
1563 1564 1565 1566 1567 1568 1569
            sgd_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
Q
Qiao Longfei 已提交
1570

姜永久 已提交
1571
            return sgd_op
1572 1573 1574


class MomentumOptimizer(Optimizer):
1575
    r"""
Q
qiaolongfei 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1589
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1590 1591 1592

        & else:

Q
qiaolongfei 已提交
1593
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1594

1595 1596 1597 1598
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1599
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1600
            This parameter is required in dygraph mode. \
1601
            The default value is None in static graph mode, at this time all parameters will be updated.
1602
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1603 1604 1605 1606 1607
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1608 1609 1610
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1611
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1612 1613
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1614 1615 1616 1617

    Examples:
        .. code-block:: python

1618 1619 1620 1621
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1622
            paddle.enable_static()
1623 1624 1625 1626 1627
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
C
Charles-hit 已提交
1628
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1629
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1630
                avg_cost = paddle.mean(cost)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1644 1645 1646
    """
    _velocity_acc_str = "velocity"

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1657 1658
        assert learning_rate is not None
        assert momentum is not None
1659
        super().__init__(
1660 1661 1662 1663 1664 1665
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1666 1667
        self.type = "momentum"
        self._momentum = momentum
1668
        self._use_nesterov = bool(use_nesterov)
1669 1670 1671 1672 1673

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1674
            self._add_accumulator(self._velocity_acc_str, p)
1675 1676 1677 1678

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1679 1680 1681
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1682
        lr = self._create_param_lr(param_and_grad)
1683
        master_weight = None
姜永久 已提交
1684
        if in_dygraph_mode():
1685
            _, _, _ = _legacy_C_ops.momentum(
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1699
            return None
姜永久 已提交
1700 1701 1702 1703 1704 1705 1706 1707
        else:
            attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "Velocity": [velocity_acc],
                "LearningRate": [lr],
            }
1708

姜永久 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
            outputs = {
                "ParamOut": [param_and_grad[0]],
                "VelocityOut": [velocity_acc],
            }
            # create the momentum optimize op
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1721

姜永久 已提交
1722
            return momentum_op
1723 1724


1725
class LarsMomentumOptimizer(Optimizer):
1726
    r"""
1727 1728 1729 1730 1731 1732 1733 1734 1735
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1736
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1737 1738 1739

        & param = param - velocity

1740 1741 1742 1743 1744 1745
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1746
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1747
            This parameter is required in dygraph mode. \
1748
            The default value is None in static graph mode, at this time all parameters will be updated.
1749 1750 1751 1752 1753
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1754 1755 1756
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1757
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1758 1759
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1760 1761
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1762 1763 1764
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1765

1766 1767 1768
    Examples:
        .. code-block:: python

1769
            import paddle
1770 1771 1772
            import paddle.fluid as fluid
            import numpy as np

1773
            paddle.enable_static()
1774 1775 1776
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
C
Charles-hit 已提交
1777
            out = paddle.static.nn.fc(inp, size=3)
1778
            out = paddle.sum(out)
1779 1780 1781 1782 1783 1784 1785 1786
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1787 1788 1789
    """
    _velocity_acc_str = "velocity"

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
1805 1806
        assert learning_rate is not None
        assert momentum is not None
1807
        super().__init__(
1808 1809 1810 1811 1812 1813
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1814 1815 1816 1817
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1818 1819 1820 1821 1822
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1823 1824 1825 1826 1827
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
1828 1829 1830 1831
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
1832

1833 1834
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
1835
            var = paddle.static.create_global_var(
1836 1837 1838 1839 1840 1841
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1842
            block = self.helper.startup_program.global_block()
1843 1844 1845 1846 1847 1848 1849 1850 1851
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1852
            self._master_weights[param.name] = var
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
1865 1866 1867 1868 1869 1870
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
1871
        target_name = target_param.name
1872 1873 1874 1875
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
1876 1877
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
1878 1879 1880
                    name, target_name
                )
            )
1881
        return self._accumulators[name][target_name]
1882 1883 1884 1885 1886

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1887 1888 1889 1890
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
1891 1892 1893 1894
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1895 1896 1897 1898
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1899 1900 1901 1902
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1903 1904 1905 1906 1907 1908 1909 1910
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1911 1912 1913
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1914 1915
        lr = self._create_param_lr(param_and_grad)

1916 1917 1918 1919 1920 1921 1922 1923 1924
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1925 1926 1927

        attrs = {
            "mu": self._momentum,
1928
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
1929
            "lars_weight_decay": [_lars_weight_decay],
1930
            "multi_precision": find_master,
L
limingshu 已提交
1931
            "epsilon": self._epsilon,
1932
            "rescale_grad": self._rescale_grad,
1933 1934 1935 1936 1937 1938
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
1939
            "LearningRate": lr,
1940 1941 1942 1943 1944 1945 1946 1947
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

姜永久 已提交
1948
        if in_dygraph_mode():
1949
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
1969 1970
        else:
            # create the momentum optimize op
1971 1972 1973 1974 1975 1976 1977
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1978

1979
            return momentum_op
1980 1981


1982
class AdagradOptimizer(Optimizer):
1983
    r"""
1984 1985
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1986

1987
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1988 1989 1990 1991 1992 1993 1994

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1995 1996 1997 1998 1999 2000
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2001 2002 2003
    for numerical stability to avoid the division by zero error.

    Args:
2004 2005 2006 2007
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2008
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2009
            This parameter is required in dygraph mode. \
2010
            The default value is None in static graph mode, at this time all parameters will be updated.
2011 2012 2013 2014 2015
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2016 2017 2018
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2019
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2020 2021 2022 2023 2024
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2025 2026 2027 2028

    Examples:
        .. code-block:: python

2029
            import paddle
2030
            import numpy as np
2031
            import paddle.fluid as fluid
2032

2033
            paddle.enable_static()
2034
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2035
            inp = fluid.data(name="inp", shape=[2, 2])
C
Charles-hit 已提交
2036
            out = paddle.static.nn.fc(inp, size=3)
2037
            out = paddle.sum(out)
2038
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2039 2040 2041 2042 2043 2044 2045
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2046 2047 2048
    """
    _moment_acc_str = "moment"

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2059 2060
        assert learning_rate is not None
        assert epsilon is not None
2061
        super().__init__(
2062 2063 2064 2065 2066 2067
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2068 2069
        self.type = "adagrad"
        self._epsilon = epsilon
2070
        self.initial_accumulator_value = initial_accumulator_value
2071 2072 2073 2074 2075

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2076 2077 2078 2079 2080
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2081 2082 2083 2084

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2085 2086 2087
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
2088
        if in_dygraph_mode():
2089 2090 2091 2092 2093 2094 2095
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                self._epsilon,
            )
C
caozhou 已提交
2096
            return None
2097 2098 2099 2100 2101 2102 2103 2104
        else:
            # Create the adagrad optimizer op
            adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
2105
                    "LearningRate": self._create_param_lr(param_and_grad),
2106 2107 2108
                },
                outputs={
                    "ParamOut": param_and_grad[0],
2109
                    "MomentOut": moment_acc,
2110 2111
                },
                attrs={"epsilon": self._epsilon},
2112 2113
                stop_gradient=True,
            )
2114

2115
            return adagrad_op
2116 2117 2118


class AdamOptimizer(Optimizer):
2119
    r"""
T
tianshuo78520a 已提交
2120
    The Adam optimizer uses an optimization described at the end
2121 2122 2123
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2124

2125
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2140 2141
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2142
    Args:
2143 2144
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2145 2146
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2147
            The default value is 0.9.
2148 2149
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2150
            The default value is 0.999.
2151 2152
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2153
            The default value is 1e-08.
H
hong 已提交
2154
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2155
            This parameter is required in dygraph mode. \
2156
            The default value is None in static graph mode, at this time all parameters will be updated.
2157 2158 2159 2160 2161
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2162 2163 2164
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2165
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2176
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2177
            for whole model instead of creating beta_pow for each parameter. Default is false.
2178 2179
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2180
            use same align_size as allocator.
Q
qiaolongfei 已提交
2181 2182 2183 2184

    Examples:
        .. code-block:: python

2185 2186 2187
            import paddle
            import paddle.fluid as fluid

2188
            paddle.enable_static()
2189 2190 2191
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2192 2193
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2194
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2195
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2196
                avg_cost = paddle.mean(cost)
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2209

2210 2211 2212 2213 2214 2215 2216
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

2217
            paddle.enable_static()
2218 2219 2220 2221 2222
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2223
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2224
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2225
                avg_cost = paddle.mean(cost)
2226 2227

                # define beta decay variable
2228
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2229 2230
                    global_step = lr_scheduler._decay_step_counter()

2231
                    beta1 = paddle.static.create_global_var(
2232 2233 2234 2235 2236 2237
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
2238
                    beta2 = paddle.static.create_global_var(
2239 2240 2241 2242 2243 2244
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2245
                    epsilon = paddle.static.create_global_var(
2246 2247 2248 2249 2250 2251
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2252 2253 2254 2255 2256 2257 2258

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2259
                    return beta1, beta2, epsilon
2260

2261
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2262 2263
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2264
                                                    beta1=beta1,
2265 2266
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2277 2278 2279
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2280 2281
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2282

