math.py 252.6 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17

18

19
import numpy as np
20

21
import paddle
22 23
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils
24 25
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

26
from ..base.data_feeder import (
27
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30 31
    convert_dtype,
)
32
from ..common_ops_import import Variable
33 34 35 36
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
37
    in_dynamic_mode,
38 39
    in_dynamic_or_new_ir_mode,
    in_new_ir_mode,
40 41 42
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
43
from .manipulation import cast, cast_
44
from .ops import abs  # noqa: F401
G
GGBond8488 已提交
45
from .ops import abs_  # noqa: F401
46
from .ops import acos  # noqa: F401
G
GGBond8488 已提交
47
from .ops import acos_  # noqa: F401
48
from .ops import acosh  # noqa: F401
G
GGBond8488 已提交
49
from .ops import acosh_  # noqa: F401
50
from .ops import asin  # noqa: F401
G
GGBond8488 已提交
51
from .ops import asin_  # noqa: F401
52
from .ops import asinh  # noqa: F401
G
GGBond8488 已提交
53
from .ops import asinh_  # noqa: F401
54
from .ops import atan  # noqa: F401
G
GGBond8488 已提交
55
from .ops import atan_  # noqa: F401
56
from .ops import atanh  # noqa: F401
G
GGBond8488 已提交
57
from .ops import atanh_  # noqa: F401
58 59 60
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
G
GGBond8488 已提交
61
from .ops import cos_  # noqa: F401
62
from .ops import cosh  # noqa: F401
G
GGBond8488 已提交
63
from .ops import cosh_  # noqa: F401
64
from .ops import erf  # noqa: F401
G
GGBond8488 已提交
65
from .ops import erf_  # noqa: F401
66 67 68
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
G
GGBond8488 已提交
69
from .ops import expm1_  # noqa: F401
70 71 72 73 74 75 76 77
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
78 79
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
80
from .ops import sin  # noqa: F401
G
GGBond8488 已提交
81
from .ops import sin_  # noqa: F401
82
from .ops import sinh  # noqa: F401
G
GGBond8488 已提交
83
from .ops import sinh_  # noqa: F401
84 85
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
86
from .ops import square  # noqa: F401
G
GGBond8488 已提交
87
from .ops import square_  # noqa: F401
88
from .ops import tan  # noqa: F401
G
GGBond8488 已提交
89
from .ops import tan_  # noqa: F401
90

91 92
__all__ = []

93 94 95 96 97 98 99 100 101 102 103 104 105
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
140 141
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
142 143 144
    return reduce_all, axis


145 146
def log(x, name=None):
    r"""
C
Chen Long 已提交
147
    Calculates the natural log of the given input Tensor, element-wise.
148 149 150

    .. math::

151
        Out = \ln(x)
152 153

    Args:
154
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
155 156 157 158 159 160 161 162 163 164
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

165
            >>> import paddle
166

167 168 169 170 171 172
            >>> x = [[2, 3, 4], [7, 8, 9]]
            >>> x = paddle.to_tensor(x, dtype='float32')
            >>> print(paddle.log(x))
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.69314718, 1.09861231, 1.38629436],
             [1.94591010, 2.07944155, 2.19722462]])
173
    """
174
    if in_dynamic_mode():
175
        return _C_ops.log(x)
176
    else:
177
        check_variable_and_dtype(
178 179 180 181
            x,
            'x',
            ['int32', 'int64', 'uint16', 'float16', 'float32', 'float64'],
            "log",
182
        )
183 184 185 186 187 188
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
189 190


191 192 193 194 195 196 197 198 199 200 201
@inplace_apis_in_dygraph_only
def log_(x, name=None):
    r"""
    Inplace version of ``log`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log`.
    """

    if in_dynamic_mode():
        return _C_ops.log_(x)


202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
219
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
220
        scale (float|Tensor): The scale factor of the input, it should be a float number or a 0-D Tensor with shape [] and data type as float32.
221 222 223 224
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
225 226

    Returns:
C
Chen Long 已提交
227
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
228 229 230

    Examples:
        .. code-block:: python
231

232 233
            >>> # scale as a float32 number
            >>> import paddle
234

235 236 237 238 239 240 241 242 243 244
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> res = paddle.scale(data, scale=2.0, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
245 246 247

        .. code-block:: python

248 249
            >>> # scale with parameter scale as a Tensor
            >>> import paddle
250

251 252 253 254 255 256 257 258 259 260 261
            >>> data = paddle.arange(6).astype("float32").reshape([2, 3])
            >>> print(data)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2.],
             [3., 4., 5.]])
            >>> factor = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.scale(data, scale=factor, bias=1.0)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 3. , 5. ],
             [7. , 9. , 11.]])
262 263 264

    """

265
    if in_dynamic_mode():
W
Weilong Wu 已提交
266 267
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
268 269
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
270 271 272 273
    elif in_new_ir_mode():
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
        raise ValueError("act is not implement in new ir of scale api.")
274 275
    else:
        check_variable_and_dtype(
276
            x,
277 278 279
            "x",
            [
                'float16',
280
                'bfloat16',
281 282 283 284 285 286 287 288
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
289 290
                'complex64',
                'complex128',
291 292
            ],
            "scale",
293
        )
294 295 296 297 298 299 300 301 302 303 304
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
305

306 307 308 309
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
310 311 312


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
313 314
    r"""

315 316 317 318
    stanh activation.

    .. math::

319
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
320 321 322 323 324

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
325
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
326 327 328 329 330 331 332

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

333
            >>> import paddle
334

335 336 337 338 339
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = paddle.stanh(x, scale_a=0.67, scale_b=1.72)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00616539, 1.49927628, 1.65933096, 1.70390463])
340 341 342

    """

343
    if in_dynamic_mode():
Z
zyfncg 已提交
344
        return _C_ops.stanh(x, scale_a, scale_b)
345 346
    else:
        check_variable_and_dtype(
347
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'stanh'
348
        )
349

350 351 352 353 354 355 356 357 358
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
359

360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
392
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
393

394 395 396 397 398 399 400
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

401
            >>> import paddle
402

403 404 405 406 407 408 409 410 411
            >>> img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            >>> img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            >>> inputs = [img1, img2]
            >>> index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
            >>> res = paddle.multiplex(inputs, index)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[5., 6.],
             [3., 4.]])
412 413

    """
414
    if in_dynamic_mode():
415
        return _C_ops.multiplex(inputs, index)
416 417
    else:
        helper = LayerHelper('multiplex', **locals())
418

419 420 421 422 423 424 425 426 427 428 429 430
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
431
        check_variable_and_dtype(
432
            index, "index", ['int32', 'int64'], 'multiplex'
433
        )
434

435 436 437 438 439 440 441
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
442

443

444 445 446 447
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
448
    Please refer to :ref:`api_paddle_scale`.
449
    """
450
    if in_dynamic_mode():
451
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
452 453


454
def pow(x, y, name=None):
455
    """
C
Chen Long 已提交
456
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
457

458
    .. math::
459
        out = x^{y}
460

461
    Note:
I
Infinity_lee 已提交
462 463 464
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
465 466


467
    Args:
468
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
469
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
470
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
471

472
    Returns:
473
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
474 475 476

    Examples:

477
        .. code-block:: python
478

479
            >>> import paddle
480

481
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
482

483 484 485 486 487 488 489 490 491
            >>> # example 1: y is a float or int
            >>> res = paddle.pow(x, 2)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
            >>> res = paddle.pow(x, 2.5)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.         , 5.65685415 , 15.58845711])
492

493 494 495 496 497 498
            >>> # example 2: y is a Tensor
            >>> y = paddle.to_tensor([2], dtype='float32')
            >>> res = paddle.pow(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 4., 9.])
499 500

    """
501
    # in dynamic graph mode
502
    if in_dynamic_mode():
503
        if isinstance(y, (int, float)):
504
            return _C_ops.pow(x, y)
505
        elif isinstance(y, (paddle.Tensor, Variable)):
506
            return _C_ops.elementwise_pow(x, y)
507
        else:
508
            raise TypeError(
509 510
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
511 512
    else:
        # in static graph mode
513
        if isinstance(y, (int, float)):
514 515 516 517 518 519
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
520
            )
521 522 523 524 525 526
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
527
        else:
528
            raise TypeError(
529
                'y must be scalar or tensor type, but received: %s ' % (type(y))
530
            )
531 532


533 534 535 536
@inplace_apis_in_dygraph_only
def pow_(x, y, name=None):
    """
    Inplace version of ``pow`` API, the output Tensor will be inplaced with input ``x``.
537
    Please refer to :ref:`api_paddle_pow`.
538 539 540 541
    """
    if isinstance(y, (int, float)):
        return _C_ops.pow_(x, y)
    else:
G
GGBond8488 已提交
542
        raise TypeError('y must be scalar type, but received: %s ' % (type(y)))
543 544


545
OP_NAMEMAPPING = {
546 547 548 549 550 551 552 553
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
554
    'elementwise_mod': 'remainder',
555
}
556

557

558 559 560 561 562 563
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

564 565
    out = helper.kwargs.get('out', None)

566 567
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
568 569 570 571 572
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
573
        "elementwise_max",
574 575 576 577 578 579 580 581 582 583 584 585 586 587
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
588 589 590 591 592 593 594 595 596
        data_type = [
            'float16',
            'uint16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
        ]
597
    check_variable_and_dtype(
598 599
        x,
        'x',
600
        data_type,
601 602
        original_op_type,
    )
603
    check_variable_and_dtype(
604 605
        y,
        'y',
606
        data_type,
607 608
        original_op_type,
    )
609 610 611 612

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
613 614 615 616 617

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
618 619 620 621 622 623 624 625 626 627
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
628 629 630
    return helper.append_activation(out)


Y
Yang Zhang 已提交
631
def add(x, y, name=None):
632
    """
633 634 635 636 637 638 639 640
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

641 642
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
643 644

    There are two cases for this operator:
645 646 647 648

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

649
    For case 2:
650 651

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
652
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
653
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
654 655 656

        For example:

657
        .. code-block:: text
658

659 660 661 662 663 664
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
665

666
    Args:
667 668 669
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
670 671

    Returns:
H
HongyuJia 已提交
672
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
673 674 675

    Examples:

676
        .. code-block:: python
677

678
            >>> import paddle
679

680 681 682 683 684 685
            >>> x = paddle.to_tensor([2, 3, 4], 'float64')
            >>> y = paddle.to_tensor([1, 5, 2], 'float64')
            >>> z = paddle.add(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [3., 8., 6.])
686
    """
687

688
    if in_dynamic_mode():
689
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
690
    else:
691
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
692 693


694 695 696 697
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
698
    Please refer to :ref:`api_paddle_add`.
699 700 701 702
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
703
        raise ValueError(
704 705 706 707
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
708

709
    return _C_ops.add_(x, y)
710 711


Z
zhiboniu 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
def logaddexp(x, y, name=None):
    """
    Elementwise LogAddExp Operator.
    Add of exponentiations of the inputs
    The equation is:

    ..  math::

        Out=log(X.exp()+Y.exp())

    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.

    There are two cases for this operator:

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

    For case 2:

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).

        For example:

738
        .. code-block:: text
Z
zhiboniu 已提交
739 740 741 742 743 744 745 746 747

            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0

    Args:
H
Hui Zhang 已提交
748 749
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64, float16.
Z
zhiboniu 已提交
750 751 752 753 754 755 756
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.

    Examples:

757
        .. code-block:: python
Z
zhiboniu 已提交
758

759
            >>> import paddle
Z
zhiboniu 已提交
760

761 762 763 764 765 766
            >>> x = paddle.to_tensor([-1, -2, -3], 'float64')
            >>> y = paddle.to_tensor([-1], 'float64')
            >>> z = paddle.logaddexp(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-0.30685282, -0.68673831, -0.87307199])
Z
zhiboniu 已提交
767 768 769 770 771
    """

    return paddle.log1p(paddle.exp(-paddle.abs(x - y))) + paddle.maximum(x, y)


772 773
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
774
    Substract two tensors element-wise. The equation is:
775 776 777 778

    .. math::
        out = x - y

779
    Note:
I
Infinity_lee 已提交
780 781 782
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
783 784 785 786 787 788 789 790 791 792 793 794

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
795

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[5, 6], [3, 4]])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-4, -4],
             [ 4,  4]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([1, 0, 4])
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[ 0,  2, -1],
              [ 0,  2, -1]]])

            >>> x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            >>> y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
            >>> y = paddle.to_tensor([1, 4, 5], dtype='float64')
            >>> res = paddle.subtract(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 4.  ,  inf., -inf.])
827
    """
828
    if in_dynamic_mode():
829
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
830
    else:
831
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
832 833


834 835 836 837
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
838
    Please refer to :ref:`api_paddle_subtract`.
839 840 841 842
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
843
        raise ValueError(
844 845 846 847
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
848

849
    return _C_ops.subtract_(x, y)
850 851


852
def divide(x, y, name=None):
853
    """
854
    Divide two tensors element-wise. The equation is:
855

856 857
    .. math::
        out = x / y
858

859
    Note:
I
Infinity_lee 已提交
860 861 862
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
863

864 865 866 867
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
868

869
    Returns:
870
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
871

872
    Examples:
873

874
        .. code-block:: python
875

876
            >>> import paddle
877

878 879 880 881 882 883
            >>> x = paddle.to_tensor([2, 3, 4], dtype='float64')
            >>> y = paddle.to_tensor([1, 5, 2], dtype='float64')
            >>> z = paddle.divide(x, y)
            >>> print(z)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [2.        , 0.60000000, 2.        ])
884

885
    """
886
    if in_dynamic_mode():
887
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
888
    else:
889 890
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.divide(x, y)
891
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
892 893


894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
@inplace_apis_in_dygraph_only
def divide_(x, y, name=None):
    r"""
    Inplace version of ``divide`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_divide`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
    return _C_ops.divide_(x, y)


