imperative.cc 130.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/cncl_context.h"
45
#include "paddle/fluid/imperative/data_loader.h"
46
#include "paddle/fluid/imperative/gloo_context.h"
47
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
48
#include "paddle/fluid/imperative/heter_ccl_context.h"
49
#include "paddle/fluid/imperative/hooks.h"
50
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
51
#include "paddle/fluid/imperative/nccl_context.h"
52
#include "paddle/fluid/imperative/partial_grad_engine.h"
53
#include "paddle/fluid/imperative/profiler.h"
54
#include "paddle/fluid/imperative/reducer.h"
55
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
56
#include "paddle/fluid/imperative/type_defs.h"
57
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
58
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
59
#include "paddle/fluid/pybind/cuda_streams_py.h"
60
#include "paddle/fluid/pybind/eager_utils.h"
61
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
62
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
63
#include "paddle/fluid/pybind/tensor_py.h"
64
#include "paddle/fluid/pybind/uva_utils.h"
65
#include "paddle/phi/core/compat/arg_map_context.h"
66
#include "paddle/phi/core/type_defs.h"
67

68 69 70
namespace paddle {
namespace pybind {

71
std::atomic<int> VarBaseUniqueNameID{0};
72 73
PyTypeObject *g_varbase_pytype = nullptr;

74 75
namespace py = ::pybind11;

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
109 110
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
128 129 130 131 132
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
133 134 135 136 137 138
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
139 140 141 142 143
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
144 145
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
146 147
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
148 149
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
150 151
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
152 153
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
154 155
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
156 157
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
158 159
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
160
        "Place should be one of "
161 162
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace/CustomPlace"));
L
Leo Chen 已提交
163 164 165
  }
}

L
Leo Chen 已提交
166
// only initialize varbase, but not its tensor.
167 168 169 170
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
171 172 173
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
174 175 176

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
177
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
178 179 180 181 182 183 184 185 186
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
187 188 189 190 191 192 193
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
194
  InitVarBaseOnly(self, name, persistable, stop_gradient);
195
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
196
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
197
  if (platform::is_cpu_place(place)) {
198
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
199
  } else if (platform::is_xpu_place(place)) {
200
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
201
  } else if (platform::is_gpu_place(place)) {
202
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
203
  } else if (platform::is_cuda_pinned_place(place)) {
204 205
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
206
  } else if (platform::is_npu_place(place)) {
207
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
208 209
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
210
  } else if (platform::is_mlu_place(place)) {
211
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
212
  } else if (platform::is_custom_place(place)) {
213 214
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
215
  } else {
L
Leo Chen 已提交
216
    PADDLE_THROW(platform::errors::InvalidArgument(
217
        "Place should be one of "
218 219
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace"));
J
Jiabin Yang 已提交
220
  }
221
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
222 223 224 225
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
226
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
227 228 229 230 231 232
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
233 234 235
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
236
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
237 238 239 240 241 242 243

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
244 245
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
246 247 248
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
249
}
250

251 252
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
253 254
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
255 256
                                        bool persistable = false,
                                        bool zero_copy = false,
257 258 259 260 261
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
262
  if (name == "") {
263 264
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
265
  }
266 267
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
268
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
269
  new (self) imperative::VarBase(name);
270
  self->SetPersistable(persistable);
271
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
272 273 274
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
275 276
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
277
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
278 279 280
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
281 282
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
283
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
284
  InitVarBaseAndTensor(self, array, place, "");
285
}
286

B
Baibaifan 已提交
287
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
288
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
289
                                                const std::string &name) {
290 291
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
292 293 294
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
295
  new (self) imperative::VarBase(name_);
296 297
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
298
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
299
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
300 301 302 303 304 305 306 307 308 309
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

310 311
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
312
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
313 314
                                         const P &place,
                                         const std::string &name) {
315
  VLOG(4) << "Init VarBase";
316 317 318
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
319
  new (self) imperative::VarBase(name_);
320 321
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
322
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
323
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
324 325 326 327 328 329 330 331 332 333
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

334 335 336 337 338
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
339
  } else {
340
    return framework::ToTypeName(var.Var().Type());
341 342
  }
}
L
Leo Chen 已提交
343