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2298 2299 2300 2301
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2302
        super().__init__(
2303 2304 2305 2306 2307 2308 2309 2310
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2311 2312 2313 2314
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2315
        self._lazy_mode = lazy_mode
2316
        self._use_global_beta_pow = use_global_beta_pow
2317 2318 2319 2320 2321 2322

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2323 2324
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2325 2326 2327 2328
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2329 2330 2331
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2332
                    shape=[1],
2333 2334 2335
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2336 2337 2338
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2339 2340 2341
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2342
                    shape=[1],
2343 2344 2345
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2346 2347
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2348
                name=self._beta1_pow_acc_str,
2349 2350 2351
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2352
                shape=[1],
2353 2354 2355
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2356
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2357
                name=self._beta2_pow_acc_str,
2358 2359 2360
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2361
                shape=[1],
2362 2363 2364
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2365 2366 2367 2368

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2369 2370 2371 2372 2373 2374
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2375 2376
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2377 2378
                self._beta1_pow_acc_str
            )
2379
            beta2_pow_acc = self._get_global_accumulator(
2380 2381
                self._beta2_pow_acc_str
            )
2382
        else:
2383 2384 2385 2386 2387 2388
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2389
        lr = self._create_param_lr(param_and_grad)
2390
        # create the adam optimize op
2391

姜永久 已提交
2392
        if in_dygraph_mode():
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
2403
            master_weight = None
2404
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2432 2433 2434

            return None

2435
        inputs = {
2436 2437
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2438
            "LearningRate": [lr],
2439 2440 2441
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2442
            "Beta2Pow": [beta2_pow_acc],
2443
        }
2444 2445 2446 2447 2448 2449 2450

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2451
        outputs = {
2452 2453 2454 2455 2456
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2457 2458 2459
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2460
            "min_row_size_to_use_multithread": 1000,
2461
            'use_global_beta_pow': self._use_global_beta_pow,
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2472 2473 2474 2475
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2476

2477 2478 2479 2480 2481 2482 2483
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2484 2485 2486

        return adam_op

2487
    def _finish_update(self, block, parameters_and_grads):
2488
        r"""Update beta1_pow and beta2_pow accumulator"""
2489 2490 2491
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2492 2493
                self._beta1_pow_acc_str
            )
2494
            beta2_pow_acc = self._get_global_accumulator(
2495 2496
                self._beta2_pow_acc_str
            )
2497 2498 2499

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2500
                outputs = {"Out": beta1_pow_acc}
2501 2502
                attrs = {}
                if isinstance(self._beta1, Variable):
2503 2504
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2505 2506 2507 2508 2509 2510 2511
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2512 2513
                else:
                    attrs['scale'] = self._beta1
2514 2515 2516 2517 2518 2519 2520
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2521 2522

                inputs = {"X": beta2_pow_acc}
2523
                outputs = {"Out": beta2_pow_acc}
2524 2525
                attrs = {}
                if isinstance(self._beta2, Variable):
2526 2527
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2528 2529 2530 2531 2532 2533 2534
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2535 2536
                else:
                    attrs['scale'] = self._beta2
2537 2538 2539 2540 2541 2542 2543
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2544

2545 2546

class AdamaxOptimizer(Optimizer):
2547
    r"""
2548
    The Adamax optimizer is implemented based on the Adamax Optimization
2549 2550 2551
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2552

2553
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2567
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2568

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2581
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2582
            This parameter is required in dygraph mode. \
2583
            The default value is None in static graph mode, at this time all parameters will be updated.
2584 2585 2586 2587 2588
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2589 2590 2591
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2592
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2593 2594 2595 2596 2597 2598
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2599

2600 2601 2602 2603 2604
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2605 2606
          import paddle
          paddle.enable_static()
2607 2608 2609 2610 2611 2612 2613 2614

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2615
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2616
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2617
              loss = paddle.mean(hidden)
2618
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2619 2620 2621 2622 2623 2624 2625 2626 2627
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2628 2629 2630
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2631
    _beta1_pow_acc_str = "beta1_pow_acc"
2632

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2644 2645 2646 2647
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2648
        super().__init__(
2649 2650 2651 2652 2653 2654
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2655 2656 2657 2658 2659 2660 2661 2662
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2663 2664
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2665 2666 2667 2668 2669 2670
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
2671 2672 2673 2674 2675

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
2676 2677 2678 2679 2680 2681
        inf_norm = self._get_accumulator(
            self._inf_norm_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
2682

姜永久 已提交
2683
        if in_dygraph_mode():
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                self._beta1,
                self._beta2,
                self._epsilon,
            )
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
2705
                    "Beta1Pow": beta1_pow_acc,
2706 2707 2708 2709
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
2710
                    "InfNormOut": inf_norm,
2711 2712 2713 2714
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
2715
                    "epsilon": self._epsilon,
2716
                },
2717 2718
                stop_gradient=True,
            )
2719

2720
            return adamax_op
2721

2722
    def _finish_update(self, block, parameters_and_grads):
2723
        """Update Beta1 Power accumulator"""
2724
        assert isinstance(block, framework.Block)
2725
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2726
            if grad is None or param.trainable is False:
2727
                continue
2728 2729 2730 2731 2732 2733
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
                beta1_pow_acc = self._get_accumulator(
                    self._beta1_pow_acc_str, param
                )
姜永久 已提交
2734 2735
                if in_dygraph_mode():
                    tmp = _C_ops.scale(beta1_pow_acc, self._beta1, 0.0, True)
2736 2737
                    beta1_pow_acc.copy_(tmp, False)
                else:
2738 2739 2740 2741 2742 2743 2744
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
2745 2746


2747
class DpsgdOptimizer(Optimizer):
2748
    r"""
2749 2750 2751 2752 2753 2754 2755 2756
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2757 2758
          import paddle
          paddle.enable_static()
2759 2760 2761 2762 2763 2764 2765 2766 2767

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
C
Charles-hit 已提交
2768
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2769
              loss = paddle.mean(hidden)
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2787
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2788
            This parameter is required in dygraph mode. \
2789
            The default value is None in static graph mode, at this time all parameters will be updated.
2790 2791 2792 2793
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

2794 2795 2796 2797 2798 2799 2800 2801
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
2802 2803 2804 2805
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2806
        super().__init__(
2807 2808
            learning_rate=learning_rate, parameter_list=parameter_list
        )
2809 2810 2811 2812
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2813 2814 2815 2816 2817 2818 2819
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2820 2821 2822 2823 2824

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
2825
        if self._seed is None:
Z
zhongpu 已提交
2826 2827
            self._seed = 0

姜永久 已提交
2828
        if in_dygraph_mode():
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
2843
        else:
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
2860

2861
            return dpsgd_op
2862 2863


2864
class DecayedAdagradOptimizer(Optimizer):
2865
    r"""
2866 2867 2868
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2869

2870
    The parameter ``param_out`` update rule with gradient ``grad``:
2871 2872 2873 2874 2875 2876 2877

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2878 2879 2880 2881
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2882 2883 2884
    stability to avoid the division by zero error.

    Args:
2885 2886 2887 2888 2889
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2890
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2891
            This parameter is required in dygraph mode. \
2892
            The default value is None in static graph mode, at this time all parameters will be updated.
2893 2894 2895 2896 2897
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2898 2899 2900
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2901
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2902 2903 2904 2905 2906 2907
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2908 2909 2910 2911

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
2912
            import paddle
2913 2914
            import paddle.fluid as fluid

C
Charles-hit 已提交
2915 2916 2917 2918
            paddle.enable_static()
            x = fluid.data(name='x', shape=[None, 10], dtype='float32')
            trans = paddle.static.nn.fc(x, 100)
            cost = paddle.mean(trans)
2919
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2920
            optimizer.minimize(cost)
2921 2922 2923
    """
    _moment_acc_str = "moment"

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2934 2935 2936 2937
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

2938
        super().__init__(
2939 2940 2941 2942 2943 2944
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2958 2959 2960
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
2961

姜永久 已提交
2962
        if in_dygraph_mode():
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
2975 2976 2977 2978 2979 2980 2981 2982
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
2983
                    "LearningRate": self._create_param_lr(param_and_grad),
2984 2985 2986
                },
                outputs={
                    "ParamOut": param_and_grad[0],
2987
                    "MomentOut": moment_acc,
2988
                },
2989 2990 2991
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
2992

2993
            return decayed_adagrad_op
2994 2995


2996
class AdadeltaOptimizer(Optimizer):
2997
    r"""
Z
Zeng Jinle 已提交
2998
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2999

Z
Zeng Jinle 已提交
3000
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3001 3002 3003
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3004

Z
Zeng Jinle 已提交
3005 3006
    .. math::

Z
Zeng Jinle 已提交
3007
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3008

Z
Zeng Jinle 已提交
3009
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3010

Z
Zeng Jinle 已提交
3011
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3012 3013

    Args:
Z
Zeng Jinle 已提交
3014 3015 3016
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3017
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3018
            This parameter is required in dygraph mode. \
3019
            The default value is None in static graph mode, at this time all parameters will be updated.
3020 3021 3022 3023 3024
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3025 3026 3027
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3028
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3029 3030 3031
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3032 3033 3034 3035

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
3036
            import paddle
3037
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3038

C
Charles-hit 已提交
3039
            paddle.enable_static()
3040
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
C
Charles-hit 已提交
3041 3042
            fc = paddle.static.nn.fc(image, size=10)
            cost = paddle.mean(fc)
3043 3044
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3045