910 911
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
912
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
913

914
    .. math::
L
Lin Manhui 已提交
915
        out = trunc(x / y)
916

H
hg-1099255210 已提交
917 918 919
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

920
    Note:
I
Infinity_lee 已提交
921 922 923 924
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
925
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
926

927
    Args:
928 929
        x (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
        y (Tensor): the input tensor, it's data type should be uint8, int8, int32, int64, float32, float64, float16, bfloat16.
930
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
931

932 933
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
934

935
    Examples:
936

937
        .. code-block:: python
938

939
            >>> import paddle
940

941 942 943 944 945 946
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.floor_divide(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 0, 2, 2])
947

948
    """
949
    if in_dynamic_mode():
950
        return _C_ops.floor_divide(x, y)
951
    else:
952
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
953 954


955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
@inplace_apis_in_dygraph_only
def floor_divide_(x, y, name=None):
    r"""
    Inplace version of ``floor_divide`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_floor_divide`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
    return _C_ops.floor_divide_(x, y)


971
def remainder(x, y, name=None):
972
    r"""
973 974 975
    Mod two tensors element-wise. The equation is:

    .. math::
976

977 978
        out = x \% y

979
    Note:
I
Infinity_lee 已提交
980 981 982
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
983 984

    Args:
985 986
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
987 988 989
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
990
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
991 992 993

    Examples:

994
        .. code-block:: python
995

996
            >>> import paddle
997

998 999 1000 1001 1002 1003
            >>> x = paddle.to_tensor([2, 3, 8, 7])
            >>> y = paddle.to_tensor([1, 5, 3, 3])
            >>> z = paddle.remainder(x, y)
            >>> print(z)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 3, 2, 1])
1004 1005

    """
1006
    if in_dynamic_mode():
1007
        return _C_ops.remainder(x, y)
1008
    else:
1009
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
1010 1011


1012 1013 1014 1015
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
1016
    Please refer to :ref:`api_paddle_remainder`.
1017 1018 1019 1020
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
1021 1022 1023 1024
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
1025
    return _C_ops.remainder_(x, y)
1026 1027


1028 1029
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
mod_ = remainder_  # noqa: F841
mod_.__doc__ = r"""
    Inplace version of ``mod`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_mod`.
    """
floor_mod_ = remainder_  # noqa: F841
floor_mod_.__doc__ = r"""
    Inplace version of ``floor_mod_`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_floor_mod_`.
    """
1040 1041


1042
def multiply(x, y, name=None):
1043
    """
1044
    multiply two tensors element-wise. The equation is:
1045

1046 1047
    .. math::
        out = x * y
1048

1049
    Note:
I
Infinity_lee 已提交
1050 1051 1052
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1053

1054
    Args:
W
will-jl944 已提交
1055 1056
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
1057
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1058

1059
    Returns:
1060
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1061

1062 1063
    Examples:

1064
        .. code-block:: python
1065

1066
            >>> import paddle
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
            >>> x = paddle.to_tensor([[1, 2], [3, 4]])
            >>> y = paddle.to_tensor([[5, 6], [7, 8]])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[5 , 12],
             [21, 32]])
            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([2])
            >>> res = paddle.multiply(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[2, 4, 6],
              [2, 4, 6]]])
1082 1083

    """
1084
    if in_dynamic_mode():
1085
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
1086
    else:
1087 1088
        if x.dtype != y.dtype:
            raise TypeError(
1089
                f'Input tensors must be same type, but received type of x: {x.dtype}, type of y: {y.dtype} '
1090
            )
1091

1092
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
1093

1094

1095 1096 1097 1098
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
1099
    Please refer to :ref:`api_paddle_multiply`.
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


1113 1114 1115 1116 1117
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
1118 1119
        in_dynamic_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dynamic_mode"
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1140
    if in_dynamic_mode():
1141 1142 1143
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
1144
        return _elementwise_op(LayerHelper(op_type, **locals()))
1145 1146 1147 1148


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1149
    if in_dynamic_mode():
1150 1151 1152 1153 1154
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
1155
        return _elementwise_op(LayerHelper(op_type, **locals()))
1156 1157 1158 1159


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1160
    if in_dynamic_mode():
1161 1162 1163 1164 1165
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
1166
        return _elementwise_op(LayerHelper(op_type, **locals()))
1167 1168 1169 1170


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
1171
    if in_dynamic_mode():
1172 1173 1174
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
1175
        return _elementwise_op(LayerHelper(op_type, **locals()))
1176 1177


1178
def maximum(x, y, name=None):
1179
    """
W
Wei Shengyu 已提交
1180
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
1181

1182 1183
    .. math::
        out = max(x, y)
1184

1185
    Note:
I
Infinity_lee 已提交
1186 1187 1188
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.maximum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
1233
    """
1234
    if in_dynamic_mode():
1235
        return _C_ops.maximum(x, y)
1236
    else:
1237
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1238

1239

1240
def minimum(x, y, name=None):
1241
    """
C
Chen Long 已提交
1242
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1243

1244 1245
    .. math::
        out = min(x, y)
1246

1247
    Note:
I
Infinity_lee 已提交
1248 1249 1250
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1251 1252 1253 1254 1255 1256 1257

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1258
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1259 1260 1261 1262 1263

    Examples:

        .. code-block:: python

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1. , nan, nan])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.minimum(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
1295
    """
1296
    if in_dynamic_mode():
1297
        return _C_ops.minimum(x, y)
1298
    else:
1299
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1300

1301

L
LJQ❤️ 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1311
    Note:
I
Infinity_lee 已提交
1312 1313 1314
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1315 1316

    Args:
1317 1318
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 4],
             [7, 8]])

            >>> x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 2, 4],
             [3, 2, 4]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
            >>> res = paddle.fmax(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1359
    """
1360
    if in_dynamic_mode():
1361
        return _C_ops.fmax(x, y)
1362
    else:
1363
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1364

1365

L
LJQ❤️ 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1375
    Note:
I
Infinity_lee 已提交
1376 1377 1378
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1379 1380

    Args:
1381 1382
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2], [7, 8]])
            >>> y = paddle.to_tensor([[3, 4], [5, 6]])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 2],
             [5, 6]])

            >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            >>> y = paddle.to_tensor([3, 0, 4])
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[1, 0, 3],
              [1, 0, 3]]])

            >>> x = paddle.to_tensor([2, 3, 5], dtype='float32')
            >>> y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1., 3., 5.])

            >>> x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            >>> y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
            >>> res = paddle.fmin(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1423
    """
1424
    if in_dynamic_mode():
1425
        return _C_ops.fmin(x, y)
1426
    else:
1427
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1428

Y
Yang Zhang 已提交
1429

1430
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1431 1432 1433 1434
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1435
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1436 1437
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1438
            Tensor with a single element, otherwise must be in the
1439 1440 1441 1442 1443 1444 1445
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1446
            value is False.
1447
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1448 1449

    Returns:
1450
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1451
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1452
        otherwise it's data type is the same as `x`.
1453 1454 1455 1456

    Examples:
        .. code-block:: python

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
            >>> import paddle

            >>> # x is a Tensor with following elements:
            >>> #    [[0.2, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, 0.6, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.sum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.50000000)
            >>> out2 = paddle.sum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.30000001, 0.50000000, 1.10000002, 1.59999990])
            >>> out3 = paddle.sum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.89999998, 1.60000002])
            >>> out4 = paddle.sum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.89999998],
             [1.60000002]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, 2], [3, 4]],
            >>> #      [[5, 6], [7, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, 2], [3, 4]],
            ...                       [[5, 6], [7, 8]]])
            >>> out5 = paddle.sum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [10, 26])
            >>> out6 = paddle.sum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [16, 20])

            >>> # x is a Tensor with following elements:
            >>> #    [[True, True, True, True]
            >>> #     [False, False, False, False]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[True, True, True, True],
            ...                       [False, False, False, False]])
            >>> out7 = paddle.sum(x)
            >>> out7
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
            >>> out8 = paddle.sum(x, axis=0)
            >>> out8
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 1, 1, 1])
            >>> out9 = paddle.sum(x, axis=1)
            >>> out9
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [4, 0])
1516
    """
1517

1518 1519
    dtype_flag = False
    if dtype is not None:
1520 1521 1522 1523 1524
        if paddle.ir.core._use_new_ir_api():
            dtype = paddle.ir.core.convert_np_dtype_to_dtype_(dtype)
        else:
            dtype_flag = True
            dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1525

1526
    if in_dynamic_mode():
1527
        return _C_ops.sum(x, axis, dtype, keepdim)
1528
    else:
1529 1530
        if paddle.ir.core._use_new_ir_api():
            return paddle._ir_ops.sum(x, axis, dtype, keepdim)
1531 1532
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1533

1534
        if dtype_flag:
1535
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1536

1537 1538 1539 1540 1541
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1542
                'uint16',
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1554

1555 1556 1557
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1558

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1571

1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
            >>> import paddle

            >>> x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            >>> out1 = paddle.nan_to_num(x)
            >>> out1
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out2 = paddle.nan_to_num(x, nan=1)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.                                      ,
              0.30000001                              ,
              340282346638528859811704183484516925440.,
             -340282346638528859811704183484516925440.])
            >>> out3 = paddle.nan_to_num(x, posinf=5)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.                                      ,
              0.30000001                              ,
              5.                                      ,
             -340282346638528859811704183484516925440.])
            >>> out4 = paddle.nan_to_num(x, nan=10, neginf=-99)
            >>> out4
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 10.                                    ,
              0.30000001                             ,
             340282346638528859811704183484516925440.,
             -99.                                    ])
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
@inplace_apis_in_dygraph_only
def nan_to_num_(x, nan=0.0, posinf=None, neginf=None, name=None):
    r"""
    Inplace version of ``nan_to_num`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_nan_to_num`.
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x_not_nan = paddle.logical_not(paddle.isnan(x))
    x = paddle.where_(x_not_nan, x, nan)
    x = paddle.where_(x != posinf_value, x, posinf)
    x = paddle.where_(x != neginf_value, x, neginf)
    return x


W
wangguanqun 已提交
1675 1676 1677 1678 1679
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1680
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1692
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1693 1694 1695 1696 1697 1698 1699

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

1700
            >>> import paddle
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

            >>> # x is a Tensor with following elements:
            >>> #    [[nan, 0.3, 0.5, 0.9]
            >>> #     [0.1, 0.2, -nan, 0.7]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
            >>> out1 = paddle.nansum(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.69999981)
            >>> out2 = paddle.nansum(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.50000000, 0.50000000, 1.59999990])
            >>> out3 = paddle.nansum(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.70000005, 1.        ])
            >>> out4 = paddle.nansum(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.70000005],
             [1.        ]])

            >>> # y is a Tensor with shape [2, 2, 2] and elements as below:
            >>> #      [[[1, nan], [3, 4]],
            >>> #       [[5, 6], [-nan, 8]]]
            >>> # Each example is followed by the corresponding output tensor.
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out5 = paddle.nansum(y, axis=[1, 2])
            >>> out5
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [8. , 19.])
            >>> out6 = paddle.nansum(y, axis=[0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [9. , 18.])
W
wangguanqun 已提交
1740
    """
1741
    check_variable_and_dtype(
1742
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1743
    )
W
wangguanqun 已提交
1744 1745 1746 1747 1748 1749 1750
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, float('-nan'), 0.7]])
            >>> out1 = paddle.nanmean(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.44999996)
            >>> out2 = paddle.nanmean(x, axis=0)
            >>> out2
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.10000000, 0.25000000, 0.50000000, 0.79999995])
            >>> out3 = paddle.nanmean(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.10000000, 0.25000000, 0.50000000, 0.79999995]])
            >>> out4 = paddle.nanmean(x, axis=1)
            >>> out4
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.56666666, 0.33333334])
            >>> out5 = paddle.nanmean(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.56666666],
             [0.33333334]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
            ...                       [[5, 6], [float('-nan'), 8]]])
            >>> out6 = paddle.nanmean(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2.66666675, 6.33333349])
            >>> out7 = paddle.nanmean(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3., 6.])
1819 1820 1821
    """
    if isinstance(axis, int):
        axis = [axis]
1822 1823 1824
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1825 1826 1827
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1828 1829 1830
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1831 1832
        cnt.astype(x.dtype),
    )
1833 1834


1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
            >>> import paddle
            >>> # x is a 2-D Tensor:
            >>> x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            >>> out1 = paddle.count_nonzero(x)
            >>> out1
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            3)
            >>> out2 = paddle.count_nonzero(x, axis=0)
            >>> out2
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 2])
            >>> out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            >>> out3
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 2]])
            >>> out4 = paddle.count_nonzero(x, axis=1)
            >>> out4
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [2, 1, 0])
            >>> out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            >>> out5
            Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[2],
             [1],
             [0]])

            >>> # y is a 3-D Tensor:
            >>> y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
            ...                         [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            >>> out6 = paddle.count_nonzero(y, axis=[1, 2])
            >>> out6
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [3, 6])
            >>> out7 = paddle.count_nonzero(y, axis=[0, 1])
            >>> out7
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [1, 3, 5])
1896 1897
    """

1898 1899
    if isinstance(axis, int):
        axis = [axis]
1900 1901 1902 1903 1904 1905

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1906
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1907
def add_n(inputs, name=None):
1908
    """
1909
    Sum one or more Tensor of the input.
1910

S
Steffy-zxf 已提交
1911 1912 1913
    For example:

    .. code-block:: text
1914

S
Steffy-zxf 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1928

S
Steffy-zxf 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1944 1945

    Args:
1946
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1947
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1948
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1949 1950

    Returns:
S
Steffy-zxf 已提交
1951
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1952 1953 1954