J
Jiabin Yang 已提交
344 345 346 347 348 349
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
350
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
351 352
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
353
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
354 355 356 357
        "method, when you reach this means we got another type index."));
  }
}

358
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
359 360 361 362 363 364 365 366 367 368 369 370 371

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

372
  if (PyList_Check(py_obj)) {  // List of VarBase
373 374 375
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
376 377 378
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
379 380 381
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
382
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
383 384 385
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
386 387 388
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
389 390 391
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
392 393 394
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
395 396 397 398
  }

  return result;
}
399

J
Jiabin Yang 已提交
400 401 402
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
403 404 405 406 407 408
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
409

410
  PADDLE_ENFORCE_EQ(
411 412
      PyErr_Occurred(),
      nullptr,
413
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
414 415 416
  return result;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
434 435
      PyErr_Occurred(),
      nullptr,
436 437 438 439
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

440
template <typename P>
441 442
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
443 444
                        const P &dst_device,
                        const bool blocking) {
445 446 447 448 449 450 451 452
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
453 454 455
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
456 457 458 459 460 461 462 463 464
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
465 466
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
467
        auto *dst_selected_rows =
468
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
469 470
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
471 472
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

498
// Bind Methods
J
Jiabin Yang 已提交
499
void BindImperative(py::module *m_ptr) {
500 501
  auto &m = *m_ptr;

502 503
#ifndef _WIN32
  // Dygraph DataLoader signal handler
504 505
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
506 507
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
508 509 510 511 512 513 514 515 516 517
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
518
  });
519 520
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
542 543
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
544
              platform::errors::InvalidArgument(
545
                  "Failed to convert input data to a regular ndarray.\n  * "
546 547 548 549 550
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
551
          phi::DenseTensor t;
552 553
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
554
          // 3. allocate shared memory
555
          void *data_ptr = t.data();
556
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
557 558 559 560 561 562
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
563 564 565 566 567
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
568 569 570 571 572 573 574 575
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

576 577 578 579 580 581
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
582 583
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
584
            platform::errors::InvalidArgument(
585
                "Failed to convert input data to a regular ndarray.\n  * "
586 587 588 589 590
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
591
        phi::DenseTensor t;
592 593
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
594 595
        // 3. allocate shared memory
        void *data_ptr = t.data();
596
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
597 598 599 600 601 602
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
603 604 605 606 607
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
608 609 610 611 612
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
613

614 615
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
616
      auto t = tensor_list[i].cast<phi::DenseTensor>();
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
632 633 634 635 636

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
637 638
#endif

639 640
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
641 642 643 644
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
645 646
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
647 648 649
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
650 651
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
652
          egr::Controller::Instance().SetCurrentTracer(tracer);
653
          imperative::SetCurrentTracer(tracer);
654
        });
655 656 657 658
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
659 660 661 662 663 664 665
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
666
      .def("__init__",
667 668
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
669
              const std::vector<int64_t> &dims,
670 671 672
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
673
             VLOG(4) << "Init VarBase";
674 675 676
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
677
                   "generated_tensor");
678 679 680 681
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
682 683 684 685
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
686
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
687
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
688 689
             }
           })
690 691 692 693 694 695 696
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
697
           py::arg("stop_gradient") = -1)
698 699 700 701 702 703 704
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
705
           py::arg("stop_gradient") = -1)
706 707 708 709 710 711 712
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
713
           py::arg("stop_gradient") = -1)
714 715 716 717 718 719 720
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
721
           py::arg("stop_gradient") = -1)
722 723 724 725 726 727 728
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
729
           py::arg("stop_gradient") = -1)
730 731 732 733 734 735 736
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
F
fwenguang 已提交
737
           py::arg("stop_gradient") = -1)
738 739 740 741 742 743 744
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
745
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
746
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
785
           py::arg("name") = "")
786
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
787 788
      .def(
          "__setitem_varbase__",
789 790
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
791 792 793 794
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
795
                self->MutableVar()->GetMutable<phi::DenseTensor>();
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

820 821 822 823 824
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
848 849 850 851 852 853 854 855 856 857
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
874 875
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
876 877 878 879 880 881
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