Z
Zeng Jinle 已提交
3046 3047 3048 3049
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3050
    """
3051

3052 3053 3054
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3065 3066 3067 3068 3069 3070
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3071
        super().__init__(
3072 3073 3074 3075 3076 3077
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3078 3079 3080 3081 3082
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3083 3084
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3085 3086 3087 3088 3089 3090

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3091 3092
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3093 3094

        avg_squared_grad_acc = self._get_accumulator(
3095 3096
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3097
        avg_squared_update_acc = self._get_accumulator(
3098 3099
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3100

姜永久 已提交
3101
        if in_dygraph_mode():
3102 3103 3104 3105 3106 3107 3108 3109
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                self._rho,
                self._epsilon,
            )
3110 3111
        else:
            # Create the adadelta optimizer op
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
            adadelta_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "AvgSquaredGrad": avg_squared_grad_acc,
                    "AvgSquaredUpdate": avg_squared_update_acc,
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "AvgSquaredGradOut": avg_squared_grad_acc,
                    "AvgSquaredUpdateOut": avg_squared_update_acc,
                },
                attrs={"epsilon": self._epsilon, "rho": self._rho},
                stop_gradient=True,
            )
3128

3129
            return adadelta_op
3130 3131


Q
qingqing01 已提交
3132
class RMSPropOptimizer(Optimizer):
3133
    r"""
Q
qingqing01 已提交
3134 3135 3136 3137 3138 3139 3140 3141
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3142
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3143 3144 3145 3146

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3147
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3148 3149 3150 3151 3152 3153

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3154
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3170 3171 3172 3173
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3174
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3175 3176 3177 3178 3179
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3180 3181 3182
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3183
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3184
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3185
        momentum(float): :math:`\\beta` in equation is the momentum term,
3186
            default is 0.0.
3187 3188 3189 3190
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3191
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3192
            This parameter is required in dygraph mode. \
3193
            The default value is None in static graph mode, at this time all parameters will be updated.
3194 3195 3196 3197 3198
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3199 3200 3201
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3202
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3203 3204
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3205 3206 3207 3208 3209 3210 3211

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3212 3213 3214 3215
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3216
            paddle.enable_static()
3217 3218 3219 3220 3221
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
C
Charles-hit 已提交
3222
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3223
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3224
                avg_cost = paddle.mean(cost)
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3238 3239 3240 3241
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3242
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3243

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3256
        super().__init__(
3257 3258 3259 3260 3261 3262
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3276
        self._centered = centered
Q
qingqing01 已提交
3277 3278 3279 3280 3281 3282 3283 3284

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3285
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3286 3287 3288 3289 3290

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3291 3292 3293 3294 3295 3296 3297 3298 3299
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
3300
        if in_dygraph_mode():
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
            )
C
caozhou 已提交
3313
            return None
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
3329
                    "MeanGradOut": mean_grad_acc,
3330 3331 3332 3333 3334
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3335
                    "centered": self._centered,
3336
                },
3337 3338
                stop_gradient=True,
            )
Q
qingqing01 已提交
3339

3340
            return rmsprop_op
Q
qingqing01 已提交
3341 3342


Q
qiaolongfei 已提交
3343
class FtrlOptimizer(Optimizer):
3344
    r"""
Q
qiaolongfei 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3383 3384 3385 3386 3387
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3388
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3389
            This parameter is required in dygraph mode. \
3390
            The default value is None in static graph mode, at this time all parameters will be updated.
3391 3392 3393 3394 3395
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3396 3397 3398
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3399
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3400 3401
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3402 3403 3404 3405 3406 3407 3408

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3409 3410 3411 3412
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3413 3414
            paddle.enable_static()

3415 3416 3417 3418 3419
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
C
Charles-hit 已提交
3420
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3421
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3422
                avg_cost = paddle.mean(cost)
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3435

3436
    NOTE:
C
chengduo 已提交
3437
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3438 3439 3440 3441 3442
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3454
        super().__init__(
3455 3456 3457 3458 3459 3460
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3481 3482 3483 3484 3485 3486
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
姜永久 已提交
3487
        if in_dygraph_mode():
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
3504 3505

        else:
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
3527

3528
            return ftrl_op
Q
qiaolongfei 已提交
3529 3530


Y
Yibing Liu 已提交
3531
class LambOptimizer(AdamOptimizer):
3532
    r"""
Y
Yibing Liu 已提交
3533 3534
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3535 3536 3537
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3538
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3539 3540 3541 3542 3543

    The updating of parameters follows:

    ..  math::

3544
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3545

Y
Yibing Liu 已提交
3546
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3547

3548 3549 3550 3551
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3552
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3553

Y
Yibing Liu 已提交
3554
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3555 3556


3557
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3558 3559 3560
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3561 3562 3563 3564 3565 3566 3567 3568
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3569
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3570
            This parameter is required in dygraph mode. \
3571
            The default value is None in static graph mode, at this time all parameters will be updated.
3572 3573 3574 3575 3576
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3577 3578
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3579 3580 3581
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3582 3583
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3584
            Default None.
3585
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3586
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3587 3588 3589

    Examples:
        .. code-block:: python
3590

2
201716010711 已提交
3591
            import paddle
3592
            import paddle.fluid as fluid
2
201716010711 已提交
3593
            paddle.enable_static()
Y
Yibing Liu 已提交
3594

Y
Yibing Liu 已提交
3595
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
C
Charles-hit 已提交
3596
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3597
            cost = paddle.mean(hidden)
Y
Yibing Liu 已提交
3598

Y
Yibing Liu 已提交
3599 3600 3601 3602 3603
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3604 3605 3606 3607 3608 3609 3610
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
3624 3625 3626 3627 3628
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3629
        super().__init__(
3630 3631 3632 3633 3634 3635 3636 3637 3638
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
3639 3640
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3641
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3642 3643 3644

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3645
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3646

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
3664 3665 3666
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3667
        lr = self._create_param_lr(param_and_grad)
3668
        master_weight = None
姜永久 已提交
3669
        if in_dygraph_mode():
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
3694
            return None
Y
Yibing Liu 已提交
3695

Y
Yibing Liu 已提交
3696
        # create the lamb optimize op
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
3723 3724 3725 3726

        return lamb_op


3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3740
Dpsgd = DpsgdOptimizer
3741
DecayedAdagrad = DecayedAdagradOptimizer
3742
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3743
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3744
Ftrl = FtrlOptimizer
3745
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3746
Lamb = LambOptimizer
3747 3748 3749


class ModelAverage(Optimizer):
3750
    r"""
3751
	:api_attr: Static Graph
S
swtkiwi 已提交
3752

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3771

3772 3773 3774 3775 3776 3777 3778 3779 3780
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3781 3782

    Args:
3783 3784 3785
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3786 3787 3788 3789 3790
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3791 3792 3793
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3794

3795
    Examples:
Q
qiaolongfei 已提交
3796 3797 3798

      .. code-block:: python

2
201716010711 已提交
3799
        import paddle
3800 3801
        import paddle.fluid as fluid
        import numpy
2
201716010711 已提交
3802
        paddle.enable_static()
3803 3804 3805 3806

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3807

3808 3809 3810 3811
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3812
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
3813
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3814
            loss = paddle.mean(hidden)
3815 3816 3817 3818 3819 3820
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3821
                                                         max_average_window=12500)
3822 3823

            exe.run(startup_program)
3824 3825 3826 3827 3828
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3829 3830

            # apply ModelAverage
3831
            with model_average.apply(exe):
3832 3833 3834 3835
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3836 3837
    """

3838 3839 3840 3841 3842 3843 3844 3845
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
姜永久 已提交
3846
        if in_dygraph_mode():
Z
zhongpu 已提交
3847
            raise Exception("In dygraph, don't support ModelAverage.")
3848
        super().__init__(0.0, regularization=regularization, name=name)
3849 3850 3851
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3852

3853
        self.params_grads = []
3854 3855 3856
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
3857
            if param.do_model_average != False:
3858
                grad = param.block.create_var(
3859 3860 3861
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
3862 3863
                    dtype=param.dtype,
                    persistable=False,
3864 3865
                    stop_gradient=True,
                )
3866
                self.params_grads.append((param, grad))
3867

3868
        for param, grad in self.params_grads:
3869 3870
            if grad is None:
                continue
X
Xin Pan 已提交
3871
            with param.block.program._optimized_guard(
3872 3873
                [param, grad]
            ), name_scope('move_average'):
3874
                self._append_average_accumulate_op(param)
3875

3876 3877 3878 3879
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3880
                self._add_average_apply_op(block, param_grad)
3881 3882 3883 3884 3885

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3886
                self._add_average_restore_op(block, param_grad)
3887

3888
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3889 3890 3891 3892 3893 3894
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3895 3896
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
3897
        old_num_accumulates = block._clone_variable(
3898 3899
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
3900
        num_updates = block._clone_variable(
3901 3902
            self._get_accumulator('num_updates', param)
        )
3903 3904 3905
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
3906 3907
        tmp = paddle.add_n([num_accumulates, old_num_accumulates])
        sum = paddle.add_n([sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3908
        tmp = layers.cast(
3909
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
3910
        )
D
dzhwinter 已提交
3911
        sum = layers.cast(
3912
            x=sum, dtype='float32' if self._dtype is None else self._dtype
3913
        )
3914
        paddle.assign(paddle.divide(sum, tmp), output=param)
3915 3916