    Examples:
        .. code-block:: python
1955

1956
            >>> import paddle
1957

1958 1959 1960 1961 1962 1963 1964
            >>> input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            >>> input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            >>> output = paddle.add_n([input0, input1])
            >>> output
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[8. , 10., 12.],
             [14., 16., 18.]])
1965
    """
1966
    if in_dynamic_or_new_ir_mode():
1967 1968
        if isinstance(inputs, Variable):
            inputs = [inputs]
1969
        return _C_ops.add_n(inputs)
1970
    else:
1971 1972
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1973
        if isinstance(inputs, (list, tuple)):
1974 1975 1976 1977 1978
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1979 1980 1981 1982 1983 1984 1985 1986
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1987 1988 1989 1990 1991 1992
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1993
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1994 1995
                'add_n',
            )
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
2006

2007
        return out
2008 2009


2010 2011 2012
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
2013

2014 2015 2016
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2017

2018 2019
    Returns:
        Tensor: The output Tensor of trunc.
2020

2021 2022 2023
    Examples:
        .. code-block:: python

2024
            >>> import paddle
2025

2026 2027 2028 2029 2030 2031
            >>> input = paddle.to_tensor([[0.1, 1.5], [-0.2, -2.4]], 'float32')
            >>> output = paddle.trunc(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.,  1.],
             [-0., -2.]])
2032
    '''
2033
    if in_dynamic_mode():
2034
        return _C_ops.trunc(input)
2035
    else:
2036 2037
        inputs = {"X": input}
        attrs = {}
2038

2039 2040 2041 2042 2043
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
2044

2045 2046 2047 2048
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2049 2050


2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
@inplace_apis_in_dygraph_only
def trunc_(input, name=None):
    r"""
    Inplace version of ``trunc`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_trunc`.
    """
    if in_dynamic_mode():
        return _C_ops.trunc_(input)


W
WuHaobo 已提交
2061
def mm(input, mat2, name=None):
2062
    """
S
swtkiwi 已提交
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
2075
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
2076
        mat2 (Tensor): The input tensor which is a Tensor.
2077
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2078 2079

    Returns:
N
Noel 已提交
2080
        Tensor: The product Tensor.
2081

W
wawltor 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

2114 2115 2116
    Examples:
        .. code-block:: python

2117 2118 2119 2120 2121 2122 2123 2124 2125
            >>> import paddle
            >>> input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            >>> mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            >>> out = paddle.mm(input, mat2)
            >>> out
            Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[11., 14., 17., 20.],
             [23., 30., 37., 44.],
             [35., 46., 57., 68.]])
2126

N
Noel 已提交
2127

2128
    """
2129
    if in_dynamic_mode():
2130
        return _C_ops.matmul(input, mat2, False, False)
2131
    else:
2132

2133 2134 2135 2136 2137
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
2138
                )
2139 2140 2141 2142 2143 2144
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
2145

2146 2147 2148
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
2149
                    raise ValueError(
2150 2151
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
2152 2153 2154
                        "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                            x_shape, y_shape
                        )
2155
                    )
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
2180

2181

Y
yaoxuefeng 已提交
2182
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
2183 2184 2185
    """
    **addmm**

2186
    Perform matrix multiplication for input $x$ and $y$.
2187 2188 2189 2190 2191 2192 2193 2194 2195
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
2196 2197 2198
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
2199 2200
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
2201
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2202 2203

    Returns:
2204
        Tensor: The output Tensor of addmm.
2205 2206

    Examples:
2207
        .. code-block:: python
2208

2209
            >>> import paddle
2210

2211 2212 2213
            >>> x = paddle.ones([2, 2])
            >>> y = paddle.ones([2, 2])
            >>> input = paddle.ones([2, 2])
Y
yaoxuefeng 已提交
2214

2215
            >>> out = paddle.addmm(input=input, x=x, y=y, beta=0.5, alpha=5.0)
Y
yaoxuefeng 已提交
2216

2217 2218 2219 2220
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[10.50000000, 10.50000000],
             [10.50000000, 10.50000000]])
2221
    """
Y
yaoxuefeng 已提交
2222 2223 2224
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
2225
    if not len(x_shape) == len(y_shape) == 2:
2226
        raise ValueError(
2227 2228 2229 2230
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
2231
    if x_shape[1] != y_shape[0]:
2232
        raise ValueError(
2233 2234 2235 2236
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
2237 2238 2239
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
2240
                raise ValueError(
2241 2242 2243 2244
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
2245
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
2246
                raise ValueError(
2247 2248 2249 2250
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2251 2252
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
2253
                raise ValueError(
2254 2255 2256 2257
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
2258 2259
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
2260
            raise ValueError(
2261 2262 2263 2264
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
2265
    else:
2266
        raise ValueError(
2267 2268 2269 2270
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
2271

2272
    if in_dynamic_mode():
2273
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
2274
    else:
2275 2276
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
2277

2278 2279
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
2280 2281 2282 2283 2284 2285 2286
            input, 'Input', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
        )
        check_variable_and_dtype(
            y, 'Y', ['float16', 'float32', 'float64', 'uint16'], 'addmm'
2287 2288
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2289

2290 2291 2292 2293
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
2294

2295

G
GGBond8488 已提交
2296 2297 2298 2299
@inplace_apis_in_dygraph_only
def addmm_(input, x, y, beta=1.0, alpha=1.0, name=None):
    """
    Inplace version of ``addmm`` API, the output Tensor will be inplaced with input ``x``.
2300
    Please refer to :ref:`api_paddle_addmm`.
G
GGBond8488 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    """
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 2:
        raise ValueError(
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
    if x_shape[1] != y_shape[0]:
        raise ValueError(
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
                raise ValueError(
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
                raise ValueError(
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
            raise ValueError(
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
    else:
        raise ValueError(
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )

    if in_dynamic_mode():
        return _C_ops.addmm_(input, x, y, beta, alpha)


S
seemingwang 已提交
2356 2357 2358 2359 2360 2361 2362
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
2363
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
2377
        .. code-block:: python
2378

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
            >>> import paddle
            >>> input = [[[2.0, 2, -2], [3, 0.3, 3]],
            ...          [[2, -8, 2],   [3.1, 3.7, 3]]]
            >>> x = paddle.to_tensor(input,dtype='float32')
            >>> y = paddle.renorm(x, 1.0, 2, 2.05)
            >>> print(y)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[ 0.40594056,  0.29285714, -0.41000000],
              [ 0.60891086,  0.04392857,  0.61500001]],
             [[ 0.40594056, -1.17142856,  0.41000000],
              [ 0.62920785,  0.54178572,  0.61500001]]])
2390

S
seemingwang 已提交
2391 2392 2393
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2394 2395
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2396 2397 2398
                axis, len(input_shape), input_shape
            )
        )
2399
    if not axis >= 0:
S
seemingwang 已提交
2400
        if not axis >= -1 * len(input_shape):
2401
            raise ValueError(
2402 2403 2404 2405
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2406
        axis = axis + len(input_shape)
2407
    if in_dynamic_mode():
2408
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2409
        return out
2410
    else:
2411
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2412 2413
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2414

2415 2416
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2417

2418 2419 2420 2421
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2422

2423

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
@inplace_apis_in_dygraph_only
def renorm_(x, p, axis, max_norm):
    """
    Inplace version of ``renorm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_renorm`.
    """
    input_shape = x.shape
    if not axis < len(input_shape):
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
                axis, len(input_shape), input_shape
            )
        )
    if not axis >= 0:
        if not axis >= -1 * len(input_shape):
            raise ValueError(
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
        axis = axis + len(input_shape)
    if in_dynamic_mode():
        out = _C_ops.renorm_(x, p, axis, max_norm)
        return out


Z
zhiboniu 已提交
2450 2451 2452 2453
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2454

Z
zhiboniu 已提交
2455 2456 2457 2458 2459
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2460
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2461 2462 2463 2464 2465 2466 2467

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

2468 2469 2470 2471 2472 2473 2474 2475
            >>> import paddle
            >>> x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            >>> y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            >>> out = paddle.inner(x, y)
            >>> print(out)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[14. , 32. , 50. ],
             [32. , 77. , 122.]])
Z
zhiboniu 已提交
2476 2477 2478 2479 2480 2481 2482 2483


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2484
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
2485

Z
zhiboniu 已提交
2486 2487 2488
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2489
        if in_dynamic_mode():
2490
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2491
        else:
Z
zhiboniu 已提交
2492

2493 2494 2495 2496 2497
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2498
                    )
2499 2500 2501 2502 2503 2504 2505 2506 2507
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
2508 2509 2510
                            "prerequisites. But received X's shape: {}, Y's shape: {}\n".format(
                                x_shape, y_shape
                            )
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2533 2534
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2535
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2536 2537 2538 2539 2540 2541 2542

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

2543 2544 2545 2546 2547 2548 2549 2550 2551
            >>> import paddle
            >>> x = paddle.arange(1, 4).astype('float32')
            >>> y = paddle.arange(1, 6).astype('float32')
            >>> out = paddle.outer(x, y)
            >>> print(out)
            Tensor(shape=[3, 5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1. , 2. , 3. , 4. , 5. ],
             [2. , 4. , 6. , 8. , 10.],
             [3. , 6. , 9. , 12., 15.]])
Z
zhiboniu 已提交
2552 2553 2554 2555 2556 2557


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2558
    if in_dynamic_mode():
2559
        return _C_ops.matmul(nx, ny, False, False)
2560
    else:
Z
zhiboniu 已提交
2561

2562 2563 2564 2565
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
2566 2567 2568 2569
                    val,
                    name,
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'outer',
2570
                )
Z
zhiboniu 已提交
2571

2572
        __check_input(nx, ny)
Z
zhiboniu 已提交
2573

2574 2575 2576 2577 2578 2579
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2580 2581


2582
def logsumexp(x, axis=None, keepdim=False, name=None):
2583
    r"""
2584
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2585

2586
    .. math::
2587
       logsumexp(x) = \log\sum exp(x)
2588

2589
    Args:
2590
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2591
            have no more than 4 dimensions.
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2608

2609
    Returns:
2610 2611
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2612

2613
    Examples:
2614

2615
    .. code-block:: python
2616

2617
        >>> import paddle
2618

2619 2620 2621 2622 2623 2624 2625 2626 2627
        >>> x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
        >>> out1 = paddle.logsumexp(x)
        >>> out1
        Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
        3.46912265)
        >>> out2 = paddle.logsumexp(x, 1)
        >>> out2
        Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
        [2.15317822, 3.15684605])
2628 2629

    """
2630
    reduce_all, axis = _get_reduce_axis(axis, x)
2631

2632
    if in_dynamic_mode():
2633
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2634
    else:
2635
        check_variable_and_dtype(
2636
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'logsumexp'
2637
        )
2638 2639 2640 2641 2642 2643

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2644
        )
2645
        return out
2646

S
swtkiwi 已提交
2647

2648 2649
def inverse(x, name=None):
    """
2650 2651 2652 2653 2654
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2655
        x (Tensor): The input tensor. The last two
2656 2657 2658
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2659
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2660 2661

    Returns:
2662
        Tensor: A Tensor holds the inverse of x. The shape and data type
2663
                        is the same as x.
2664 2665 2666 2667

    Examples:
        .. code-block:: python

2668
            >>> import paddle
2669

2670 2671 2672 2673 2674 2675
            >>> mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
            >>> inv = paddle.inverse(mat)
            >>> print(inv)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.        ],
             [0.        , 0.50000000]])
2676 2677

    """
2678
    if in_dynamic_mode():
W
wanghuancoder 已提交
2679
        return _C_ops.inverse(x)
2680
    else:
2681

2682 2683 2684 2685 2686 2687 2688 2689
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2690

2691 2692 2693 2694 2695 2696 2697
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2698

2699

2700
def max(x, axis=None, keepdim=False, name=None):
2701
    """
S
swtkiwi 已提交
2702

2703
    Computes the maximum of tensor elements over the given axis.
2704

T
Tao Luo 已提交
2705 2706
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2707
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2708 2709 2710
        while max propagates gradient to all of them.


2711
    Args:
2712 2713
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2714
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2715
            `x` and return a Tensor with a single element,
2716 2717
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2718
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2719
            output Tensor. The result tensor will have one fewer dimension
2720
            than the `x` unless :attr:`keepdim` is true, default
2721
            value is False.
2722
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2723 2724

    Returns:
2725
        Tensor, results of maximum on the specified axis of input tensor,
2726
        it's data type is the same as `x`.
2727 2728 2729

    Examples:
        .. code-block:: python
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.max(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.max(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.30000000, 0.60000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 1., 0., 1.],
             [0., 0., 1., 0.]])

            >>> x.clear_grad()
            >>> result3 = paddle.max(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> x.clear_grad()
            >>> result4 = paddle.max(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.70000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 1.],
             [0., 0., 0., 1.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.max(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [4., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 1.]],
             [[0., 0.],
              [0., 1.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.max(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [7., 8.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0., 0.],
              [0., 0.]],
             [[0., 0.],
              [1., 1.]]])
2811 2812
    """

2813
    if in_dynamic_mode():
2814
        return _C_ops.max(x, axis, keepdim)
2815 2816 2817 2818
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
2819 2820 2821 2822
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'max',
2823
        )
2824 2825
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2826

2827 2828 2829 2830 2831 2832 2833 2834
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2835

2836

2837
def min(x, axis=None, keepdim=False, name=None):
2838
    """
S
swtkiwi 已提交
2839

2840
    Computes the minimum of tensor elements over the given axis
2841

T
Tao Luo 已提交
2842 2843
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2844
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2845 2846
        while min propagates gradient to all of them.

2847
    Args:
2848 2849
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2850
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2851
            `x` and return a Tensor with a single element,
2852 2853
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2854
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2855
            output Tensor. The result tensor will have one fewer dimension
2856
            than the `x` unless :attr:`keepdim` is true, default
2857
            value is False.
2858
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2859

2860
    Returns:
2861
        Tensor, results of minimum on the specified axis of input tensor,
2862
        it's data type is the same as input's Tensor.
2863

2864 2865 2866
    Examples:
        .. code-block:: python

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
            >>> import paddle

            >>> # data_x is a Tensor with shape [2, 4]
            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result1 = paddle.min(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.min(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.20000000, 0.50000000, 0.70000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 0., 1., 0.],
             [1., 1., 0., 1.]])