882
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
883 884 885
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
886 887 888 889 890 891

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
892 893 894 895 896 897 898
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
899
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
900 901 902 903
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
904
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
905 906 907 908
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
909 910
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
911 912 913 914
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
915 916
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
917 918 919 920
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
921
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
922 923 924 925 926 927 928 929 930
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

931 932 933 934 935
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
962 963 964 965
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
                    attrs["fp16_values"] =
                        std::vector<float>{value_obj.cast<float>()};
966 967 968 969
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
970
                        "float32, int32, int64 or float16, "
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
987 988 989 990
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
991 992 993 994 995 996 997 998 999 1000
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
1001
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
1002 1003 1004 1005 1006 1007
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1008 1009
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1010 1011
            }
          })
1012
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1013
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1014
             VLOG(4) << "Call _getitem_index_not_tensor";
1015
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1016 1017 1018 1019
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1020
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1032 1033 1034
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1035

Z
zyfncg 已提交
1036
             auto out = slice_axes.empty() && !list_select_flag
1037 1038 1039 1040
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1041

1042
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1043
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1104 1105 1106 1107
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1108 1109
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1110 1111
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1112 1113
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1114 1115 1116 1117 1118 1119 1120

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1121
             return out;
1122
           })
1123 1124 1125
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1126
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1127
            PADDLE_ENFORCE_EQ(
1128 1129
                tensor.IsInitialized(),
                true,
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1148 1149
                  numel,
                  1,
1150 1151 1152 1153 1154 1155
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1156 1157
                  offset,
                  numel,
1158 1159 1160
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1161 1162
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1163 1164 1165 1166 1167 1168
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1169 1170
                    index,
                    dims[i],
1171 1172
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1173 1174 1175
                        index,
                        i,
                        dims[i]));
1176 1177 1178 1179
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1180
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1181 1182
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1183 1184
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1185 1186 1187 1188 1189
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1190
                "Unsupported tensor data type: %s", tensor.dtype()));
1191 1192
          },
          py::return_value_policy::copy)
1193 1194 1195 1196
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1197 1198
                 var->IsInitialized(),
                 true,
1199 1200 1201 1202 1203
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1204 1205 1206 1207 1208 1209 1210 1211
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1212 1213 1214 1215 1216
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1217 1218
      .def(
          "numpy",
1219

1220
          [](imperative::VarBase &self) -> py::array {
1221
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1222
            PADDLE_ENFORCE_EQ(
1223 1224
                tensor.IsInitialized(),
                true,
1225 1226 1227 1228 1229 1230
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1231
        Returns a numpy array shows the value of current Tensor.
1232

1233
        Returns:
Z
Zhou Wei 已提交
1234
            ndarray: The numpy value of current Tensor.
1235 1236

        Returns type:
Z
Zhou Wei 已提交
1237
            ndarray: dtype is same as current Tensor
1238 1239 1240 1241

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1242
                import paddle
1243 1244
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1245 1246 1247 1248
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1249
       )DOC")
1250 1251 1252 1253 1254
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1255 1256
                self.Var().IsInitialized(),
                true,
1257 1258
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1259

1260
            PADDLE_ENFORCE_EQ(
1261
                self.Var().IsType<phi::DenseTensor>() ||
1262 1263 1264 1265 1266
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1267

1268 1269
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1270

1271 1272 1273
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1274

1275 1276
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1277
              PADDLE_ENFORCE_EQ(
1278 1279
                  origin_tensor.IsInitialized(),
                  true,
1280 1281 1282 1283
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1284
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1295 1296
                  origin_selected_rows.value().IsInitialized(),
                  true,
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1314 1315
          py::return_value_policy::take_ownership,
          R"DOC(
1316

1317
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1318 1319
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1320

1321
        Returns: The detached Tensor.
1322 1323 1324 1325

        Examples:
            .. code-block:: python

1326
                import paddle
Z
Zhou Wei 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1348
                y.backward()
Z
Zhou Wei 已提交
1349 1350
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1351

1352
       )DOC")
1353 1354 1355 1356
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1357