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3917 3918
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3919 3920 3921 3922 3923 3924 3925
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
3962

S
rename  
sneaxiy 已提交
3963
    @signature_safe_contextmanager
3964
    def apply(self, executor, need_restore=True):
3965 3966
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3967 3968

        Args:
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
3980 3981
            import paddle
            paddle.enable_static()
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
3992
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3993
                loss = paddle.mean(hidden)
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4015
        """
4016 4017 4018 4019 4020 4021
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4022 4023

    def restore(self, executor):
4024 4025
        """
        Restore ``Parameter`` values of current model.
4026

4027
        Args:
4028 4029 4030 4031 4032 4033 4034 4035
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4036 4037
            import paddle
            paddle.enable_static()
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4048
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4049
                loss = paddle.mean(hidden)
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4074
        """
4075
        executor.run(self.restore_program)
4076 4077


4078
class ExponentialMovingAverage:
4079
    r"""
S
swtkiwi 已提交
4080

4081 4082 4083 4084 4085 4086
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4087
        \text{EMA}_0 & = 0
4088

4089
        \text{EMA}_t & = \text{decay} * \text{EMA}_{t-1} + (1 - \text{decay}) * \theta_t
4090

4091 4092 4093
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4094
    the **restore()** method is used to restore the parameters.
4095

4096 4097
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
4098
    :math:`(1 - \text{decay}^t)` , i.e., the actual EMAs applied to parameters
4099
    when calling **apply()** method would be
4100 4101

    ..  math::
4102

4103
        \widehat{\text{EMA}}_t = \frac{\text{EMA}_t}{1 - \text{decay}^t}
4104

4105 4106
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4107
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4108
    allows users to pass a Variable to schedule the decay rate, in this case,
4109
    the actual decay rate becomes
4110

4111
    ..  math::
4112

4113
        \min(\text{decay}, \frac{1 + \text{thres_steps}}{10 + \text{thres_steps}})
4114 4115

    Usually **thres_steps** can be the global training steps.
4116 4117 4118


    Args:
4119 4120 4121
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4122 4123 4124 4125


    Examples:

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4154
                    feed={'x': data},
4155 4156 4157 4158 4159 4160
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4161
                        feed={'x': data},
4162 4163 4164 4165 4166 4167
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4168
                        feed={'x': data},
4169 4170 4171
                        fetch_list=[hidden.name])
                ema.restore(exe)

4172 4173
    """

4174
    def __init__(self, decay=0.999, thres_steps=None, name=None):
姜永久 已提交
4175
        if in_dygraph_mode():
Z
zhongpu 已提交
4176
            raise Exception(
4177 4178
                "In dygraph, don't support ExponentialMovingAverage."
            )
4179
        self._decay = decay
4180
        self._thres_steps = thres_steps
4181
        self._name = name if name is not None else ''
4182 4183
        self._decay_var = self._get_ema_decay()

4184
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4185
        self._params_tmps = []
4186
        for param in default_main_program().global_block().all_parameters():
4187
            if param.do_model_average != False:
4188 4189 4190 4191 4192 4193 4194 4195
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4196
                self._params_tmps.append((param, tmp))
4197

Y
Yibing Liu 已提交
4198 4199
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4200 4201 4202
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4203
                self._ema_vars[param.name] = self._create_ema_vars(param)
4204 4205 4206 4207

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4208
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4209
            for param, tmp in self._params_tmps:
4210 4211
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4212
                ema = block._clone_variable(self._ema_vars[param.name])
4213
                layers.assign(input=param, output=tmp)
4214
                # bias correction
4215 4216
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4217 4218 4219
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow)
                        )
4220 4221
                    with switch.default():
                        layers.assign(output=param, input=ema)
4222 4223 4224 4225

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4226
            for param, tmp in self._params_tmps:
4227 4228 4229 4230
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4231 4232
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
4233
            decay_var = paddle.static.create_global_var(
4234 4235 4236 4237
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4238 4239
                name="scheduled_ema_decay_rate",
            )
4240 4241 4242 4243 4244 4245 4246 4247

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
4248 4249
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4250 4251 4252
        return decay_var

    def _get_decay_pow(self, block):
4253
        global_step = paddle.static.create_global_var(
4254 4255 4256 4257 4258 4259
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4260
        global_step = layers.cast(global_step, "float32")
4261
        decay_var = block._clone_variable(self._decay_var)
4262
        decay_pow_acc = paddle.pow(decay_var, global_step)
4263
        return decay_pow_acc, global_step
4264

Y
Yibing Liu 已提交
4265
    def _create_ema_vars(self, param):
4266
        param_ema = paddle.static.create_global_var(
4267 4268 4269 4270
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4271 4272
            persistable=True,
        )
4273 4274 4275

        return param_ema

Y
Yibing Liu 已提交
4276
    def update(self):
4277 4278
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4279 4280
        train program.
        """
4281
        global_step = layers.autoincreased_step_counter(
4282 4283
            counter_name=self._step_counter_name
        )
4284
        param_master_emas = []
Y
Yibing Liu 已提交
4285
        for param, tmp in self._params_tmps:
4286 4287 4288
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4289
                param_ema = self._ema_vars[param.name]
4290
                if param.name + '.master' in self._ema_vars:
4291 4292 4293 4294
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4295 4296
                        1 - self._decay_var
                    )
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4307 4308 4309
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4310

4311 4312 4313 4314
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4315

4316 4317
        Args:
            executor (Executor): The Executor to execute applying.
4318
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4319
                applying. Default True.
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4330

4331 4332 4333 4334
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4335 4336


4337
class PipelineOptimizer:
4338
    """
4339
        :api_attr: Static Graph
S
swtkiwi 已提交
4340

4341 4342 4343 4344
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4345

4346
    Args:
4347 4348 4349
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4350

4351 4352
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4353

C
Charles-hit 已提交
4354
            import paddle
4355
            import paddle.fluid as fluid
H
hutuxian 已提交
4356 4357
            import paddle.fluid.layers as layers

C
Charles-hit 已提交
4358
            paddle.enable_static()
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
C
Charles-hit 已提交
4373 4374
                fc = paddle.static.nn.fc(x=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = paddle.mean(fc)
H
hutuxian 已提交
4375
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4376
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4377
            optimizer.minimize(loss)
4378 4379 4380 4381 4382 4383 4384 4385 4386

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4387 4388
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4389 4390
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4391
            exe.train_from_dataset(
4392
                    fluid.default_main_program())
4393
            data_loader.reset()
4394 4395
    """

4396
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4397 4398 4399 4400 4401
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
姜永久 已提交
4402
        if in_dygraph_mode():
Z
zhongpu 已提交
4403
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4404 4405 4406
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
4407
            paddle.static.amp.decorator.OptimizerWithMixedPrecision,
4408
        )
4409
        if not isinstance(optimizer, valid_optimizers):
4410 4411 4412 4413 4414 4415 4416
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4417
        self._optimizer = optimizer
4418 4419 4420 4421 4422 4423

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4424 4425 4426
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4427
        self._num_microbatches = num_microbatches
4428 4429 4430
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4431
        self._start_cpu_core_id = start_cpu_core_id
4432 4433 4434 4435 4436 4437
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4438
        self._param_device_map = None
4439 4440
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4441 4442
        self.output_var_to_op = None
        self.input_var_to_op = None
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4472 4473 4474 4475
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
4476 4477
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
4478 4479 4480
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4481
                'ring_id': self.global_ring_id,
4482
                self._op_role_key: self._op_role.Optimize,
4483 4484 4485
                'use_calc_stream': True,
            },
        )
4486 4487
        offset += 1
        if op.type == "reduce_any":
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4499
            offset += 1
4500
        return offset
H
hutuxian 已提交
4501

4502
    def _create_vars(self, block, ori_block):
4503
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4504
        used_var_set = set()
4505 4506 4507 4508 4509 4510 4511 4512 4513
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4514
            # For op process vars on all devices, remove its input
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4540 4541 4542 4543 4544 4545 4546 4547
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4548
            for var in vars:
4549 4550
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4551
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4552 4553
                    continue
                used_var_set.add(var)
4554 4555
                if block._find_var_recursive(str(var)):
                    continue
4556
                source_var = ori_block._var_recursive(str(var))
4557
                if source_var.type == core.VarDesc.VarType.READER:
4558
                    dest_var = block.create_var(
4559 4560
                        name=var,
                        type=core.VarDesc.VarType.READER,
4561 4562
                        persistable=source_var.persistable,
                    )
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
4574 4575
                        error_clip=source_var.error_clip,
                    )
4576
                else:
4577
                    dest_var = block._clone_variable(source_var, False)
4578
                self._clone_var_attr(dest_var, source_var)
4579 4580 4581
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
4582 4583
            if self.use_sharding or not should_insert:
                continue
4584 4585 4586 4587
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4588

4589
    def _is_loss_grad_op(self, op):
4590 4591
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4592
        return op_role & int(self._op_role.Backward) and op_role & int(
4593 4594
            self._op_role.Loss
        )
4595

4596
    def _is_forward_op(self, op):
4597 4598 4599
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
4600

4601
    def _is_backward_op(self, op):
4602
        return self._op_role_key in op.attr_names and (
4603 4604
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
4605 4606 4607 4608

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4609 4610

    def _is_optimize_op(self, op):
4611
        return self._op_role_key in op.attr_names and (
4612 4613
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
4614 4615

    def _is_update_op(self, op):
4616 4617 4618 4619 4620
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
4621