            >>> x.clear_grad()
            >>> result3 = paddle.min(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.20000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> x.clear_grad()
            >>> result4 = paddle.min(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.20000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[1., 0., 0., 0.],
             [1., 0., 0., 0.]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                       [[5.0, 6.0], [7.0, 8.0]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.min(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 5.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 0.],
              [0., 0.]],
             [[1., 0.],
              [0., 0.]]])

            >>> y.clear_grad()
            >>> result6 = paddle.min(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [1., 2.])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[1., 1.],
              [0., 0.]],
             [[0., 0.],
              [0., 0.]]])
2947
    """
2948

2949
    if in_dynamic_mode():
2950
        return _C_ops.min(x, axis, keepdim)
2951 2952 2953 2954
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
2955 2956 2957 2958
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'min',
2959
        )
2960

2961 2962 2963 2964 2965 2966 2967 2968
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2969

2970

T
Tao Luo 已提交
2971 2972 2973 2974 2975 2976
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2977
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2978 2979 2980
        while max propagates gradient to all of them.

    Args:
2981
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2982
            the dimension is no more than 4.
2983
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2984 2985 2986 2987
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2988
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2989 2990 2991
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2992
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2993 2994 2995 2996 2997 2998 2999 3000

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
            ...                         [0.9, 0.9, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 maximum elements:
            >>> # 1) amax evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while max propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amax(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_max = paddle.max(x)
            >>> result1_max.backward()
            >>> result1_max
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.90000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amax(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000, 0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amax(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amax(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.90000000],
             [0.90000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
            ...                         [[0.9, 0.9], [0.6, 0.7]]],
            ...                         dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amax(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amax(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.90000000, 0.90000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
3097
    """
3098
    if in_dynamic_mode():
3099
        return _C_ops.amax(x, axis, keepdim)
3100

3101 3102 3103 3104 3105
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
3106
        )
T
Tao Luo 已提交
3107

3108 3109 3110 3111 3112 3113 3114 3115
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3116

3117

T
Tao Luo 已提交
3118 3119 3120 3121 3122 3123 3124
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
3125
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
3126 3127 3128
        while min propagates gradient to all of them.

    Args:
3129
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
3130
            the dimension is no more than 4.
3131
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
3132 3133 3134 3135
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
3136
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
3137 3138 3139
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
3140
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
3141 3142 3143 3144 3145 3146 3147 3148

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
            >>> import paddle
            >>> # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            >>> # the axis is a int element

            >>> x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
            ...                         [0.1, 0.1, 0.6, 0.7]],
            ...                         dtype='float64', stop_gradient=False)
            >>> # There are 5 minimum elements:
            >>> # 1) amin evenly distributes gradient between these equal values,
            >>> #    thus the corresponding gradients are 1/5=0.2;
            >>> # 2) while min propagates gradient to all of them,
            >>> #    thus the corresponding gradient are 1.
            >>> result1 = paddle.amin(x)
            >>> result1.backward()
            >>> result1
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.20000000, 0.20000000, 0.20000000],
             [0.20000000, 0.20000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result1_min = paddle.min(x)
            >>> result1_min.backward()
            >>> result1_min
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=False,
            0.10000000)
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0., 1., 1., 1.],
             [1., 1., 0., 0.]])

            >>> x.clear_grad()
            >>> result2 = paddle.amin(x, axis=0)
            >>> result2.backward()
            >>> result2
            Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000, 0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.50000000, 1.        , 1.        ],
             [1.        , 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result3 = paddle.amin(x, axis=-1)
            >>> result3.backward()
            >>> result3
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> x.clear_grad()
            >>> result4 = paddle.amin(x, axis=1, keepdim=True)
            >>> result4.backward()
            >>> result4
            Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.10000000],
             [0.10000000]])
            >>> x.grad
            Tensor(shape=[2, 4], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[0.        , 0.33333333, 0.33333333, 0.33333333],
             [0.50000000, 0.50000000, 0.        , 0.        ]])

            >>> # data_y is a Tensor with shape [2, 2, 2]
            >>> # the axis is list
            >>> y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
            ...                       [[0.1, 0.1], [0.6, 0.7]]],
            ...                       dtype='float64', stop_gradient=False)
            >>> result5 = paddle.amin(y, axis=[1, 2])
            >>> result5.backward()
            >>> result5
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.33333333, 0.33333333]],
             [[0.50000000, 0.50000000],
              [0.        , 0.        ]]])

            >>> y.clear_grad()
            >>> result6 = paddle.amin(y, axis=[0, 1])
            >>> result6.backward()
            >>> result6
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [0.10000000, 0.10000000])
            >>> y.grad
            Tensor(shape=[2, 2, 2], dtype=float64, place=Place(cpu), stop_gradient=False,
            [[[0.        , 0.33333333],
              [0.50000000, 0.33333333]],
             [[0.50000000, 0.33333333],
              [0.        , 0.        ]]])
T
Tao Luo 已提交
3245
    """
3246
    if in_dynamic_mode():
3247
        return _C_ops.amin(x, axis, keepdim)
3248

3249 3250 3251 3252 3253
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
3254
        )
T
Tao Luo 已提交
3255

3256 3257 3258 3259 3260 3261 3262 3263
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
3264

3265

W
WuHaobo 已提交
3266
def log1p(x, name=None):
3267
    r"""
3268
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
3269

3270
    .. math::
3271
        Out = \ln(x+1)
S
Steffy-zxf 已提交
3272

3273
    Args:
3274
        x (Tensor): Input Tensor. Must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3275
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3276

3277
    Returns:
S
Steffy-zxf 已提交
3278
        Tensor, the natural log of the input Tensor computed element-wise.
3279

3280 3281
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
3282

3283
            >>> import paddle
S
Steffy-zxf 已提交
3284

3285 3286 3287 3288 3289 3290
            >>> data = paddle.to_tensor([[0], [1]], dtype='float32')
            >>> res = paddle.log1p(data)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        ],
             [0.69314718]])
3291 3292
    """

3293
    if in_dynamic_mode():
W
wanghuancoder 已提交
3294
        return _C_ops.log1p(x)
3295
    else:
3296
        check_variable_and_dtype(
3297 3298 3299 3300
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log1p",
3301
        )
3302 3303 3304 3305 3306 3307
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
3308

3309

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
@inplace_apis_in_dygraph_only
def log1p_(x, name=None):
    r"""
    Inplace version of ``log1p`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log1p`.
    """

    if in_dynamic_mode():
        return _C_ops.log1p_(x)


J
joejiong 已提交
3321
def log2(x, name=None):
3322
    r"""
J
joejiong 已提交
3323 3324 3325 3326
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

3327
        Out = \log_2x
J
joejiong 已提交
3328 3329

    Args:
3330
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3331
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3332 3333 3334 3335 3336 3337 3338 3339


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3340

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [2.0]])
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log2(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3366
    """
3367
    if in_dynamic_mode():
W
wanghuancoder 已提交
3368
        return _C_ops.log2(x)
3369 3370
    else:
        check_variable_and_dtype(
3371 3372 3373 3374
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log2",
3375 3376 3377 3378 3379 3380 3381
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
3382

J
joejiong 已提交
3383

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
@inplace_apis_in_dygraph_only
def log2_(x, name=None):
    r"""
    Inplace version of ``log2`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log2`.
    """

    if in_dynamic_mode():
        return _C_ops.log2_(x)


J
joejiong 已提交
3395
def log10(x, name=None):
3396
    r"""
J
joejiong 已提交
3397 3398 3399 3400
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

3401
        Out = \log_10_x
J
joejiong 已提交
3402 3403

    Args:
3404
        x (Tensor): Input tensor must be one of the following types: int32, int64, float16, bfloat16, float32, float64.
3405
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
3406 3407 3408 3409 3410 3411 3412 3413


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
3414

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
            >>> import paddle

            >>> # example 1: x is a float
            >>> x_i = paddle.to_tensor([[1.0], [10.0]])
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.],
             [1.]])

            >>> # example 2: x is float32
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])

            >>> # example 3: x is float64
            >>> x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            >>> paddle.to_tensor(x_i)
            >>> res = paddle.log10(x_i)
            >>> res
            Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [1.])
J
joejiong 已提交
3440
    """
3441
    if in_dynamic_mode():
W
wanghuancoder 已提交
3442
        return _C_ops.log10(x)
3443 3444
    else:
        check_variable_and_dtype(
3445 3446 3447 3448
            x,
            'x',
            ['int32', 'int64', 'float16', 'uint16', 'float32', 'float64'],
            "log10",
3449 3450 3451 3452 3453 3454 3455
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
3456 3457


3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
@inplace_apis_in_dygraph_only
def log10_(x, name=None):
    r"""
    Inplace version of ``log10`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_log10`.
    """

    if in_dynamic_mode():
        return _C_ops.log10_(x)


Y
Yang Zhang 已提交
3469
def clip(x, min=None, max=None, name=None):
3470
    """
Y
Yang Zhang 已提交
3471
    This operator clip all elements in input into the range [ min, max ] and return
3472 3473 3474 3475
    a resulting tensor as the following equation:

    .. math::

3476
        Out = MIN(MAX(x, min), max)
3477 3478

    Args:
3479
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
3480 3481 3482 3483
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``0-D Tensor``
            with shape [] and type ``int32``, ``float16``, ``float32``, ``float64``.
3484
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3485 3486

    Returns:
Y
Yang Zhang 已提交
3487
        Tensor: A Tensor with the same data type and data shape as input.
3488 3489 3490 3491

    Examples:
        .. code-block:: python

3492
            >>> import paddle
N
Noel 已提交
3493

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
            >>> x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
            >>> out1 = paddle.clip(x1, min=3.5, max=5.0)
            >>> out1
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[3.50000000, 3.50000000],
             [4.50000000, 5.        ]])
            >>> out2 = paddle.clip(x1, min=2.5)
            >>> out2
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[2.50000000, 3.50000000],
             [4.50000000, 6.40000010]])
3505 3506
    """

3507 3508 3509 3510 3511 3512 3513
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
3514 3515 3516
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
3517 3518 3519
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
3520

3521
    if in_dynamic_mode():
C
chentianyu03 已提交
3522
        if isinstance(min, Variable):
3523
            min = min.item(0)
C
chentianyu03 已提交
3524
        if isinstance(max, Variable):
3525
            max = max.item(0)
C
chentianyu03 已提交
3526 3527
        min = min_ if min is None else min
        max = max_ if max is None else max
3528
        return _C_ops.clip(x, min, max)
3529 3530 3531 3532 3533 3534 3535
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
3536
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3537 3538 3539 3540 3541 3542 3543 3544 3545
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
3546
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
3547 3548 3549
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
3550

3551
        check_variable_and_dtype(
3552 3553 3554 3555
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
3556
        )
Y
Yang Zhang 已提交
3557

3558 3559
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
3560

3561 3562 3563 3564 3565
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
3566

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
3580

3581
        return output
F
Feiyu Chan 已提交
3582

W
WuHaobo 已提交
3583

3584 3585 3586 3587
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
3588
    Please refer to :ref:`api_paddle_clip`.
3589 3590 3591 3592
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
3593
        min = min.item(0)
3594
    if isinstance(max, Variable):
3595
        max = max.item(0)
3596 3597
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
3598

3599
    if in_dynamic_mode():
3600
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
3601

3602

3603
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
3604
    """
S
swtkiwi 已提交
3605

3606
    Computes the sum along diagonals of the input tensor x.
3607 3608

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
3609

3610
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
3611
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
3612
    of the input tensor x.
L
Li Fuchen 已提交
3613

3614
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
3615 3616 3617 3618

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3619
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
3620

L
Li Fuchen 已提交
3621
    Args:
3622 3623 3624 3625 3626
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
3627 3628

    Returns:
3629
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
3630 3631 3632 3633

    Examples:
        .. code-block:: python

3634
            >>> import paddle
3635

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
            >>> case1 = paddle.randn([2, 3])
            >>> case2 = paddle.randn([3, 10, 10])
            >>> case3 = paddle.randn([3, 10, 5, 10])
            >>> data1 = paddle.trace(case1)
            >>> data1.shape
            []
            >>> data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2)
            >>> data2.shape
            [3]
            >>> data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1)
            >>> data3.shape
            [3, 5]
L
Li Fuchen 已提交
3648
    """
3649

Z
zyfncg 已提交
3650
    def __check_input(x, offset, axis1, axis2):
3651 3652 3653 3654 3655 3656
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3657

3658
        input_shape = list(x.shape)
3659 3660 3661 3662
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3663

3664 3665
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3666

3667 3668
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3669
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3670
        )
L
Li Fuchen 已提交
3671

3672 3673
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3674
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3675
        )
L
Li Fuchen 已提交
3676

3677 3678 3679 3680
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3681

3682
    if in_dynamic_mode():
3683
        return _C_ops.trace(x, offset, axis1, axis2)
3684 3685
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3686

3687 3688
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3689

3690 3691 3692 3693 3694 3695 3696
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3697

3698

3699 3700
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
3701
    Computes the diagonals of the input tensor x.
3702 3703

    If ``x`` is 2D, returns the diagonal.
3704
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3705 3706 3707 3708 3709 3710 3711
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3712

3713
    Args:
3714 3715 3716 3717 3718
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3719 3720 3721 3722 3723 3724 3725

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
            >>> import paddle

            >>> paddle.seed(2023)
            >>> x = paddle.rand([2, 2, 3],'float32')
            >>> print(x)
            Tensor(shape=[2, 2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[0.86583614, 0.52014720, 0.25960937],
              [0.90525323, 0.42400089, 0.40641287]],
             [[0.97020894, 0.74437362, 0.51785129],
              [0.73292869, 0.97786582, 0.04315904]]])

            >>> out1 = paddle.diagonal(x)
            >>> print(out1)
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.73292869],
             [0.52014720, 0.97786582],
             [0.25960937, 0.04315904]])

            >>> out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            >>> print(out2)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])

            >>> out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            >>> print(out3)
            Tensor(shape=[3, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.90525323],
             [0.42400089],
             [0.40641287]])

            >>> out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            >>> print(out4)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.42400089],
             [0.97020894, 0.97786582]])
3762

3763
    """
3764
    if in_dynamic_mode():
3765
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3766
    else:
W
wanghuancoder 已提交
3767

3768 3769 3770 3771
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
3772 3773 3774 3775 3776 3777 3778 3779 3780
                [
                    'bool',
                    'int32',
                    'int64',
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                ],
3781 3782
                'diagonal',
            )
3783

3784 3785 3786 3787 3788
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3789

3790 3791
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3792

3793 3794 3795 3796
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3797

3798 3799 3800 3801
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3802

3803 3804 3805 3806
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3807

3808 3809 3810
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3811

3812 3813 3814 3815 3816 3817 3818
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3819 3820


W
WuHaobo 已提交
3821
def kron(x, y, name=None):
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3841 3842

    Args:
3843 3844
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3845
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3846 3847

    Returns:
3848
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3849 3850 3851

    Examples:
        .. code-block:: python
3852

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
            >>> import paddle
            >>> x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            >>> y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            >>> out = paddle.kron(x, y)
            >>> out
            Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1 , 2 , 3 , 2 , 4 , 6 ],
             [4 , 5 , 6 , 8 , 10, 12],
             [7 , 8 , 9 , 14, 16, 18],
             [3 , 6 , 9 , 4 , 8 , 12],
             [12, 15, 18, 16, 20, 24],
             [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3865
    """
3866
    if in_dynamic_mode():
3867 3868 3869 3870 3871 3872 3873 3874 3875
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3876

3877 3878 3879 3880 3881
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3882 3883 3884 3885


def cumsum(x, axis=None, dtype=None, name=None):
    """
3886 3887
    The cumulative sum of the elements along a given axis.