1358
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1359

1360
        The Gradient of current Tensor will be set to ``0`` .
1361 1362 1363 1364 1365 1366

        Returns:  None

        Examples:
             .. code-block:: python

1367
                import paddle
Z
Zhou Wei 已提交
1368 1369 1370 1371 1372 1373 1374
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1375
      )DOC")
1376 1377
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1378 1379
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1380 1381 1382
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1383
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1384 1385
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1397 1398
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1430
      .def("_grad_name", &imperative::VarBase::GradVarName)
1431 1432 1433
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1434
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1435 1436
          },
          py::return_value_policy::reference)
1437 1438 1439 1440
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1441
      .def("_reset_grad_inplace_version",
1442
           [](imperative::VarBase &self, bool set_to_zero) {
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1454 1455
             py::gil_scoped_release release;

1456 1457 1458
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1459 1460 1461
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1462 1463
             }
           })
1464 1465 1466 1467 1468 1469 1470
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1471 1472
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1484 1485 1486 1487
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1488 1489
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1490
             return self.Var().IsType<phi::SelectedRows>();
1491
           })
1492 1493 1494 1495 1496
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1497
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1498
#if NCCL_VERSION_CODE >= 2212
1499
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1500
#else
1501
               if (!self.Var().IsType<phi::SelectedRows>()) {
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1515
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1516 1517 1518
            }
          },
          py::call_guard<py::gil_scoped_release>())
1519 1520 1521
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1522 1523
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1524
                 platform::errors::InvalidArgument(
1525 1526 1527
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1528 1529 1530 1531 1532
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1533 1534
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1535
                 platform::errors::InvalidArgument(
1536 1537 1538
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1539
           })
1540 1541 1542
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1543 1544
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1556 1557 1558 1559
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1560 1561
                self.IsLeaf(),
                true,
1562 1563 1564
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1565 1566
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1567 1568 1569 1570 1571 1572 1573 1574
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1617

1618 1619 1620 1621
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1622 1623 1624
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1625
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1626 1627 1628 1629
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1630
#endif
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1656 1657 1658
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1659 1660
             py::handle &handle,
             bool blocking) {
1661
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1662 1663 1664
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1665
#else
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1700
#endif
1701
          },
1702 1703 1704
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1705 1706
        Returns a copy of this Tensor in GPU memory.

1707
        If this Tensor is already in GPU memory and device_id is default,
1708
        then no copy is performed and the original Tensor is returned.
1709

1710
        Args:
1711
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1712
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1713 1714 1715 1716 1717
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1718
              # required: gpu
1719 1720
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1721
              print(x.place)        # Place(cpu)
1722 1723

              y = x.cuda()
1724
              print(y.place)        # Place(gpu:0)
1725

1726
              y = x.cuda(None)
1727
              print(y.place)        # Place(gpu:0)
1728