4622
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4623
        """
4624
        Split a program into sections according to devices that ops run on.
4625
        The op whose op_device attr is "gpu:all" is copied to all sections.
4626 4627 4628

        Args:
            main_program (Program): the main program
4629
            devices: all used devices
H
hutuxian 已提交
4630
        """
4631
        # Map from device to its corresponding section program info
4632
        device_program_map = defaultdict(Program)
4633

4634
        block = main_program.block(0)
4635 4636
        for op in block.ops:
            device = op.attr(self._op_device_key)
4637
            # Copy ops whose op_device set to "gpu:all" to all sections.
4638
            if device == f"{self._device}:all":
4639
                for device in devices:
4640 4641
                    program = device_program_map[device]
                    op_desc = op.desc
4642
                    ap_op = program.global_block().desc.append_op()
4643
                    ap_op.copy_from(op_desc)
4644
                    ap_op._set_attr(self._op_device_key, "")
4645 4646 4647
            else:
                program = device_program_map[device]
                op_desc = op.desc
4648
                ap_op = program.global_block().desc.append_op()
4649
                ap_op.copy_from(op_desc)
4650
                ap_op._set_attr(self._op_device_key, "")
4651

4652
        program_list = []
4653
        for key in devices:
4654
            program = device_program_map[key]
4655 4656
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4657

4658
        return program_list
H
hutuxian 已提交
4659

4660 4661 4662 4663 4664 4665 4666
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4667 4668
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
4669
            'or beta2_pow_acc.'
4670 4671
        )
        param_name = var_name[0 : var_name.index('_beta')]
4672 4673 4674
        device = self._param_device_map[param_name]
        return device

4675 4676
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4677 4678 4679
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4680 4681
            if device == "cpu":
                assert op.type == "fill_constant", (
4682
                    "For ops in startup program with the op_device attribute "
4683 4684
                    "of cpu, they must be of type fill_constant."
                )
4685 4686 4687
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4688
            if device:
4689
                device_index = int(device.split(':')[1])
4690
            else:
4691 4692
                # LR related ops
                device = None
4693 4694
            if device and device_index != device_id:
                continue
4695
            op_desc = op.desc
4696
            ap_op = new_startup_program.global_block().desc.append_op()
4697 4698 4699
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4700
        self._create_vars(new_startup_program.global_block(), block)
4701 4702
        return new_startup_program

4703
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4704
        """
4705
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4706
        """
4707 4708 4709 4710 4711 4712
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4713
        post_ops = self.input_var_to_op[var_name]
4714
        if post_ops is None:
4715
            return None
4716 4717 4718 4719 4720 4721
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4722

4723
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4724
        """
4725 4726
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4727
        """
4728
        prev_ops = self.output_var_to_op[var_name]
4729
        if prev_ops is None:
4730
            return None
4731 4732 4733 4734
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4735
                break
4736
        return result_op
4737 4738

    def _rename_arg(self, op, old_name, new_name):
4739 4740
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4741

4742
    def _create_var(self, block, ref_var, name, dtype=None):
4743 4744 4745 4746 4747 4748 4749 4750
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4751
            dtype=ref_var.dtype if dtype is None else dtype,
4752 4753
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4754 4755
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4756 4757
            need_check_feed=ref_var.desc.need_check_feed(),
        )
4758
        self._clone_var_attr(new_var, ref_var)
4759 4760
        return new_var

4761 4762 4763 4764 4765
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4766 4767 4768 4769 4770 4771
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4772

4773 4774 4775 4776 4777 4778
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4779
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4780
        """
4781
        Get the op_device attribute of a op.
H
hutuxian 已提交
4782
        """
4783 4784 4785 4786 4787
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
4788
        if device:
4789 4790
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
4791
                "supported in pipeline parallemism."
4792
            )
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4806
            op._set_attr(self._op_device_key, f"{self._device}:all")
4807 4808 4809 4810
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
4811 4812 4813
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
4814 4815 4816 4817
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
4818 4819 4820 4821
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
4822 4823 4824
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4825 4826 4827
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
4828
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4829 4830
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4831
            # for checkpoint offloading
4832 4833 4834
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
4835 4836 4837
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4838
                post_op = self._find_post_op(idx, output_name)
4839 4840 4841
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
4842
            else:
4843
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4844 4845 4846
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
4847 4848 4849
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
4850 4851 4852
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
4853 4854 4855 4856 4857 4858 4859 4860 4861
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4862
            param_name = self._strip_grad_suffix(grad_name[0])
4863 4864 4865 4866 4867
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
4868 4869
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
4870
                "and regularization ops must have op_role_var attribute."
4871
            )
4872
            op_role_var = op.attr(self._op_role_var_key)
4873 4874
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
4875
                "regularization ops must have two elements."
4876
            )
4877 4878
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
4879
            # For sum op added by global gradient clip, it must be
4880
            # put on all devices
4881 4882 4883 4884 4885 4886 4887
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
4888
                device = f"{self._device}:all"
4889
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
4890
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
4891
            op._set_attr(self._op_device_key, f"{self._device}:all")
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
4902 4903
        else:
            other_known_ops = [
4904 4905 4906 4907 4908 4909
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
4910
            ]
4911 4912 4913
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
4914
                "is {}".format(other_known_ops, op.type)
4915
            )
4916
            assert self._is_optimize_op(op)
4917
            op._set_attr(self._op_device_key, f"{self._device}:all")
4918 4919

    def _add_op_device_attr(self, block):
4920
        """
4921
        Add op_device attrribute for ops in block that have
4922
        not that attribute set.
4923
        """
4924
        for idx, op in enumerate(list(block.ops)):
4925 4926 4927 4928 4929
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
4930
                # Copy read related ops to all section to make them exit
4931 4932 4933 4934
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
4935
                op._set_attr(self._op_device_key, f"{self._device}:all")
4936 4937
                continue
            # op_device attribute has been set
4938 4939
            if self._get_op_device_attr(op):
                continue
4940
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
4941

4942 4943
    def _check_validation(self, block):
        """
4944
        Check whether ops in a block have both the op_device and the
4945 4946
        op_role attributes set.
        Then, return all devices in order.
4947
        """
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
4958
        for op in block.ops:
4959
            if not op._has_kernel(op.type):
4960 4961 4962 4963 4964 4965
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
4966
            assert op.has_attr(
4967 4968
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
4969
            op_role = op.attr(self._op_role_key)
4970 4971 4972 4973 4974
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
4975

4976
            assert op.has_attr(
4977 4978 4979 4980
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
4981 4982

            device = op.attr(self._op_device_key)
4983 4984 4985 4986 4987 4988 4989
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
4990

4991
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
4992 4993
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
4994 4995
                "for pipeline parallelism."
            )
4996 4997

            if device not in device_list:
4998
                device_list.append(device)
4999

5000
        return device_list
5001

5002
    def _insert_sendrecv_ops_for_boundaries(self, block):
5003
        """
5004
        Insert a pair of send and recv ops for every two
5005 5006
        consecutive ops on different devices.
        """
5007
        # A map from var to device where op takes it as input,
5008
        # avoiding multiple send and recv ops.
5009
        input_var_to_device = dict()
5010 5011 5012 5013 5014 5015 5016 5017
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5018
            'first_optimize_index': first_optimize_index,
5019
        }
5020

5021
        for index, op in enumerate(list(block.ops)):
5022
            cur_device = op.attr(self._op_device_key)
5023 5024
            if cur_device == f"{self._device}:all":
                continue
5025 5026
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5027
                # skip data var
5028 5029
                if var.is_data:
                    continue
5030
                prev_device = None
5031 5032 5033

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5034 5035
                    if var_name not in self._param_device_map:
                        continue
5036
                    prev_device = self._param_device_map[var_name]
5037

5038
                if not prev_device:
5039 5040 5041
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5042

5043 5044
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5045

5046 5047
                if prev_device == cur_device:
                    continue
5048

5049 5050 5051 5052 5053 5054 5055
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5056 5057 5058 5059
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5060 5061
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5062
                        'please check the op_role of op={}'.format(op)
5063
                    )
5064 5065

                    if is_forward:
5066 5067
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5068
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5069 5070 5071
                                prev_id, cur_id, op
                            )
                        )
5072
                    elif is_backward:
5073 5074
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5075
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5076 5077 5078
                                prev_id, cur_id, op
                            )
                        )
5079

5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5090 5091
                            (cur_dev, prev_dev)
                        )
5092 5093 5094 5095 5096
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5097 5098
                            (cur_dev, prev_dev)
                        )
5099 5100 5101 5102 5103 5104
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5105
                    var = block.vars[var_name]
5106 5107 5108
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5109 5110 5111 5112 5113 5114 5115
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5116

5117
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5118
                        block._insert_op_without_sync(
5119
                            index=index + extra_index_info['index'],
5120 5121 5122
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5123
                                self._op_device_key: prev_dev,
5124 5125 5126
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5127 5128 5129
                                'ring_id': ring_id,
                            },
                        )
5130
                        extra_index_info['index'] += 1
5131
                        var_shape = list(var.shape)
5132 5133 5134 5135 5136
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5137
                        block._insert_op_without_sync(
5138
                            index=index + extra_index_info['index'],
5139 5140 5141
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5142
                                'out_shape': var_shape,
5143
                                'dtype': var.dtype,
5144
                                self._op_device_key: cur_dev,
5145 5146 5147
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5148 5149 5150
                                'ring_id': ring_id,
                            },
                        )
5151
                        extra_index_info['index'] += 1
5152
                    elif self.schedule_mode == '1F1B':  # 1F1B
5153
                        var_shape = list(var.shape)
5154 5155 5156 5157 5158
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5159