3888
    Note:
3889
        The first element of the result is the same as the first element of the input.
3890 3891

    Args:
3892
        x (Tensor): The input tensor needed to be cumsumed.
3893
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3894
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3895 3896 3897
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3898
        Tensor, the result of cumsum operator.
3899 3900 3901

    Examples:
        .. code-block:: python
3902

3903
            >>> import paddle
3904

3905 3906
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
3907

3908 3909 3910 3911
            >>> y = paddle.cumsum(data)
            >>> y
            Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0 , 1 , 3 , 6 , 10, 15, 21, 28, 36, 45, 55, 66])
3912

3913 3914 3915 3916 3917 3918
            >>> y = paddle.cumsum(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 6 , 8 , 10],
             [12, 15, 18, 21]])
3919

3920 3921 3922 3923 3924 3925
            >>> y = paddle.cumsum(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 3 , 6 ],
             [4 , 9 , 15, 22],
             [8 , 17, 27, 38]])
3926

3927 3928
            >>> y = paddle.cumsum(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
3929 3930 3931 3932 3933 3934
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3935
        x = cast(x, dtype)
3936

3937
    if in_dynamic_mode():
3938 3939
        if axis is None:
            axis = -1
3940
        return _C_ops.cumsum(x, axis, flatten, False, False)
3941
    else:
3942 3943 3944
        check_variable_and_dtype(
            x,
            'x',
3945
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
3946 3947
            'cumsum',
        )
3948 3949
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3950
        kwargs = {}
3951 3952 3953 3954 3955
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3956

3957

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
@inplace_apis_in_dygraph_only
def cumsum_(x, axis=None, dtype=None, name=None):
    r"""
    Inplace version of ``cumprod`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_cumprod`.
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast_(x, dtype)

    if in_dynamic_mode():
        if axis is None:
            axis = -1
        return _C_ops.cumsum_(x, axis, flatten, False, False)


3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
def cummax(x, axis=None, dtype='int64', name=None):
    """
    The cumulative max of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummaxed.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummax over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummax operation. The dtype of cummax result is same with input x.

        indices (Tensor), The corresponding index results of cummax operation.

    Examples:
        .. code-block:: python

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
            >>> import paddle

            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummax(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1,  5,  5,  5,  5,  5])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 1, 1, 1, 1, 1])

            >>> value, indices = paddle.cummax(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-1,  5,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 0, 1]])

            >>> value, indices = paddle.cummax(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  5],
             [-2, -2,  2]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 1],
             [0, 0, 2]])

            >>> value, indices = paddle.cummax(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummax')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummax(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummax',
        )
        check_type(x, 'x', (Variable), 'cummax')
        helper = LayerHelper('cummax', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummax',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


def cummin(x, axis=None, dtype='int64', name=None):
    """
    The cumulative min of the elements along a given axis.

    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor needed to be cummined.
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cummin over the flattened array.
        dtype (str, optional): The data type of the indices tensor, can be int32, int64. The default value is int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor), The result of cummin operation. The dtype of cummin result is same with input x.

        indices (Tensor), The corresponding index results of cummin operation.

    Examples:
        .. code-block:: python

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
            >>> import paddle
            >>> data = paddle.to_tensor([-1, 5, 0, -2, -3, 2])
            >>> data = paddle.reshape(data, (2, 3))

            >>> value, indices = paddle.cummin(data)
            >>> value
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [-1, -1, -1, -2, -3, -3])
            >>> indices
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 3, 4, 4])

            >>> value, indices = paddle.cummin(data, axis=0)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1,  5,  0],
             [-2, -3,  0]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [1, 1, 0]])

            >>> value, indices = paddle.cummin(data, axis=-1)
            >>> value
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[-1, -1, -1],
             [-2, -3, -3]])
            >>> indices
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 0, 0],
             [0, 1, 1]])

            >>> value, indices = paddle.cummin(data, dtype='int64')
            >>> assert indices.dtype == paddle.int64
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
    """
    if axis is None:
        axis = -1
        x = x.flatten(0, len(x.shape) - 1)

    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'cummin')
    dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_mode():
        return _C_ops.cummin(x, axis, dtype)
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['float32', 'float64', 'int32', 'int64'],
            'cummin',
        )
        check_type(x, 'x', (Variable), 'cummin')
        helper = LayerHelper('cummin', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        indices = helper.create_variable_for_type_inference(dtype='int64')
        helper.append_op(
            type='cummin',
            inputs={'x': x},
            outputs={'out': out, 'indices': indices},
            attrs={'axis': axis, 'dtype': dtype},
        )
        return out, indices


4148 4149
def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
4150
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
4151 4152 4153 4154 4155 4156

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
4157

4158 4159 4160 4161 4162 4163
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
4164
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
4165 4166 4167
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4168
        Tensor, the result of logcumsumexp operator.
4169 4170 4171

    Examples:
        .. code-block:: python
4172

4173
            >>> import paddle
4174

4175 4176
            >>> data = paddle.arange(12, dtype='float64')
            >>> data = paddle.reshape(data, (3, 4))
4177

4178 4179 4180 4181 4182 4183
            >>> y = paddle.logcumsumexp(data)
            >>> y
            Tensor(shape=[12], dtype=float64, place=Place(cpu), stop_gradient=True,
            [0.         , 1.31326169 , 2.40760596 , 3.44018970 , 4.45191440 ,
             5.45619332 , 6.45776285 , 7.45833963 , 8.45855173 , 9.45862974 ,
             10.45865844, 11.45866900])
4184

4185 4186 4187 4188 4189 4190
            >>> y = paddle.logcumsumexp(data, axis=0)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.         , 2.         , 3.         ],
             [4.01814993 , 5.01814993 , 6.01814993 , 7.01814993 ],
             [8.01847930 , 9.01847930 , 10.01847930, 11.01847930]])
4191

4192 4193 4194 4195 4196 4197
            >>> y = paddle.logcumsumexp(data, axis=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.         , 1.31326169 , 2.40760596 , 3.44018970 ],
             [4.         , 5.31326169 , 6.40760596 , 7.44018970 ],
             [8.         , 9.31326169 , 10.40760596, 11.44018970]])
4198

4199 4200
            >>> y = paddle.logcumsumexp(data, dtype='float64')
            >>> assert y.dtype == paddle.float64
4201 4202 4203 4204 4205 4206 4207 4208
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

4209
    if in_dynamic_mode():
4210 4211
        if axis is None:
            axis = -1
4212
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
4213 4214
    else:
        check_variable_and_dtype(
4215
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], "logcumsumexp"
4216
        )
4217

4218 4219 4220 4221 4222 4223 4224 4225 4226
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
4227 4228


H
hlygit66666 已提交
4229 4230 4231 4232
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

4233 4234
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
4235 4236 4237

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
4238 4239 4240 4241 4242 4243 4244
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
4245 4246 4247 4248 4249 4250 4251

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

4252
            >>> import paddle
H
hlygit66666 已提交
4253

4254 4255 4256 4257 4258 4259 4260
            >>> data = paddle.arange(12)
            >>> data = paddle.reshape(data, (3, 4))
            >>> data
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 ],
             [4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11]])
H
hlygit66666 已提交
4261

4262 4263 4264 4265 4266 4267
            >>> y = paddle.cumprod(data, dim=0)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0  , 1  , 2  , 3  ],
             [0  , 5  , 12 , 21 ],
             [0  , 45 , 120, 231]])
H
hlygit66666 已提交
4268

4269 4270 4271 4272 4273 4274
            >>> y = paddle.cumprod(data, dim=-1)
            >>> y
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0   , 0   , 0   , 0   ],
             [4   , 20  , 120 , 840 ],
             [8   , 72  , 720 , 7920]])
H
hlygit66666 已提交
4275

4276 4277 4278 4279 4280 4281
            >>> y = paddle.cumprod(data, dim=1, dtype='float64')
            >>> y
            Tensor(shape=[3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.   , 0.   , 0.   , 0.   ],
             [4.   , 20.  , 120. , 840. ],
             [8.   , 72.  , 720. , 7920.]])
H
hlygit66666 已提交
4282

4283
            >>> assert y.dtype == paddle.float64
H
hlygit66666 已提交
4284 4285 4286 4287

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4288
        x = cast(x, dtype)
H
hlygit66666 已提交
4289

4290
    if in_dynamic_mode():
4291
        return _C_ops.cumprod(x, dim)
4292 4293 4294 4295
    else:
        check_variable_and_dtype(
            x,
            "x",
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
            [
                'complex64',
                'complex128',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4306 4307 4308
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
4309

4310 4311 4312 4313 4314 4315 4316 4317 4318
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
4319

4320

4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
@inplace_apis_in_dygraph_only
def cumprod_(x, dim=None, dtype=None, name=None):
    r"""
    Inplace version of ``cumprod`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_cumprod`.
    """
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast_(x, dtype)

    if in_dynamic_mode():
        return _C_ops.cumprod_(x, dim)


J
Jack Zhou 已提交
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

4349
            >>> import paddle
N
Noel 已提交
4350

4351 4352 4353 4354 4355
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isfinite(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True , True , False, True , False, False])
J
Jack Zhou 已提交
4356
    """
4357
    if in_dynamic_mode():
4358
        return _C_ops.isfinite(x)
4359 4360 4361 4362 4363
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
4364 4365 4366 4367 4368 4369 4370 4371
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
4372 4373 4374 4375 4376 4377 4378
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
4379

4380

J
Jack Zhou 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

4396
            >>> import paddle
C
Chen Long 已提交
4397

4398 4399 4400 4401 4402
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isinf(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False, False, True , False, False, False])
J
Jack Zhou 已提交
4403
    """
4404
    if in_dynamic_mode():
4405
        return _C_ops.isinf(x)
4406 4407 4408
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isinf',
4420 4421 4422 4423
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4424

4425

J
Jack Zhou 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

4441
            >>> import paddle
4442

4443 4444 4445 4446 4447
            >>> x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
            >>> out = paddle.isnan(x)
            >>> out
            Tensor(shape=[7], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, False, False, False, False, True , True ])
J
Jack Zhou 已提交
4448
    """
4449
    if in_dynamic_mode():
4450
        return _C_ops.isnan(x)
4451 4452 4453
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
            'isnan',
4465 4466 4467 4468
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
4469 4470


G
guofei 已提交
4471 4472 4473 4474 4475
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
4476
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
4477 4478 4479
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
4480
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
4481
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
4482
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
4483 4484 4485
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
4486
            of output is the same as input Tensor `x`.
4487
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
4488 4489 4490

    Returns:
        Tensor, result of product on the specified dim of input tensor.
4491

G
guofei 已提交
4492 4493 4494
    Examples:
        .. code-block:: python

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
            >>> import paddle

            >>> # the axis is a int element
            >>> x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
            ...                       [0.1, 0.2, 0.6, 0.7]])
            >>> out1 = paddle.prod(x)
            >>> out1
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.00022680)

            >>> out2 = paddle.prod(x, -1)
            >>> out2
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02700000, 0.00840000])

            >>> out3 = paddle.prod(x, 0)
            >>> out3
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.02000000, 0.06000000, 0.30000001, 0.63000000])

            >>> out4 = paddle.prod(x, 0, keepdim=True)
            >>> out4
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.02000000, 0.06000000, 0.30000001, 0.63000000]])

            >>> out5 = paddle.prod(x, 0, dtype='int64')
            >>> out5
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 0, 0, 0])

            >>> # the axis is list
            >>> y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
            ...                         [[5.0, 6.0], [7.0, 8.0]]])
            >>> out6 = paddle.prod(y, [0, 1])
            >>> out6
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [105., 384.])