1729 1730 1731
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1732
       )DOC")
1733 1734 1735
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1736
#ifndef _WIN32
1737
            PADDLE_ENFORCE_EQ(
1738 1739
                platform::is_cpu_place(self->Place()),
                true,
1740 1741 1742
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1743
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1756 1757 1758 1759 1760
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1761 1762
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1763 1764 1765 1766
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1767 1768
          },
          py::return_value_policy::reference)
1769
#if defined(PADDLE_WITH_CUDA)
1770 1771 1772
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1773 1774
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1775 1776 1777 1778
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1779
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1780 1781
            tensor_uva(self_tensor, device_id);
          },
1782 1783 1784
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1800
      .def("copy_", &imperative::VarBase::CopyFrom)
1801 1802 1803
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1804 1805
             const platform::CPUPlace &place,
             bool blocking) {
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1824 1825
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1836 1837
             const platform::XPUPlace &place,
             bool blocking) {
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1848 1849
             const platform::CUDAPlace &place,
             bool blocking) {
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1860 1861
             const platform::NPUPlace &place,
             bool blocking) {
1862 1863 1864 1865 1866 1867 1868
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1881 1882 1883
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1884 1885
             const platform::MLUPlace &place,
             bool blocking) {
1886 1887 1888 1889 1890 1891 1892
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1893 1894 1895
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1896 1897
             const platform::CustomPlace &place,
             bool blocking) {
1898 1899 1900 1901 1902 1903 1904
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1905 1906 1907
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1908 1909
             const platform::Place &place,
             bool blocking) {
1910 1911 1912 1913 1914 1915 1916 1917
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1918 1919
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1920
          py::return_value_policy::reference)
1921 1922
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1923
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1924
             PADDLE_ENFORCE_EQ(
1925 1926
                 t->IsInitialized(),
                 true,
1927 1928
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1929 1930 1931 1932
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1933
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1934
             PADDLE_ENFORCE_EQ(
1935 1936
                 t->IsInitialized(),
                 true,
1937 1938
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1939 1940
             return t->offset();
           })
1941
      .def("_share_buffer_to",
1942
           [](const std::shared_ptr<imperative::VarBase> &self,
1943
              std::shared_ptr<imperative::VarBase> &dst) {
1944 1945
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1946
             PADDLE_ENFORCE_EQ(
1947 1948
                 src->IsInitialized(),
                 true,
1949 1950 1951
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1952
             dst_->ShareDataTypeWith(*src);
1953 1954 1955
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1956
              std::shared_ptr<imperative::VarBase> &dst) {
1957 1958
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1959 1960 1961 1962
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1963
           })
1964 1965 1966
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1967 1968
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1969
             PADDLE_ENFORCE_EQ(
1970 1971
                 src->IsInitialized(),
                 true,
1972 1973 1974 1975 1976 1977 1978 1979 1980
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1981 1982
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1983 1984 1985 1986 1987
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1988 1989
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1990 1991
              int64_t begin_idx,
              int64_t end_idx) {
1992
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1993
             PADDLE_ENFORCE_EQ(
1994 1995
                 t->IsInitialized(),
                 true,
1996 1997
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1998 1999 2000 2001 2002 2003 2004
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
2005
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
2006 2007
             return t->numel();
           })
2008 2009
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2031 2032
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2033 2034 2035
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2036 2037
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2038
                    &imperative::VarBase::SetPersistable)
2039 2040 2041
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2042
            if (self.Var().IsType<phi::DenseTensor>()) {
2043
              auto value = phi::vectorize<int>(
2044 2045
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2062 2063
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2064 2065 2066 2067 2068 2069 2070 2071 2072
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2073 2074
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2102 2103 2104
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2105 2106
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2107
              return phi::DataLayoutToString(layout);
2108 2109 2110
            }
            return std::string("");
          })
2111 2112
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2113 2114 2115
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2116 2117
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2141
      .def_property_readonly(
2142 2143
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2144
          py::return_value_policy::copy)
2145 2146 2147 2148 2149 2150
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2151
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2152
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2153