5160
                        numel = np.prod(var_shape)
5161 5162 5163
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5186 5187
                                },
                            )
5188 5189 5190
                            extra_index_info['index'] += 1
                            return

5191 5192
                        _check_stage(cur_id, prev_id)

5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5203
                        extra_index_info['index'] += 1
5204 5205
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5206 5207 5208
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5209
                        block._insert_op_without_sync(
5210
                            index=index + extra_index_info['index'],
5211
                            type='send_v2'
5212 5213
                            if not use_mp or is_param
                            else 'partial_send',
5214 5215
                            inputs={'X': var},
                            attrs={
5216
                                self._op_device_key: prev_dev,
5217 5218 5219 5220
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5221 5222 5223
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5224 5225
                            },
                        )
5226
                        extra_index_info['index'] += 1
5227 5228 5229
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5230 5231
                                'first_optimize_index'
                            ]
5232 5233 5234 5235
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5236
                        sync_comm_op = block._insert_op_without_sync(
5237
                            index=insert_index + extra_index_info['index'],
5238 5239 5240 5241
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5242
                                self._op_device_key: prev_dev,
5243
                                self._op_role_key: new_op_role,
5244
                                'ring_id': ring_id,
5245 5246
                            },
                        )
5247
                        if int(op_role) == int(self._op_role.Forward):
5248
                            sync_comm_op._set_attr('pipeline_flag', '')
5249
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5250
                        block._insert_op_without_sync(
5251
                            index=index + extra_index_info['index'],
5252
                            type='recv_v2'
5253 5254
                            if not use_mp or is_param
                            else 'partial_recv',
5255 5256 5257 5258
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5259
                                self._op_device_key: cur_dev,
5260 5261 5262
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5263 5264 5265 5266
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5267 5268
                            },
                        )
5269
                        extra_index_info['index'] += 1
5270
                        if use_mp and not is_param:
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5284 5285
                                },
                            )
5286
                            extra_index_info['index'] += 1
5287 5288 5289
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5290 5291
                            "The given value is {}.".format(self.schedule_mode)
                        )
5292

5293 5294 5295 5296
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5297 5298
        block._sync_with_cpp()

5299
    def _insert_loss_scale(self, block):
5300
        """
5301
        Scale the loss corresponding to number of micro-batches.
5302
        """
5303 5304
        if self._num_microbatches == 1:
            return
5305
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5306
            if self._is_loss_grad_op(op):
5307 5308
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5309
                    "but this op is {}".format(op.type)
5310
                )
5311 5312 5313 5314
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5315 5316
                break

5317 5318
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5319 5320
            if not self._is_optimize_op(op):
                continue
5321 5322 5323
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5324 5325
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5326 5327 5328
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5329 5330
                if not core.grad_var_suffix() in name:
                    continue
5331 5332 5333 5334
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5335 5336 5337
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5338 5339 5340 5341
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5342 5343
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5344
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5345 5346
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5347 5348
            return fused_gradient_names

5349 5350 5351
        merged_gradient_names = []
        first_opt_op_idx = None

5352 5353 5354
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5355 5356 5357 5358 5359 5360 5361 5362
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5363
                    continue
5364

5365
            if self._is_backward_op(op) and first_opt_op_idx is None:
5366
                first_opt_op_idx = index + 1
5367 5368
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5369

5370 5371 5372
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5373
                op_role_var = op.attr(self._op_role_var_key)
5374 5375
                if len(op_role_var) == 0:
                    continue
5376 5377
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5378 5379
                    offset = 0
                    param_name = op_role_var[i]
5380 5381 5382 5383
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5384

5385
                    param_grad_name = param_name + core.grad_var_suffix()
5386
                    merged_param_grad_name = param_grad_name + merged_suffix
5387
                    if not block.has_var(merged_param_grad_name):
5388 5389 5390 5391 5392 5393
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5394
                    assert block.has_var(merged_param_grad_name)
5395

5396 5397 5398
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5399
                    block._insert_op(
5400 5401 5402 5403
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5404
                        attrs={
5405 5406 5407
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5408
                            # a trick to run this op once per mini-batch
5409 5410 5411
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5412
                    offset += 1
5413 5414
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5415 5416

                    is_fp16_grad = 'cast_fp16' in grad_name
5417
                    need_cast = is_fp16_grad is not fp16_allreduce
5418 5419 5420 5421 5422 5423

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5424
                        cast_grad_var_name = param_grad_name + '@TMP'
5425
                        cast_grad_var = self._create_var(
5426 5427
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5428
                        cast_grad_var.persistable = False
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5440
                        offset += 1
5441 5442 5443 5444 5445 5446 5447
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5448 5449
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5450 5451
                        },
                    )
5452 5453 5454
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5455 5456
        if not fp16_allreduce:
            return merged_gradient_names
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5491

5492
        return merged_gradient_names
5493

5494 5495 5496
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
5497
        grad_param_pairs = self._sort_grad_param_by_dtype(
5498 5499
            main_block, grad_param_pairs
        )
5500

5501 5502 5503
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
5504
        cur_size = 0.0
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
5515 5516
                stop_gradient=False,
            )
5517
            real_param = main_block.var(param)
5518 5519
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5520 5521 5522 5523
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
5524 5525 5526 5527 5528
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
5529
                grad_param_segments.append(
5530 5531
                    ([real_grad], [real_param], [merged_grad_var])
                )
5532
                last_dtype = real_grad.dtype
5533
                cur_size = 0.0
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5546 5547 5548 5549 5550 5551
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
5552
            # keep the '.cast_fp16' info in the fuse var name
5553 5554 5555 5556 5557 5558 5559 5560 5561
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
5562 5563 5564 5565
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
5566 5567
                stop_gradient=False,
            )
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5593
                outputs={"Output": grads, "FusedOutput": fused_grad},
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5610 5611 5612 5613 5614 5615 5616
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5617 5618
                },
            )
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
5629
                    "FusedOutput": fused_merged_grad,
5630 5631 5632 5633 5634 5635 5636 5637
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
5638 5639 5640
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
5641 5642 5643 5644 5645 5646 5647 5648 5649
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
5650
            need_cast = is_fp16_grad is not fp16
5651 5652 5653 5654
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
5672 5673 5674 5675 5676 5677 5678
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
5679 5680
                attrs={self._op_role_key: self._op_role.Backward},
            )
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
5709 5710 5711 5712 5713 5714
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5715
        return fused_merged_gradients, first_opt_op_idx
5716

5717 5718 5719
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5739 5740 5741
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
5753 5754
                        (op_role_var[i + 1], op_role_var[i])
                    )
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
5768 5769 5770 5771 5772 5773
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
5774 5775 5776 5777
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5778

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
5809 5810 5811 5812 5813 5814
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
5815

5816 5817
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5818
        for prog in program_list:
5819 5820 5821 5822 5823 5824
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5825 5826
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5827 5828 5829
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5830
                self._create_vars(new_sub_block, origin_sub_block)
5831
                op._set_attr('sub_block', new_sub_block)
5832 5833 5834

    def _get_device_info(self, block):
        for op in block.ops:
5835 5836
            if not op._has_kernel(op.type):
                continue
5837 5838 5839
            op_device = op.attr(self._op_device_key)
            return op_device

5840 5841 5842
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
5843 5844 5845 5846 5847 5848 5849
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
5850
        for prog in program_list:
5851 5852
            block = prog.block(0)
            for var_name in block.vars:
5853 5854
                if var_name == "double_buffer_0":
                    continue
5855
                var = block.var(var_name)
5856 5857
                if not var.persistable:
                    continue
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
5873 5874 5875 5876 5877 5878
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
5879
                        continue
5880 5881
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
5882 5883
                        self._op_role.Optimize.LRSched
                    ):
5884 5885 5886 5887
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
5888 5889
                            "op {}.".format(var_name, op)
                        )
5890 5891 5892 5893 5894
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
5895 5896
            if not var_name in write_info:
                continue
5897 5898 5899 5900 5901

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
5902
            write_dev_index = int(write_device.split(':')[1])
5903 5904
            all_progs = var_info[var_name]
            for prog in all_progs:
5905 5906
                if prog == write_prog:
                    continue
5907 5908 5909
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
5910 5911 5912 5913 5914 5915 5916 5917 5918
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
5919 5920 5921

                write_block._insert_op(
                    index=0,
5922
                    type='send_v2',
5923 5924 5925
                    inputs={
                        'X': write_block.var(var_name),
                    },
5926
                    attrs={
5927 5928
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
5929 5930
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5931 5932 5933 5934 5935
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
5936 5937
                read_block._insert_op(
                    index=0,
5938
                    type='recv_v2',
5939 5940
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
5941 5942 5943 5944
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
5945 5946
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5947 5948 5949 5950 5951
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
5952 5953 5954 5955 5956 5957
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
5958
                        self._op_device_key: read_device,
5959 5960
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5961 5962 5963 5964
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
5965 5966

    def _is_gradient_clip_op(self, op):
5967 5968 5969
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
5970 5971

    def _is_regularization_op(self, op):
5972 5973 5974
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
5975