            >>> out7 = paddle.prod(y, (1, 2))
            >>> out7
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [24.  , 1680.])
G
guofei 已提交
4537 4538 4539

    """
    if dtype is not None:
4540
        check_dtype(
4541 4542 4543 4544
            dtype,
            'dtype',
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
            'prod',
4545
        )
G
guofei 已提交
4546
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
4547
            x = cast(x, dtype)
G
guofei 已提交
4548

4549
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
4550
    if in_dynamic_mode():
4551
        return _C_ops.prod(x, axis, keepdim, reduce_all)
4552 4553 4554 4555 4556
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
4557
            ['float32', 'float64', 'int32', 'int64', "float16", "uint16"],
4558
            'reduce_prod',
4559
        )
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
4570 4571 4572 4573


def sign(x, name=None):
    """
4574
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
4575 4576

    Args:
4577 4578
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
4579 4580 4581 4582 4583 4584 4585

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

4586
            >>> import paddle
W
WangXi 已提交
4587

4588 4589 4590 4591 4592
            >>> x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
            >>> out = paddle.sign(x=x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 1.,  0., -1.,  1.])
W
WangXi 已提交
4593
    """
4594
    if in_dynamic_mode():
4595
        return _C_ops.sign(x)
4596 4597
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
4598
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'sign'
4599 4600 4601
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
4602

4603
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
4604

4605
        return out
W
WangXi 已提交
4606 4607 4608


def tanh(x, name=None):
4609
    r"""
W
WangXi 已提交
4610 4611 4612
    Tanh Activation Operator.

    .. math::
4613
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
4614 4615

    Args:
4616
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type bfloat16, float32, float64 or float16.
W
WangXi 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

4626
            >>> import paddle
W
WangXi 已提交
4627

4628 4629 4630 4631 4632
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.tanh(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.37994900, -0.19737528,  0.09966799,  0.29131261])
W
WangXi 已提交
4633
    """
4634
    if in_dynamic_mode():
4635
        return _C_ops.tanh(x)
4636 4637
    else:
        check_variable_and_dtype(
4638
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'tanh'
4639 4640 4641 4642 4643 4644
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
4645

4646

4647
@inplace_apis_in_dygraph_only
4648 4649 4650
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
4651
    Please refer to :ref:`api_paddle_tanh`.
4652
    """
4653
    return _C_ops.tanh_(x)
4654 4655


S
Steffy-zxf 已提交
4656 4657
def increment(x, value=1.0, name=None):
    """
4658
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
4659 4660 4661 4662
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
4663
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
4664 4665 4666 4667 4668 4669 4670 4671
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

4672
            >>> import paddle
S
Steffy-zxf 已提交
4673

4674 4675 4676 4677 4678
            >>> data = paddle.zeros(shape=[1], dtype='float32')
            >>> counter = paddle.increment(data)
            >>> counter
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.])
S
Steffy-zxf 已提交
4679 4680

    """
4681
    if in_dynamic_mode():
4682
        return _C_ops.increment_(x, value)
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
4695 4696 4697 4698


def all(x, axis=None, keepdim=False, name=None):
    """
4699
    Computes the ``logical and`` of tensor elements over the given dimension.
4700 4701 4702 4703 4704

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4705
            Tensor with a single element, otherwise must be in the
4706 4707 4708 4709 4710 4711
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4712
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4713 4714 4715 4716 4717 4718 4719

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
            >>> import paddle

            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]
            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')

            >>> # out1 should be False
            >>> out1 = paddle.all(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            False)

            >>> # out2 should be [True, False]
            >>> out2 = paddle.all(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True , False])

            >>> # keepdim=False, out3 should be [False, True], out.shape should be (2,)
            >>> out3 = paddle.all(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [False, True ])

            >>> # keepdim=True, out4 should be [[False], [True]], out.shape should be (2, 1)
            >>> out4 = paddle.all(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[False],
             [True ]])
4756

4757
    """
4758
    if in_dynamic_mode():
4759
        return _C_ops.all(x, axis, keepdim)
4760 4761 4762 4763 4764 4765 4766
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4767 4768 4769
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'all'
        )
4770
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
4771

4772
        helper = LayerHelper('all', **locals())
4773
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4774 4775 4776 4777 4778 4779 4780
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
4781 4782 4783 4784


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
4785
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
4786 4787 4788 4789 4790

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
4791
            Tensor with a single element, otherwise must be in the
4792 4793 4794 4795 4796 4797
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
4798
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4799 4800 4801 4802 4803 4804 4805

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            >>> x = paddle.assign(x)
            >>> x
            Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 0],
             [1, 1]])
            >>> x = paddle.cast(x, 'bool')
            >>> # x is a bool Tensor with following elements:
            >>> #    [[True, False]
            >>> #     [True, True]]

            >>> # out1 should be True
            >>> out1 = paddle.any(x)
            >>> out1
            Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            True)

            >>> # out2 should be [True, True]
            >>> out2 = paddle.any(x, axis=0)
            >>> out2
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=False, out3 should be [True, True], out.shape should be (2,)
            >>> out3 = paddle.any(x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True,
            [True, True])

            >>> # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            >>> out4 = paddle.any(x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True,
            [[True],
             [True]])
4843

4844
    """
4845
    if in_dynamic_mode():
4846
        return _C_ops.any(x, axis, keepdim)
4847 4848 4849 4850 4851 4852 4853
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
4854 4855 4856
        check_variable_and_dtype(
            x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'any'
        )
4857
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
4858

4859
        helper = LayerHelper('any', **locals())
4860
        out = helper.create_variable_for_type_inference(dtype=paddle.bool)
4861 4862 4863 4864 4865 4866 4867
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
4868

4869

L
Leo Chen 已提交
4870 4871
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
4872 4873 4874 4875 4876 4877
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
4878 4879 4880 4881

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
4882

L
Leo Chen 已提交
4883 4884 4885 4886 4887 4888 4889

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

4890
            >>> import paddle
L
Leo Chen 已提交
4891

4892 4893 4894
            >>> shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            >>> shape
            [2, 3, 3]
4895

4896 4897
            >>> # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            >>> # ValueError (terminated with error message).
L
Leo Chen 已提交
4898 4899 4900 4901

    """

    return core.broadcast_shape(x_shape, y_shape)
4902

4903

4904 4905 4906 4907 4908
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
4909
        x (Tensor): The input Tensor which hold the complex numbers.
4910
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
4911
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4912 4913

    Returns:
C
Chen Long 已提交
4914
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
4915 4916 4917 4918

    Examples:
        .. code-block:: python

4919
            >>> import paddle
4920

4921 4922 4923 4924 4925
            >>> data = paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
            >>> data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1+1j), (2+2j), (3+3j)],
             [(4+4j), (5+5j), (6+6j)]])
4926

4927 4928 4929 4930 4931
            >>> conj_data = paddle.conj(data)
            >>> conj_data
            Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(1-1j), (2-2j), (3-3j)],
             [(4-4j), (5-5j), (6-6j)]])
4932 4933

    """
4934
    if in_dynamic_mode():
4935
        return _C_ops.conj(x)
4936 4937 4938 4939
    else:
        check_variable_and_dtype(
            x,
            "x",
4940 4941 4942 4943
            [
                'complex64',
                'complex128',
                'float16',
4944
                'uint16',
4945 4946 4947 4948 4949
                'float32',
                'float64',
                'int32',
                'int64',
            ],
4950 4951
            'conj',
        )
H
hong 已提交
4952

4953 4954 4955 4956
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
4957

4958 4959
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
4960

4961

Z
zyfncg 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
4971
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
4972 4973 4974 4975 4976 4977
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

4978
            >>> import paddle
Z
zyfncg 已提交
4979

4980 4981 4982 4983 4984 4985
            >>> data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            >>> res = paddle.digamma(data)
            >>> res
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.57721591,  0.03648996],
             [ nan       ,  5.32286835]])
Z
zyfncg 已提交
4986 4987
    """

4988
    if in_dynamic_mode():
4989
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4990
    else:
4991 4992 4993
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'digamma'
        )
4994 4995 4996 4997
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4998

4999

5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
@inplace_apis_in_dygraph_only
def digamma_(x, name=None):
    r"""
    Inplace version of ``digamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_digamma`.
    """
    if in_dynamic_mode():
        return _C_ops.digamma_(x)


5010 5011 5012 5013 5014 5015 5016 5017 5018
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
5019
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
5020 5021 5022 5023 5024 5025 5026 5027
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

5028
            >>> import paddle
5029

5030 5031 5032 5033 5034
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.lgamma(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.31452453, 1.76149762, 2.25271273, 1.09579790])
5035
    """
5036
    if in_dynamic_mode():
5037
        return _C_ops.lgamma(x)
5038
    else:
5039 5040 5041
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
5042 5043 5044 5045
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
5046 5047


5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
@inplace_apis_in_dygraph_only
def lgamma_(x, name=None):
    r"""
    Inplace version of ``lgamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_lgamma`.
    """
    if in_dynamic_mode():
        return _C_ops.lgamma_(x)


5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

5072
            >>> import paddle
5073

5074 5075 5076 5077 5078
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = paddle.neg(x)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.40000001,  0.20000000, -0.10000000, -0.30000001])
5079 5080
    """

5081 5082 5083
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
5084

R
ronnywang 已提交
5085

5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
@inplace_apis_in_dygraph_only
def neg_(x, name=None):
    r"""
    Inplace version of ``neg`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_neg`.
    """
    return x.scale_(
        scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )


5097
def atan2(x, y, name=None):
R
ronnywang 已提交
5098
    r"""
5099
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
5100 5101 5102 5103

    Equation:
        .. math::

5104 5105 5106 5107 5108 5109 5110 5111
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
5112 5113

    Args:
5114 5115
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
5116 5117 5118 5119 5120 5121 5122 5123
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

5124
            >>> import paddle
R
ronnywang 已提交
5125

5126 5127 5128 5129
            >>> x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            >>> x
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  1,  1, -1])
R
ronnywang 已提交
5130

5131 5132 5133 5134
            >>> y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            >>> y
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1,  -1,  1, 1])
R
ronnywang 已提交
5135

5136 5137 5138 5139
            >>> out = paddle.atan2(x, y)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
5140 5141 5142

    """

5143
    if in_dynamic_mode():
5144
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
5145
    else:
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
5158

5159 5160 5161 5162 5163
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
5164

5165

W
wangzhen38 已提交
5166 5167 5168 5169 5170
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
5171

W
wangzhen38 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
5187
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
W
wangzhen38 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

5198
            >>> import paddle
W
wangzhen38 已提交
5199

5200 5201 5202 5203 5204
            >>> x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            >>> out1 = paddle.logit(x)
            >>> out1
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.02785587, -4.53624487, -0.95440406, -1.32673466,  1.44676447])
W
wangzhen38 已提交
5205 5206

    """
5207
    if eps is None:
W
wangzhen38 已提交
5208
        eps = 0.0
5209
    if in_dynamic_mode():
5210
        return _C_ops.logit(x, eps)
5211 5212
    else:
        check_variable_and_dtype(
5213
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'logit'
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
5224

5225

5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
@inplace_apis_in_dygraph_only
def logit_(x, eps=None, name=None):
    r"""
    Inplace version of ``logit`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_logit`.
    """
    if eps is None:
        eps = 0.0
    if in_dynamic_mode():
        return _C_ops.logit_(x, eps)


5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
5248 5249 5250
        x (Tensor): An N-D Tensor with starting points, the data type is bfloat16, float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is bfloat16, float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is bfloat16, float16, float32, float64.
5251 5252 5253 5254 5255 5256 5257 5258
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

5259
            >>> import paddle
5260

5261 5262 5263 5264 5265 5266 5267
            >>> x = paddle.arange(1., 5., dtype='float32')
            >>> y = paddle.empty([4], dtype='float32')
            >>> y.fill_(10.)
            >>> out = paddle.lerp(x, y, 0.5)
            >>> out
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [5.50000000, 6.        , 6.50000000, 7.        ])
5268 5269

    """
5270 5271
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
5272

5273
    if in_dynamic_mode():
5274
        return _C_ops.lerp(x, y, weight)
5275 5276
    else:
        check_variable_and_dtype(
5277
            x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5278 5279
        )
        check_variable_and_dtype(
5280
            y, 'y', ['uint16', 'float16', 'float32', 'float64'], 'lerp'
5281 5282
        )
        check_variable_and_dtype(
5283 5284 5285 5286
            weight,
            'weight',
            ['uint16', 'float16', 'float32', 'float64'],
            'lerp',
5287
        )
5288

5289 5290 5291 5292 5293
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
5294

5295

5296 5297 5298 5299
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
5300
    Please refer to :ref:`api_paddle_lerp`.
5301 5302 5303 5304 5305 5306 5307 5308
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
5309
        raise ValueError(
5310 5311 5312 5313
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
5314
    return _C_ops.lerp_(x, y, weight)
5315

5316

W
wuhuanzhou 已提交
5317 5318
def erfinv(x, name=None):
    r"""
5319
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
5320 5321 5322 5323 5324 5325

        .. math::

            erfinv(erf(x)) = x.