2154 2155 2156 2157 2158
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2159 2160 2161 2162 2163 2164 2165
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2166
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2167
      m, "Tracer", R"DOC()DOC")
2168
      .def("__init__",
J
Jiabin Yang 已提交
2169
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2170 2171 2172
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2173 2174
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2175
                    &imperative::Tracer::SetAmpLevel)
2176 2177
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2178
                    &imperative::Tracer::SetAmpDtype)
2179 2180
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2181
                    &imperative::Tracer::SetHasGrad)
2182 2183 2184 2185 2186 2187 2188 2189
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2190
              self.SetExpectedPlace(*p);
2191 2192
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2193 2194
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2195 2196 2197
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2198 2199
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2200 2201
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2202
              self.SetExpectedPlace(*p);
2203 2204
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2205 2206
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2207
              self.SetExpectedPlace(*p);
2208 2209
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2210 2211 2212 2213 2214
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2215 2216 2217 2218 2219
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
2220 2221 2222 2223 2224
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2225 2226 2227 2228 2229
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2230 2231 2232 2233 2234
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2235
            } else {
L
Leo Chen 已提交
2236
              PADDLE_THROW(platform::errors::InvalidArgument(
2237
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
2238
                  "CPUPlace, NPUPlace, IPUPlace, MLUPlace"
L
Leo Chen 已提交
2239 2240
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2241 2242
            }
          })
2243 2244 2245
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2246 2247
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2248
           py::arg("key") = "dygraph_tmp")
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2265
             VLOG(5) << "AMP operators changed, "
2266 2267
                     << imperative::AmpOperators::Instance();
           })
2268 2269 2270
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2271 2272
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2273
           })
C
Chen Weihang 已提交
2274
      .def("_get_kernel_signature",
2275 2276 2277 2278
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2296 2297
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2298 2299 2300
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2301 2302
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2303 2304
             }
           })
2305
      .def("trace",
2306 2307 2308 2309 2310 2311
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2312 2313 2314 2315 2316 2317
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2318 2319 2320 2321 2322 2323 2324
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2325 2326
             }
           })
2327
      .def("trace",
2328 2329 2330 2331 2332 2333
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2334 2335
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2336 2337 2338 2339
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2340 2341 2342 2343 2344 2345 2346
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2347 2348
             }
           })
M
minqiyang 已提交
2349
      .def("trace",
2350 2351 2352 2353 2354 2355
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2356 2357
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2358 2359
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2360 2361
             {
               py::gil_scoped_release release;
2362 2363 2364 2365 2366 2367 2368
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2369
             }
M
minqiyang 已提交
2370
           })
2371
      .def("trace",
2372 2373 2374 2375 2376 2377
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2378 2379
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2380
             auto ins_map = ConvertToNameVarBaseMap(ins);
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2403 2404 2405
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2406 2407 2408 2409 2410 2411 2412
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2413 2414
             }
           })
F
fwenguang 已提交
2415
      .def("trace",
2416 2417 2418 2419 2420 2421
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::MLUPlace &place,
Z
zyfncg 已提交
2422 2423
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2424 2425 2426 2427
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2428 2429 2430 2431 2432 2433 2434
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
F
fwenguang 已提交
2435 2436
             }
           })
J
Jiabin Yang 已提交
2437
      .def("trace",
2438 2439 2440 2441 2442 2443
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2444 2445
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2446 2447 2448 2449
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2450 2451 2452 2453 2454 2455 2456
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2457 2458
             }
           });
2459 2460

  // define parallel context
2461 2462 2463
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2464 2465
      .def_property(
          "nranks",
2466 2467
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2468 2469
            self.nranks_ = nranks;
          })
2470 2471 2472 2473 2474 2475 2476 2477
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2478 2479
      .def_property(
          "trainer_endpoints",
2480
          [](const imperative::ParallelStrategy &self) {
2481 2482
            return self.trainer_endpoints_;
          },
2483
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2484 2485
            self.trainer_endpoints_ = eps;
          })
2486 2487 2488 2489 2490 2491 2492 2493
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2494 2495 2496 2497 2498 2499
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2500

2501 2502 2503 2504
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2505
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2506
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2507
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
F
fwenguang 已提交
2508
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2509

2510 2511 2512 2513 2514 2515 2516
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2531 2532 2533 2534 2535
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2536 2537 2538 2539
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2540 2541
         bool retain_graph,
         const imperative::Tracer &tracer) {
2542 2543 2544 2545 2546 2547 2548 2549
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2550 2551 2552
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||          \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_CNCL)
2553 2554 2555 2556 2557 2558
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2559 2560 2561 2562
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2573 2574
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2575
        py::arg("tensor_indices") = std::vector<int64_t>{},
2576
        py::call_guard<py::gil_scoped_release>());
2577
#endif
2578

2579
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2580 2581
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2582 2583 2584 2585
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2586 2587 2588 2589
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2590 2591 2592
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2593 2594
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2595 2596 2597 2598
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2599 2600 2601 2602
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2603
#endif
2604 2605 2606

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2607 2608
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2609 2610 2611 2612 2613 2614 2615
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2616 2617 2618
           py::arg("ring_id"));
#endif

2619
#if defined(PADDLE_WITH_CNCL)
2620 2621
  py::class_<imperative::CNCLParallelContext,
             imperative::ParallelContext,
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
             std::shared_ptr<imperative::CNCLParallelContext>>(
      m, "CNCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::MLUPlace &>())
      .def("init", [](imperative::CNCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::CNCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2632 2633
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
2634 2635
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2636 2637 2638 2639 2640 2641
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2642
#if defined(PADDLE_WITH_CUDA)
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2664 2665
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2679 2680 2681 2682
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2694
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2695 2696 2697 2698 2699 2700 2701 2702
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2703