5976 5977
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
5978 5979 5980
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
5981

5982 5983 5984 5985 5986
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
5987
        output_var_to_op = defaultdict(list)
5988
        # A map from var to op which takes it as input.
5989
        input_var_to_op = defaultdict(list)
5990

5991
        for index, op in enumerate(block.ops):
5992
            for var_name in op.input_arg_names:
5993
                input_var_to_op[var_name].append([op, index])
5994
            for var_name in op.output_arg_names:
5995 5996 5997 5998 5999 6000 6001 6002
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6003 6004
        if self.schedule_mode != '1F1B':
            return
6005 6006 6007

        block = program.block(0)

6008
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6009 6010
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6011
            if op.type == recv_type and self._is_backward_op(op):
6012 6013 6014
                backward_recv_index = index
                break

6015
        # last pipeline stage
6016 6017
        if backward_recv_index is None:
            return
6018 6019 6020

        offset = 0
        for index, op in enumerate(list(block.ops)):
6021 6022
            if index >= backward_recv_index:
                break
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6039 6040
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6041
        block._sync_with_cpp()
6042

6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6056 6057 6058 6059
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6060
                backward_insert_index = i
6061 6062 6063 6064 6065 6066
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6086 6087 6088 6089 6090 6091 6092
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6093 6094 6095 6096 6097 6098 6099
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6127 6128
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6129

6130 6131 6132
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6133
        main_block = loss.block
6134
        self.origin_main_block = main_block
6135
        main_program = main_block.program
6136 6137
        if startup_program is None:
            startup_program = default_startup_program()
6138

6139 6140
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6141 6142 6143 6144 6145 6146 6147
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6148 6149
            'mp_degree',
            'mp_rank',
6150 6151
        ]
        for key in required_keys:
6152 6153 6154
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6155 6156 6157 6158 6159 6160 6161 6162
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6163
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6164 6165
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6166 6167

        optimize_ops, params_grads = self._optimizer.minimize(
6168 6169
            loss, startup_program, parameter_list, no_grad_set
        )
6170
        self._param_device_map = self._origin_optimizer._param_device_map
6171

6172 6173 6174 6175
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6176 6177 6178
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6190 6191 6192
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6193 6194
            "another in the order of their ids."
        )
6195
        # Step2: add send and recv ops between section boundaries
6196
        self._insert_sendrecv_ops_for_boundaries(main_block)
6197

6198
        # Step3: split program into sections and add pairs of
6199 6200
        # send and recv ops for data var.
        main_program = main_block.program
6201
        program_list = self._split_program(main_program, device_list)
6202
        for p in program_list:
6203
            self._create_vars(p.global_block(), main_block)
6204

L
lilong12 已提交
6205 6206 6207 6208 6209
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6210 6211
                "stages."
            )
L
lilong12 已提交
6212 6213
        else:
            self.local_rank %= len(device_list)
6214 6215 6216
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6217
        # Step4: Special Case: process persistable vars that exist in
6218
        # multiple sections
6219
        # FIXME
6220 6221
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6222

6223
        # Step5: Add sub blocks for section programs
6224 6225
        self._add_sub_blocks(main_block, program_list)

6226
        place_list = []
6227 6228
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6229 6230 6231 6232
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6233

6234
        # Step6: Split startup program
6235
        new_startup_program = self._split_startup_program(
6236 6237
            startup_program, self.local_rank
        )
6238 6239 6240 6241

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6242
        real_block = program_list[self.local_rank].global_block()
6243 6244
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6245
        if not self.use_sharding:
6246
            # Step7: clear gradients before each mini-batch and
6247 6248 6249 6250 6251
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6252

6253 6254 6255 6256
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6257 6258 6259
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6260 6261 6262 6263 6264

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6265
        main_program._pipeline_opt = {
H
hutuxian 已提交
6266 6267
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6268
            "pipeline_stage": self.local_rank,
6269
            "num_pipeline_stages": len(device_list),
6270
            "schedule_mode": self.schedule_mode,
6271
            "inner_parallelism": len(device_list),
6272 6273
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6274
            "place_id": place_id,
6275
            "sync_steps": -1,
L
lilong12 已提交
6276
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6277 6278
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6279 6280 6281 6282 6283 6284 6285
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6286 6287


M
mapingshuo 已提交
6288 6289
class RecomputeOptimizer(Optimizer):
    """
6290
        :api_attr: Static Graph
S
swtkiwi 已提交
6291

M
mapingshuo 已提交
6292 6293 6294
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6295
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6296 6297 6298
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6299
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6300 6301 6302
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6303
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6304 6305
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6306

M
mapingshuo 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

6316
            import paddle
M
mapingshuo 已提交
6317 6318
            import paddle.fluid as fluid
            import numpy as np
6319 6320 6321

            paddle.enable_static()

M
mapingshuo 已提交
6322 6323 6324 6325 6326
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
C
Charles-hit 已提交
6327 6328
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6329 6330 6331 6332 6333
                cost = paddle.nn.functional.cross_entropy(
                    input=prediction, label=input_y,
                    reduction='none', use_softmax=False
                )
                sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
姜永久 已提交
6359
        if in_dygraph_mode():
Z
zhongpu 已提交
6360
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6361 6362
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6363 6364
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6365
        self.enable_offload = False
M
mapingshuo 已提交
6366 6367

    def _set_checkpoints(self, checkpoints):
6368 6369
        """
        Args:
6370
            checkpoints (list): List of Variable or string
6371 6372 6373 6374 6375
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6376 6377
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6378
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6379 6380
        self._checkpoints = checkpoints

6381
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6382 6383 6384
    def _enable_offload(self):
        self.enable_offload = True

6385 6386
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6387
        """
6388
            :api_attr: Static Graph
S
swtkiwi 已提交
6389

M
mapingshuo 已提交
6390 6391 6392 6393
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6394
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6395 6396 6397 6398

        Examples:
            .. code-block:: python

6399
                import paddle
M
mapingshuo 已提交
6400
                import paddle.fluid as fluid
6401

6402
                paddle.enable_static()
M
mapingshuo 已提交
6403
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6404 6405
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6406 6407 6408 6409 6410
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6411
                    return sum_cost, fc_1, prediction
6412

M
mapingshuo 已提交
6413 6414 6415 6416
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6417

M
mapingshuo 已提交
6418 6419 6420 6421
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6422 6423
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6424
                except NotImplementedError as e:
6425
                    print(e)
M
mapingshuo 已提交
6426 6427
        """
        raise NotImplementedError(
6428 6429
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

6444
                import paddle
M
mapingshuo 已提交
6445 6446 6447
                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

6448 6449
                paddle.enable_static()

M
mapingshuo 已提交
6450
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6451 6452
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6453 6454 6455 6456 6457
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6468
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6469 6470 6471 6472
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6473
                    no_grad_set=None)
M
mapingshuo 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6484 6485 6486 6487 6488 6489 6490 6491 6492
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6493 6494
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
6495 6496 6497 6498 6499 6500

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6501 6502
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
6503 6504 6505 6506 6507 6508 6509 6510

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6511 6512 6513
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
6540 6541 6542

        return

6543 6544 6545
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
6546 6547 6548 6549 6550 6551 6552 6553
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6554 6555
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
6556 6557

    def _insert_fetch_op(self, idx, varname):
6558 6559 6560 6561 6562
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6563 6564 6565

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6566
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6567 6568

    def _insert_offload_op(self, idx, varname):
6569 6570 6571 6572 6573
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6574
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6575
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6576 6577

    def _insert_sync_op(self, op_idx, checkpoint_name):
6578
        # single stream offload no need sync
J
JZ-LIANG 已提交
6579 6580 6581
        pass

    def _record_fetch_op(self, idx):
6582 6583 6584
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
6585 6586 6587 6588 6589 6590 6591 6592
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
6593 6594 6595 6596 6597
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
6598 6599 6600 6601
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
6602 6603 6604
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
6605 6606 6607 6608 6609 6610 6611
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
6612
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
6627 6628
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
6629 6630 6631

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
6632 6633
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
6634 6635
        last_last_fetch_checkpoint = None

6636
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
6637 6638 6639 6640 6641 6642 6643 6644 6645
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
6646 6647 6648
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
6649
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6650
                            if input_var != self.sorted_checkpoint_names[0]:
6651 6652 6653
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
6654

6655
                        # should check the current used checkpoint is ths last fetch one
6656 6657 6658 6659 6660
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
6661 6662 6663
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
6664 6665
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
6666 6667 6668 6669
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
6670 6671 6672
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
6673

6674 6675 6676 6677 6678
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6689
                    logging.debug(
6690 6691
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6692 6693 6694 6695 6696
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
6697 6698 6699 6700 6701
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6702 6703 6704 6705

    def _parse_forward(self):

        self.idx2insertions = {}
6706
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6707 6708 6709 6710 6711 6712 6713
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
6714
                'idx': -1,
J
JZ-LIANG 已提交
6715 6716 6717 6718 6719 6720 6721 6722 6723
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
6724 6725
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
6726 6727
        last_offload_checkpoint = None

6728
        for i, op in enumerate(
6729 6730
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
6731 6732 6733 6734 6735 6736 6737

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
6738 6739 6740 6741 6742
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
6743 6744 6745