    Args:
5326
        x (Tensor): An N-D Tensor, the data type is float16, bfloat16, float32, float64.
W
wuhuanzhou 已提交
5327 5328 5329
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5330
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
5331 5332 5333 5334

    Example:
        .. code-block:: python

5335
            >>> import paddle
5336

5337 5338 5339 5340 5341
            >>> x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            >>> out = paddle.erfinv(x)
            >>> out
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 0.       , 0.47693631, -inf.     ])
W
wuhuanzhou 已提交
5342 5343

    """
5344
    if in_dynamic_mode():
5345
        return _C_ops.erfinv(x)
5346
    else:
5347 5348 5349
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'float16', 'uint16'], 'erfinv'
        )
5350 5351 5352 5353
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
5354

5355

W
wuhuanzhou 已提交
5356 5357 5358 5359
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
5360
    Please refer to :ref:`api_paddle_erfinv`.
W
wuhuanzhou 已提交
5361 5362
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
5363
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
5364

5365

5366
def rad2deg(x, name=None):
5367
    r"""
5368
    Convert each of the elements of input x from angles in radians to degrees.
5369

5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5385 5386
            >>> import paddle
            >>> import math
5387

5388 5389 5390 5391 5392 5393
            >>> x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            >>> result1 = paddle.rad2deg(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [ 180.02334595, -180.02334595,  359.98937988, -359.98937988,
              89.95437622 , -89.95437622 ])
5394

5395 5396 5397 5398 5399
            >>> x2 = paddle.to_tensor(math.pi/2)
            >>> result2 = paddle.rad2deg(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            90.)
5400

5401 5402 5403 5404 5405
            >>> x3 = paddle.to_tensor(1)
            >>> result3 = paddle.rad2deg(x3)
            >>> result3
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            57.29578018)
5406 5407
    """
    rad2deg_scale = 180 / np.pi
5408
    if in_dynamic_mode():
5409 5410
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5411
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
5412
    else:
5413 5414 5415
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
5416 5417 5418
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5419
            out_cast = helper.create_variable_for_type_inference(
5420 5421 5422 5423 5424 5425 5426 5427
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5428
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5429 5430 5431 5432 5433 5434
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
5435 5436
        return out

5437

5438
def deg2rad(x, name=None):
5439
    r"""
5440
    Convert each of the elements of input x from degrees to angles in radians.
5441

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

5456
            >>> import paddle
5457

5458 5459 5460 5461 5462 5463
            >>> x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            >>> result1 = paddle.deg2rad(x1)
            >>> result1
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            -1.57079637])
5464

5465 5466 5467 5468 5469
            >>> x2 = paddle.to_tensor(180)
            >>> result2 = paddle.deg2rad(x2)
            >>> result2
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.14159274)
5470 5471
    """
    deg2rad_scale = np.pi / 180.0
5472
    if in_dynamic_mode():
5473 5474
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
5475
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
5476
    else:
5477 5478 5479
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
5480 5481 5482
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
5483
            out_cast = helper.create_variable_for_type_inference(
5484 5485 5486 5487 5488 5489 5490 5491
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
5492
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
5493 5494 5495 5496 5497 5498
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
5499
        return out
A
andyjpaddle 已提交
5500

5501

T
Tao Luo 已提交
5502 5503 5504 5505
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
5506

T
Tao Luo 已提交
5507 5508 5509
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
5510 5511
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5512
    Args:
C
cyberslack_lee 已提交
5513 5514
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5515 5516 5517 5518 5519 5520 5521 5522
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5523
            >>> import paddle
5524

5525 5526 5527 5528 5529
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.gcd(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5530

5531 5532 5533 5534
            >>> x3 = paddle.arange(6)
            >>> paddle.gcd(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [20, 1 , 2 , 1 , 4 , 5])
T
Tao Luo 已提交
5535

5536 5537 5538 5539
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.gcd(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            20)
T
Tao Luo 已提交
5540

5541 5542 5543
            >>> paddle.gcd(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5544

5545 5546 5547 5548
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.gcd(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            4)
T
Tao Luo 已提交
5549 5550 5551 5552 5553 5554 5555 5556
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
5557
        return paddle.any(y != 0)
T
Tao Luo 已提交
5558 5559 5560 5561 5562

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
5563
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
5564
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
5565 5566 5567 5568 5569 5570 5571 5572
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
5573 5574
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

5575
    if in_dynamic_mode():
T
Tao Luo 已提交
5576 5577 5578 5579 5580
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
5581 5582
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
5583 5584 5585
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

5586

5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
def gcd_(x, y, name=None):
    r"""
    Inplace version of ``gcd`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_gcd`.
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    if shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                shape, x.shape
            )
        )
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs_(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_equal_0 = y == 0
        y_safe = paddle.where(y_equal_0, paddle.ones(y.shape, y.dtype), y)
        y, x = (
            paddle.where(
                y_equal_0,
                paddle.zeros(y.shape, y.dtype),
                paddle.mod(x, y_safe),
            ),
            paddle.where_(y_equal_0, x, y),
        )
        return (
            paddle.where(x < y, x, y),
            paddle.where_(x >= y, x, y),
        )

    if in_dynamic_mode():
        while _gcd_cond_fn(x, y):
            y, x = _gcd_body_fn(x, y)

        return x


T
Tao Luo 已提交
5632 5633 5634 5635
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
5636

T
Tao Luo 已提交
5637 5638 5639
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
5640 5641
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
5642
    Args:
C
cyberslack_lee 已提交
5643 5644
        x (Tensor): An N-D Tensor, the data type is int32, int64.
        y (Tensor): An N-D Tensor, the data type is int32, int64.
T
Tao Luo 已提交
5645 5646 5647 5648 5649 5650 5651 5652
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

5653
            >>> import paddle
5654

5655 5656 5657 5658 5659
            >>> x1 = paddle.to_tensor(12)
            >>> x2 = paddle.to_tensor(20)
            >>> paddle.lcm(x1, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5660

5661 5662 5663 5664
            >>> x3 = paddle.arange(6)
            >>> paddle.lcm(x3, x2)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 20, 20, 60, 20, 20])
T
Tao Luo 已提交
5665

5666 5667 5668 5669
            >>> x4 = paddle.to_tensor(0)
            >>> paddle.lcm(x4, x2)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
T
Tao Luo 已提交
5670

5671 5672 5673
            >>> paddle.lcm(x4, x4)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            0)
5674

5675 5676 5677 5678
            >>> x5 = paddle.to_tensor(-20)
            >>> paddle.lcm(x1, x5)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            60)
T
Tao Luo 已提交
5679 5680 5681 5682 5683 5684 5685
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
5686 5687 5688
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
5689 5690
    return out

5691

5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
def lcm_(x, y, name=None):
    r"""
    Inplace version of ``lcm`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_lcm`.
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_not_equal_0 = d != 0
    d_safe = paddle.where(d_not_equal_0, d, paddle.ones(d.shape, d.dtype))
    out = paddle.where_(
        d_not_equal_0,
        paddle.abs_(x.multiply_(y)).floor_divide_(d_safe),
        paddle.zeros(d.shape, d.dtype),
    )
    return out


A
andyjpaddle 已提交
5711 5712 5713
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
5714
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
5715 5716 5717 5718

    .. math::

        out[i] = x[i+1] - x[i]
5719 5720

    Higher-order differences are computed by using paddle.diff() recursively.
5721
    The number of n supports any positive integer value.
A
andyjpaddle 已提交
5722 5723

    Args:
5724
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
5725
        n (int, optional): The number of times to recursively compute the difference.
5726
                            Supports any positive integer value. Default:1
5727 5728
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
5729
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5730
                                   and its shapes must match x's shape except on axis.
5731 5732
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
5733
                                   and its shapes must match x's shape except on axis.
5734
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
5735

A
andyjpaddle 已提交
5736 5737 5738 5739 5740 5741
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

5742
            >>> import paddle
5743

5744 5745 5746 5747 5748
            >>> x = paddle.to_tensor([1, 4, 5, 2])
            >>> out = paddle.diff(x)
            >>> out
            Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3])
A
andyjpaddle 已提交
5749

5750 5751 5752 5753 5754 5755
            >>> x_2 = paddle.to_tensor([1, 4, 5, 2])
            >>> out = paddle.diff(x_2, n=2)
            >>> out
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ -2,  -4])

5756 5757 5758 5759 5760
            >>> y = paddle.to_tensor([7, 9])
            >>> out = paddle.diff(x, append=y)
            >>> out
            Tensor(shape=[5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [ 3,  1, -3,  5,  2])
A
andyjpaddle 已提交
5761

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
            >>> z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            >>> out = paddle.diff(z, axis=0)
            >>> out
            Tensor(shape=[1, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[3, 3, 3]])
            >>> out = paddle.diff(z, axis=1)
            >>> out
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[1, 1],
             [1, 1]])
A
andyjpaddle 已提交
5772
    """
5773 5774 5775 5776 5777
    if n < 1:
        raise ValueError(
            "Diff expects input to be at least one-dimensional but got {}".format(
                n
            )
5778
        )
5779

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
    def _diff_handler(x, n=1, axis=-1, prepend=None, append=None, name=None):
        if axis < 0:
            axis = axis + len(x.shape)
        if axis > len(x.shape):
            axis = len(x.shape)
        if axis < 0:
            axis = 0
        dtype = x.dtype
        axes = [axis]
        infer_flags = [1 for i in range(len(axes))]
        if in_dynamic_mode():
            has_pend = False
            input_list = []
            if prepend is not None and append is not None:
                input_list = [prepend, x, append]
                has_pend = True
            elif prepend is not None:
                input_list = [prepend, x]
                has_pend = True
            elif append is not None:
                input_list = [x, append]
                has_pend = True
            if has_pend:
                new_input = _C_ops.concat(input_list, axis)
            else:
                new_input = x

            attrs_1 = ()
            attrs_2 = ()

            dim_len = new_input.shape[axis]

            starts_1 = [0]
            attrs_1 += ('starts', starts_1)
            ends_1 = [dim_len - 1]
            attrs_1 += ('ends', ends_1)
            input_front = _C_ops.slice(
                new_input, axes, starts_1, ends_1, infer_flags, []
            )
            starts_2 = [1]
            attrs_2 += ('starts', starts_2)
            ends_2 = [dim_len]
            attrs_2 += ('ends', ends_2)
            input_back = _C_ops.slice(
                new_input, axes, starts_2, ends_2, infer_flags, []
            )

            if x.dtype == paddle.bool:
                return _C_ops.logical_xor(input_back, input_front)
            else:
                return _C_ops.subtract(input_back, input_front)
5831
        else:
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
            check_variable_and_dtype(
                x,
                'x',
                ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
                'diff',
            )
            check_type(axis, 'axis', (int), 'diff')
            helper = LayerHelper('diff', **locals())
            has_pend = False
            input_list = []
            if prepend is not None and append is not None:
                input_list = [prepend, x, append]
                has_pend = True
            elif prepend is not None:
                input_list = [prepend, x]
                has_pend = True
            elif append is not None:
                input_list = [x, append]
                has_pend = True

            if has_pend:
                new_input = helper.create_variable_for_type_inference(dtype)
                helper.append_op(
                    type='concat',
                    inputs={'X': input_list},
                    outputs={'Out': [new_input]},
                    attrs={'axis': axis},
                )
            else:
                new_input = x

            dim_len = new_input.shape[axis]
            attrs_1 = {'axes': axes}
            starts_1 = [0]
            ends_1 = [dim_len - 1]
            attrs_1['starts'] = starts_1
            attrs_1['ends'] = ends_1
            input_front = helper.create_variable_for_type_inference(dtype)
5870
            helper.append_op(
5871 5872 5873 5874
                type='slice',
                inputs={'Input': new_input},
                attrs=attrs_1,
                outputs={'Out': input_front},
5875
            )
5876 5877 5878 5879 5880 5881
            attrs_2 = {'axes': axes}
            starts_2 = [1]
            ends_2 = [dim_len]
            attrs_2['starts'] = starts_2
            attrs_2['ends'] = ends_2
            input_back = helper.create_variable_for_type_inference(dtype)
5882
            helper.append_op(
5883 5884 5885 5886
                type='slice',
                inputs={'Input': new_input},
                attrs=attrs_2,
                outputs={'Out': input_back},
5887
            )
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908

            if dtype == paddle.bool:
                out = helper.create_variable_for_type_inference(dtype)
                helper.append_op(
                    type='logical_xor',
                    inputs={"X": input_back, "Y": input_front},
                    outputs={"Out": out},
                )
            else:
                out = paddle.tensor.math.subtract(input_back, input_front)
            return out

    out = _diff_handler(
        x, n=1, axis=axis, prepend=prepend, append=append, name=name
    )
    if n > 1:
        for _ in range(n - 1):
            out = _diff_handler(
                out, n=1, axis=axis, prepend=prepend, append=append, name=name
            )
    return out
F
Feiyu Chan 已提交
5909

5910

F
Feiyu Chan 已提交
5911 5912
def angle(x, name=None):
    r"""
5913
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
5926
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
5927 5928 5929 5930

    Examples:
        .. code-block:: python

5931
            >>> import paddle
F
Feiyu Chan 已提交
5932

5933 5934 5935 5936 5937 5938 5939 5940 5941
            >>> x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            >>> y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            >>> z = x + 1j * y
            >>> z
            Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
             [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
             [-2j    , -1j    ,  0j    ,  1j    ],
             [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
5942

5943 5944 5945 5946 5947 5948 5949
            >>> theta = paddle.angle(z)
            >>> theta
            Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
             [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
             [-1.57079637, -1.57079637,  0.        ,  1.57079637],
             [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
5950 5951
    """

5952
    if in_dynamic_mode():
F
Feiyu Chan 已提交
5953
        return _C_ops.angle(x)
5954 5955
    else:
        check_variable_and_dtype(
C
chenxujun 已提交
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'angle',
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
5977

5978

5979
def heaviside(x, y, name=None):
5980
    r"""
5981 5982 5983 5984 5985
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
5986 5987 5988 5989
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
5990
                \end{array}
5991
            \right.
5992

5993
    Note:
I
Infinity_lee 已提交
5994 5995 5996
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
5997 5998

    Args:
5999 6000
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
6001 6002 6003 6004 6005 6006 6007 6008
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
            >>> import paddle
            >>> x = paddle.to_tensor([-0.5, 0, 0.5])
            >>> y = paddle.to_tensor([0.1])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.10000000, 1.        ])
            >>> x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            >>> y = paddle.to_tensor([0.1, 0.2, 0.3])
            >>> paddle.heaviside(x, y)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        , 0.20000000, 1.        ],
             [0.        , 1.        , 0.30000001]])
6021
    """
6022
    if in_dynamic_mode():
6023
        return _C_ops.heaviside(x, y)
6024
    else:
W
Weilong Wu 已提交
6025
        op_type = 'elementwise_heaviside'
6026
        return _elementwise_op(LayerHelper(op_type, **locals()))
6027