S
Siming Dai 已提交
2704 2705 2706 2707 2708 2709 2710
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2711 2712 2713
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2714 2715 2716 2717
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2718
        PADDLE_ENFORCE_EQ(
2719 2720
            platform::is_gpu_place(src.Place()),
            true,
2721 2722 2723 2724
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2725 2726
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2727 2728 2729 2730 2731
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2732 2733
            platform::is_cpu_place(offset.Place()),
            true,
2734 2735 2736 2737
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2738 2739
            platform::is_cpu_place(count.Place()),
            true,
2740 2741 2742 2743 2744 2745
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2746 2747 2748 2749
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2750 2751
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2752 2753
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2754 2755
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2756 2757
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2758 2759
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2760 2761
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2762 2763 2764
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2765 2766
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2767 2768 2769 2770 2771
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2772 2773
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2774 2775 2776 2777 2778
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2779 2780
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2781 2782 2783 2784 2785 2786 2787 2788 2789

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2790 2791
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2792 2793
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2794 2795
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2796 2797
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2798 2799 2800 2801 2802
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2803 2804 2805 2806
          src_offset += c;
        }
      },
      R"DOC(
2807 2808 2809 2810 2811
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2812
  "gpu async_write to pin_memory".
2813

2814
  Arguments:
2815 2816

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2817 2818
                  Besides, `src` should be placed on CUDAPlace.

2819 2820 2821
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2822

2823 2824 2825 2826 2827 2828 2829
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2830 2831 2832 2833 2834 2835

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2836
          from paddle.fluid import core
2837
          from paddle.device import cuda
2838

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2859 2860 2861 2862 2863 2864 2865 2866
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2867 2868 2869 2870 2871
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2872 2873
            platform::is_gpu_place(dst.Place()),
            true,
2874 2875 2876 2877
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2878 2879
            platform::is_cpu_place(index.Place()),
            true,
2880 2881 2882 2883
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2884 2885
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2886 2887 2888 2889 2890
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2891 2892
            platform::is_cpu_place(offset.Place()),
            true,
2893 2894 2895 2896
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2897 2898
            platform::is_cpu_place(count.Place()),
            true,
2899 2900 2901 2902
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2903 2904 2905
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2906
        auto *buffer_tensor =
2907 2908 2909
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2910 2911 2912
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2913 2914
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2915 2916 2917 2918
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2919 2920
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2921 2922 2923 2924 2925
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2926 2927
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2928 2929 2930 2931
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2932 2933
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2934 2935 2936 2937
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2938 2939
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2940 2941 2942
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2943 2944
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2945 2946 2947 2948 2949 2950

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2951 2952
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2953 2954
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2955 2956
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2957 2958
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2959 2960
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2972 2973
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2974 2975 2976 2977 2978 2979 2980
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2981 2982
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2983 2984
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2985 2986
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2987 2988
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2989 2990 2991 2992 2993
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2994 2995 2996
            dst_offset += c;
          }
        } else {
2997 2998
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2999 3000 3001 3002 3003
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
3004 3005 3006
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
3007 3008 3009 3010 3011 3012 3013 3014 3015
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
3016 3017
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
3018 3019 3020 3021 3022 3023
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
3024 3025
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
3026
                        index_tensor.numel() * size * sizeof(float),
3027 3028
                        cudaMemcpyHostToDevice,
                        stream);
3029 3030
      },
      R"DOC(
3031 3032 3033 3034 3035
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
3036 3037 3038
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
3039 3040

    src (Tensor): The source tensor, and the data type should be `float32` currently.
3041
                  Besides, `src` should be placed on CUDAPinnedPlace.
3042 3043 3044

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
3045 3046
                  be the same with `src` except for the first dimension.

3047 3048
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
3049 3050
                    be one-dimensional.

3051 3052
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
3053 3054
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

3055 3056
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
3057 3058
                     should be one-dimensional.

3059 3060
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
3061
                    should be one-dimensinal.
3062

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3081

3082 3083 3084
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3085

3086 3087
)DOC");
#endif
3088 3089 3090 3091
}

}  // namespace pybind
}  // namespace paddle