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
6746
                        if last_offload_checkpoint is not None:
6747 6748 6749 6750 6751 6752 6753 6754 6755
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6756
                            else:
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6770 6771 6772 6773 6774
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6775 6776 6777 6778
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
6779 6780
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
6794
                    # sync if last checkpoint has not been sync
6795 6796 6797 6798 6799 6800
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
6801 6802 6803
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
6814
            # record checkpoint usage
J
JZ-LIANG 已提交
6815 6816
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
6817 6818 6819
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
6820 6821 6822
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

6823 6824 6825 6826 6827
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6828 6829 6830
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
6831 6832
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
6833 6834 6835 6836 6837

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
6838 6839
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
6840 6841 6842 6843
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
6844
                    logging.debug(
6845 6846
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6847 6848 6849
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
6850
                    logging.debug(
6851 6852
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6853 6854 6855
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
6856 6857 6858 6859 6860
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6861 6862 6863 6864 6865 6866 6867 6868

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
6869
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
6870 6871 6872 6873 6874 6875
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
6876
        if startup_program is None:
J
JZ-LIANG 已提交
6877
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
6878 6879

        with program_guard(self._main_program, startup_program):
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
6890 6891 6892 6893
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
6894 6895
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
6896
                self.checkpoint_name2pinned_name[
6897 6898
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
6899
                self.checkpoint_name2fetch_name[
6900 6901
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

6915 6916 6917 6918 6919 6920 6921 6922
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
6923 6924 6925 6926 6927 6928 6929
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
6930 6931
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
6932 6933 6934 6935 6936 6937 6938
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

6939
                import paddle
M
mapingshuo 已提交
6940
                import paddle.fluid as fluid
6941

6942 6943
                paddle.enable_static()

M
mapingshuo 已提交
6944
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6945 6946
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6947 6948 6949 6950 6951
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6952
                    return sum_cost, fc_1, prediction
6953 6954


M
mapingshuo 已提交
6955 6956 6957 6958
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6959

M
mapingshuo 已提交
6960 6961
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6962
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6963 6964 6965 6966
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6967
                    no_grad_set=None)
M
mapingshuo 已提交
6968 6969
                print("Finished backward")
        """
6970 6971 6972
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
6973

姜永久 已提交
6974
        if in_dygraph_mode():
M
mapingshuo 已提交
6975
            raise NotImplementedError(
6976 6977
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
6978 6979 6980 6981

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
6982 6983 6984 6985 6986 6987 6988
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
6989 6990 6991 6992 6993 6994
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
6995 6996
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
6997
            else:
6998 6999 7000 7001 7002 7003
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7004 7005 7006 7007 7008

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
7021
                import paddle
M
mapingshuo 已提交
7022
                import paddle.fluid as fluid
7023

7024 7025
                paddle.enable_static()

M
mapingshuo 已提交
7026
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7027 7028
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7029 7030 7031 7032 7033
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
7034 7035
                    return sum_cost, fc_1, prediction

M
mapingshuo 已提交
7036 7037 7038 7039
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7040

M
mapingshuo 已提交
7041 7042
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7043
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7044 7045 7046 7047
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7048
                    no_grad_set=None)
7049

M
mapingshuo 已提交
7050 7051
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7052

M
mapingshuo 已提交
7053 7054 7055
                print("Finished apply_optimize")
        """

7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7068
        assert isinstance(loss, Variable), "The loss should be an Variable."
7069 7070 7071
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
姜永久 已提交
7072
        if in_dygraph_mode():
M
mapingshuo 已提交
7073
            raise NotImplementedError(
7074 7075 7076 7077 7078 7079 7080 7081
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7082

7083 7084 7085
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7086 7087 7088 7089

        return optimize_ops, params_grads


7090
class LookaheadOptimizer:
7091
    r"""
7092
        :api_attr: Static Graph
S
swtkiwi 已提交
7093

M
mapingshuo 已提交
7094 7095 7096 7097
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7098 7099
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7100 7101 7102
    every k training steps as follows:

    .. math::
7103

M
mapingshuo 已提交
7104
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7105

7106
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7107 7108

    Args:
7109
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7110 7111 7112 7113 7114 7115 7116 7117 7118
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7119
            import numpy.random as random
M
mapingshuo 已提交
7120

7121
            paddle.enable_static()
7122

7123 7124
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
C
Charles-hit 已提交
7125
            y = paddle.static.nn.fc(x=[x], size=2, activation="softmax")
7126 7127 7128 7129
            loss = paddle.nn.functional.cross_entropy(
                input=y, label=label,
                reduction='none', use_softmax=False
            )
7130
            loss = paddle.mean(x=loss)
7131 7132 7133 7134 7135 7136 7137 7138 7139
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7140

7141 7142 7143
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7144

7145 7146
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7147

7148 7149 7150
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7151 7152 7153 7154 7155

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

姜永久 已提交
7156
        if in_dygraph_mode():
Z
zhongpu 已提交
7157
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7158
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7159 7160 7161
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7162
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7173 7174
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7186 7187 7188 7189 7190 7191 7192
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7193 7194 7195 7196 7197 7198
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7199 7200 7201 7202 7203 7204 7205
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7206

7207 7208 7209
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7210

7211 7212
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7213
            k = paddle.static.create_global_var(
7214 7215 7216 7217 7218 7219
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7220

7221
            # Add Var alpha to main prog and startup prog
7222
            alpha = paddle.static.create_global_var(
7223 7224 7225 7226 7227 7228
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7229

7230
            # Add Var step
7231
            step = paddle.static.create_global_var(
7232 7233 7234 7235 7236 7237
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7238
            paddle.increment(x=step, value=1.0)
7239 7240

            # lookahead
7241 7242 7243
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0
            )
7244

7245 7246 7247
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0
            )
7248

7249
            mod = paddle.remainder(step, k)
7250
            with layers.control_flow.Switch() as switch:
7251 7252 7253 7254 7255
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
7256 7257 7258 7259
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7260 7261 7262 7263
                        tmp_var = paddle.add(
                            paddle.multiply(fast_var, alpha),
                            paddle.multiply(
                                slow_var, paddle.subtract(one_var, alpha)
7264 7265
                            ),
                        )
7266 7267 7268 7269
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
7270
        return mini_out
7271 7272


7273
class GradientMergeOptimizer:
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

7296
        import paddle
7297 7298 7299 7300 7301 7302 7303 7304
        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7305 7306
            fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
            prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7307 7308 7309 7310 7311
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=input_y,
                reduction='none', use_softmax=False
            )
            sum_cost = paddle.mean(cost)
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7332 7333
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7334
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
姜永久 已提交
7335
        if in_dygraph_mode():
7336 7337 7338
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7339 7340
                "and one-time optimizer.minimize()"
            )
7341

7342 7343 7344 7345
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7346 7347 7348 7349 7350

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7351
        self._optimize_ops = None
7352

7353 7354 7355 7356 7357 7358
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7359 7360 7361 7362 7363 7364 7365 7366
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7367 7368 7369 7370 7371 7372 7373 7374 7375
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7376 7377
            loss, startup_program=startup_program
        )
7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7389 7390 7391
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7392 7393 7394 7395 7396 7397
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7398 7399 7400 7401 7402
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7403 7404 7405

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7442
        k_step_var = paddle.static.create_global_var(
7443 7444 7445 7446 7447 7448 7449 7450
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

7451
        zero_var = paddle.static.create_global_var(
7452 7453 7454 7455 7456 7457 7458
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7459 7460

        # Add step var & cond var
7461
        step_var = paddle.static.create_global_var(
7462 7463 7464 7465 7466 7467 7468
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7469

7470 7471 7472
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7473 7474 7475

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
7476
            paddle.increment(x=step_var, value=1.0)
7477 7478 7479 7480 7481 7482
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7483 7484

            # cond_var = (step_var == 0)
7485 7486 7487 7488 7489
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7490 7491 7492 7493 7494 7495 7496 7497 7498 7499

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7500

7501
        # TODO(mapingshuo) support sparse embedding
7502 7503
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7504
            assert (
7505
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7506 7507
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7508
            self._remove_op_role_var(param, grad)
7509

7510
        param_to_grad = {k.name: v for (k, v) in params_grads}
7511 7512 7513
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7514 7515 7516 7517 7518
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7519
            param_var = main_block.var(param_name)
7520 7521 7522 7523 7524 7525 7526
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
7527
            param_to_gradient_merge[param_name] = gradient_merge_var
7528

7529 7530 7531 7532
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
7544

7545 7546 7547
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7548
                inputs={'X': grad, 'Y': gradient_merge_var},
7549
                outputs={'Out': gradient_merge_var},
7550 7551 7552 7553 7554
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
7555 7556 7557 7558 7559 7560 7561 7562
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7563
            op_maker = core.op_proto_and_checker_maker
7564 7565 7566 7567

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
7581

7582 7583 7584 7585 7586 7587
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7588

7589
            self._optimize_ops = self.inner_optimizer.apply_gradients(
7590 7591
                new_params_grads
            )
7592

7593 7594
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7595 7596 7597 7598 7599 7600 7601 7602 7603
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
7604 7605

        # step3. apply gradient
7606
        paddle.static.nn.cond(cond, true_fn=true_apply_gradient, false_fn=None)
7607 7608 7609

        return self._optimize_ops

7610 7611 7612
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7613 7614
        assert isinstance(loss, Variable), "The loss should be an Variable."

7615 7616 7617 7618 7619 7620
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
7621

7622 7623 7624
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
7625 7626

        return optimize_ops, params_grads