6028

6029 6030 6031 6032 6033 6034
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
6035
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
6036 6037 6038 6039 6040

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
6041
        .. code-block:: python
6042

6043
            >>> import paddle
6044

6045 6046 6047 6048 6049 6050 6051
            >>> input = paddle.to_tensor([[12.22000003, -1.02999997],
            ...                           [-0.54999995, 0.66000003]])
            >>> output = paddle.frac(input)
            >>> output
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.22000003, -0.02999997],
             [-0.54999995,  0.66000003]])
6052
    """
6053
    if x.dtype not in [
6054 6055 6056 6057
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
6058
    ]:
6059
        raise TypeError(
6060 6061 6062 6063
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
6064
    if in_dynamic_mode():
6065 6066
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
6067
    else:
6068 6069
        inputs = {"X": x}
        attrs = {}
6070

6071 6072 6073 6074 6075 6076 6077 6078
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
6079
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
6080

6081

6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
@inplace_apis_in_dygraph_only
def frac_(x, name=None):
    r"""
    Inplace version of ``frac`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_frac`.
    """

    if x.dtype not in [
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
    ]:
        raise TypeError(
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
    if in_dynamic_mode():
        y = _C_ops.trunc(x)
        return _C_ops.subtract_(x, y)


6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
6120
        .. code-block:: python
6121

6122
            >>> import paddle
6123

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
            >>> x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            >>> paddle.sgn(x)
            Tensor(shape=[2, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[ (0.6000000238418579+0.800000011920929j),
              (0.2800000011920929-0.9599999785423279j),
               0j                                     ,
              (0.4472135901451111+0.8944271802902222j)],
             [ (0.6000000238418579+0.800000011920929j),
               (1+0j)                                 ,
               0j                                     ,
              (-1+0j)                                 ]])
6135 6136

    """
6137
    if x.dtype not in [
6138 6139 6140 6141 6142
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
6143
    ]:
6144
        raise TypeError(
6145 6146 6147 6148
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
6160

6161

6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

6185
            >>> import paddle
6186

6187 6188
            >>> x_int = paddle.arange(0, 12).reshape([3, 4])
            >>> x_float = x_int.astype(paddle.float64)
6189

6190 6191 6192
            >>> idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            >>> idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            >>> idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range
6193

6194 6195 6196 6197
            >>> paddle.take(x_int, idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
6198

6199 6200 6201 6202
            >>> paddle.take(x_int, idx_neg)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 ],
             [1 , 2 , 3 ]])
6203

6204 6205 6206 6207
            >>> paddle.take(x_float, idx_pos)
            Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[4., 5., 6.],
             [7., 8., 9.]])
6208

6209 6210 6211 6212
            >>> x_int.take(idx_pos)
            Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[4, 5, 6],
             [7, 8, 9]])
6213

6214 6215 6216 6217 6218
            >>> paddle.take(x_int, idx_err, mode='wrap')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[10, 11, 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 0 ]])
6219

6220 6221 6222 6223 6224
            >>> paddle.take(x_int, idx_err, mode='clip')
            Tensor(shape=[3, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 0 , 0 , 1 , 2 ],
             [3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 11]])
6225 6226 6227 6228

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
6229 6230 6231 6232
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
6233

6234
    if in_dynamic_mode():
6235 6236
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
6237
                "The type of 'index' must be Tensor, but got {}".format(
6238 6239 6240
                    type(index)
                )
            )
6241 6242
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
6243 6244 6245 6246
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
6260
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
6261 6262 6263
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
6264 6265 6266 6267 6268 6269 6270
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
6271 6272 6273 6274 6275 6276 6277 6278 6279


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
6280

6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

6292
            >>> import paddle
6293

6294 6295 6296 6297 6298 6299 6300 6301
            >>> x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            >>> mantissa, exponent = paddle.tensor.math.frexp(x)
            >>> mantissa
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 0.50000000, 0.75000000, 0.50000000]])
            >>> exponent
            Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 2., 2., 3.]])
6302
    """
6303 6304
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
6305 6306 6307 6308
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
6309 6310
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
6311 6312 6313
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
6314 6315 6316 6317

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
6328 6329 6330

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
6373
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

6419
            >>> import paddle
6420

6421
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6422

6423 6424 6425
            >>> paddle.trapezoid(y)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6426

6427 6428 6429
            >>> paddle.trapezoid(y, dx=2.)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            20.)
6430

6431 6432
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6433

6434 6435 6436
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            10.)
6437

6438 6439
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6440

6441 6442 6443 6444
            >>> paddle.trapezoid(y, x)
            Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
            -8.)
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6445

6446 6447 6448 6449 6450 6451
            >>> paddle.trapezoid(y, axis=0)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.50000000, 2.50000000, 3.50000000])
            >>> paddle.trapezoid(y, axis=1)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 8.])
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

6476
            >>> import paddle
6477

6478
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
6479

6480 6481 6482
            >>> paddle.cumulative_trapezoid(y)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6483

6484 6485 6486
            >>> paddle.cumulative_trapezoid(y, dx=2.)
            >>> # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            >>> #        [9. , 20.])
6487

6488 6489
            >>> y = paddle.to_tensor([4, 5, 6], dtype='float32')
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
6490

6491 6492 6493
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4.50000000, 10.       ])
6494

6495 6496
            >>> y = paddle.to_tensor([1, 2, 3], dtype='float64')
            >>> x = paddle.to_tensor([8, 6, 4], dtype='float64')
6497

6498 6499 6500
            >>> paddle.cumulative_trapezoid(y, x)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [-3., -8.])
6501

6502
            >>> y = paddle.arange(6).reshape((2, 3)).astype('float32')
6503

6504 6505 6506 6507 6508 6509 6510
            >>> paddle.cumulative_trapezoid(y, axis=0)
            Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.50000000, 2.50000000, 3.50000000]])
            >>> paddle.cumulative_trapezoid(y, axis=1)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.50000000, 2.        ],
             [3.50000000, 8.        ]])
6511 6512
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
            >>> import paddle
            >>> x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            >>> out = paddle.vander(x)
            >>> out
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [4., 2., 1.],
             [9., 3., 1.]])
            >>> out1 = paddle.vander(x,2)
            >>> out1
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1.],
             [2., 1.],
             [3., 1.]])
            >>> out2 = paddle.vander(x, increasing = True)
            >>> out2
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1., 1., 1.],
             [1., 2., 4.],
             [1., 3., 9.]])
            >>> real = paddle.to_tensor([2., 4.])
            >>> imag = paddle.to_tensor([1., 3.])
            >>> complex = paddle.complex(real, imag)
            >>> out3 = paddle.vander(complex)
            >>> out3
            Tensor(shape=[2, 2], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(2+1j), (1+0j)],
             [(4+3j), (1+0j)]])
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
    if paddle.in_dynamic_mode():
        if n > 0:
            res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
        if n > 1:
            res[:, 1:] = x[:, None]
            res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    else:
        if n > 0:
            res = paddle.static.setitem(
                res, (slice(None), 0), paddle.to_tensor([1], dtype=x.dtype)
            )
        if n > 1:
            res = paddle.static.setitem(
                res, (slice(None), slice(1, None)), x[:, None]
            )
            res = paddle.static.setitem(
                res,
                (slice(None), slice(1, None)),
                paddle.cumprod(res[:, 1:], dim=-1),
            )
6606 6607
    res = res[:, ::-1] if not increasing else res
    return res
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625


def nextafter(x, y, name=None):
    r"""
    Return the next floating-point value after input towards other, elementwise.
    The shapes of input and other must be broadcastable.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        y (Tensor): An N-D Tensor, the data type is float32, float64.
        name(str, optional):Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6626 6627 6628 6629 6630
            >>> import paddle
            >>> out = paddle.nextafter(paddle.to_tensor([1.0,2.0]),paddle.to_tensor([2.0,1.0]))
            >>> out
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [1.00000012, 1.99999988])
6631
    """
6632
    if in_dynamic_mode():
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
        return _C_ops.nextafter(x, y)
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'nextafter')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'nextafter')
        op_type = "nextafter"
        helper = LayerHelper(op_type, **locals())
        inputs = {"x": x, "y": y}
        out = helper.create_variable_for_type_inference(dtype=paddle.float32)
        outputs = {"out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664


def i0(x, name=None):
    r"""
    The function used to calculate modified bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2}

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6665
            >>> import paddle
6666

6667 6668 6669 6670
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> paddle.i0(x)
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994 , 1.26606596 , 2.27958512 , 4.88079262 , 11.30192089])
6671
    """
6672
    if in_dynamic_mode():
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
        return _C_ops.i0(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0")

        helper = LayerHelper("i0", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0', inputs={'x': x}, outputs={'out': out})
    return out


6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
@inplace_apis_in_dygraph_only
def i0_(x, name=None):
    r"""
    Inplace version of ``i0`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_i0`.
    """

    if in_dynamic_mode():
        return _C_ops.i0_(x)


6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
def i0e(x, name=None):
    r"""
    The function used to calculate exponentially scaled modified Bessel function of order 0.

    Equation:
        ..  math::

            I_0(x) = \sum^{\infty}_{k=0}\frac{(x^2/4)^k}{(k!)^2} \\
            I_{0e}(x) = e^{-|x|}I_0(x)

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 0 at x.

    Examples:
        .. code-block:: python

6714
            >>> import paddle
6715

6716 6717 6718 6719
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i0e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.99999994, 0.46575963, 0.30850831, 0.24300036, 0.20700191])
6720
    """
6721
    if in_dynamic_mode():
6722 6723 6724 6725 6726 6727 6728 6729
        return _C_ops.i0e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i0e")

        helper = LayerHelper("i0e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='i0e', inputs={'x': x}, outputs={'out': out})
    return out
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745


def i1(x, name=None):
    """
    The function is used to calculate modified bessel function of order 1.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the modified bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6746
            >>> import paddle
6747

6748 6749 6750 6751
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.56515908, 1.59063685, 3.95337057, 9.75946712])
6752
    """
6753
    if in_dynamic_mode():
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
        return _C_ops.i1(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1")

        helper = LayerHelper("i1", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out


def i1e(x, name=None):
    """
    The function is used to calculate exponentially scaled modified Bessel function of order 1.

    Args:

        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        - out (Tensor), A Tensor. the value of the exponentially scaled modified Bessel function of order 1 at x.

    Examples:
        .. code-block:: python

6781
            >>> import paddle
6782

6783 6784 6785 6786
            >>> x = paddle.to_tensor([0, 1, 2, 3, 4], dtype="float32")
            >>> print(paddle.i1e(x))
            Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.20791042, 0.21526928, 0.19682673, 0.17875087])
6787
    """
6788
    if in_dynamic_mode():
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
        return _C_ops.i1e(x)
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "i1e")

        helper = LayerHelper("i1e", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='i1e', inputs={'x': x}, outputs={'out': out}, attrs={}
        )
    return out
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820


def polygamma(x, n, name=None):
    r"""
    Calculates the polygamma of the given input tensor, element-wise.

    The equation is:

    .. math::
        \Phi^n(x) = \frac{d^n}{dx^n} [\ln(\Gamma(x))]

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        n (int): Order of the derivative. Must be integral.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - out (Tensor), A Tensor. the polygamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

6821
            >>> import paddle
6822

6823 6824 6825 6826 6827
            >>> data = paddle.to_tensor([2, 3, 25.5], dtype='float32')
            >>> res = paddle.polygamma(data, 1)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.64493412,  0.39493406,  0.03999467])
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma(x, n)
        else:
            check_variable_and_dtype(
                x, "x", ["float32", "float64"], "polygamma"
            )

            helper = LayerHelper("polygamma", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='polygamma',
                inputs={'x': x},
                outputs={'out': out},
                attrs={'n': n},
            )
        return out
6857 6858


6859
@inplace_apis_in_dygraph_only
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
def polygamma_(x, n, name=None):
    r"""
    Inplace version of ``polygamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_polygamma`.
    """
    if not isinstance(n, int):
        raise TypeError(
            "The input of n must be int type, but received: %s " % (type(n))
        )
    if n < 0:
        raise ValueError(
            "The input of n must be greater than or equal to 0. But received n = %s"
            % (n)
        )
    if n == 0:
        return digamma_(x)
    else:
        if in_dynamic_mode():
            return _C_ops.polygamma_(x, n)


6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
def ldexp(x, y, name=None):
    """
    Compute the result of multiplying x by 2 to the power of y. The equation is:

    .. math::
        out = x * 2^{y}

    Args:
        x (Tensor): The input Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor):  A Tensor of exponents, typically integers.
        name (str, optional): Name for the operation (optional, default is None).For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y. And the data type is float32 or float64.

    Examples:

6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
        .. code-block:: python

            >>> import paddle

            >>> # example1
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2, 3, 4], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 16., 48.])

            >>> # example2
            >>> x = paddle.to_tensor([1, 2, 3], dtype='float32')
            >>> y = paddle.to_tensor([2], dtype='int32')
            >>> res = paddle.ldexp(x, y)
            >>> print(res)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [4. , 8. , 12.])
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930

    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply(x, paddle.pow(two, y))
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949


def ldexp_(x, y, name=None):
    r"""
    Inplace version of ``polygamma`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_polygamma`.
    """
    if not isinstance(x, (paddle.Tensor, Variable)):
        raise TypeError(f"x must be tensor type, but got {type(x)}")
    if not isinstance(y, (paddle.Tensor, Variable)):
        raise TypeError(f"y must be tensor type, but got {type(y)}")
    if x.dtype == paddle.float64 or y.dtype == paddle.float64:
        out_dtype = paddle.float64
    else:
        out_dtype = paddle.get_default_dtype()
    x = paddle.cast_(x, dtype=out_dtype)
    y = paddle.cast(y, dtype=out_dtype)
    two = paddle.to_tensor(2, dtype=out_dtype)
    return paddle.multiply_(x, paddle.pow(two, y))