eager_method.cc 84.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/core/ddim.h"
62
#include "paddle/phi/core/flags.h"
63
#include "paddle/phi/core/tensor_utils.h"
64
#include "paddle/phi/kernels/funcs/math_function.h"
J
Jiabin Yang 已提交
65

66
PHI_DECLARE_bool(set_to_1d);
67

68 69 70
namespace paddle {
namespace pybind {

71 72
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
73
                                     const paddle::platform::Place& place,
74
                                     bool zero_copy);
75

76
extern PyTypeObject* p_tensor_type;
77

J
Jiabin Yang 已提交
78 79 80
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
  if (PyObject_IsInstance(obj, reinterpret_cast<PyObject*>(p_tensor_type))) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
81
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
82
    PADDLE_ENFORCE_EQ(
83 84
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
85 86 87 88 89 90 91 92
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
93
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
94 95 96 97
        "method, when you reach this means we got another type index."));
  }
}

98 99
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
100 101
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
102 103 104 105 106 107 108 109 110
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
111 112 113 114 115
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
116 117 118 119 120
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
121 122
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
123
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
124 125
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
126
  size_t py_rank = tensor_dims.size();
127
  size_t numel = 1;
128
  if (py_rank == 0) {
129
    Py_ssize_t args_num = PyTuple_Size(args);
130 131
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
132 133 134 135 136 137 138
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
139
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
140 141 142 143 144
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
145 146
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
147
             "modify "
148
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
149
             "possible, "
150
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
151 152 153 154
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
155 156 157 158 159 160
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
161
  }
W
wanghuancoder 已提交
162

163
  PyObject* array = api.PyArray_NewFromDescr_(
164 165
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
166
      py_rank,
167 168 169
      py_dims,
      py_strides,
      nullptr,
170 171 172 173
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

W
wanghuancoder 已提交
174
  if (!self->tensor.impl()->initialized()) {
175 176 177 178
    if (tensor_dims.size() == 0) {
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
179 180 181 182 183 184
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
185 186 187 188 189
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
190 191 192
    return array;
  }

193
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
194
    eager_gil_scoped_release guard;
195
    platform::CPUPlace place;
196 197 198 199
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
200 201
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
202 203 204 205 206

      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
207 208 209
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
210 211 212 213 214 215 216 217
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      // deep copy
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
218 219 220
          place,
          dense_tensor->data(),
          sizeof_dtype * numel);
221 222
    }

223
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
224
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
225
    eager_gil_scoped_release guard;
226 227 228 229 230
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
#endif
231 232 233 234
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
235 236
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
237
      paddle::platform::GpuMemcpySync(
238 239
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
240
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
241
          kind);
242 243 244 245 246
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::platform::GpuMemcpySync(
247 248
          pybind11::detail::array_proxy(array)->data,
          dense_tensor->data(),
249
          phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel(),
250
          kind);
251
    }
252
#endif
C
Chen Weihang 已提交
253 254 255 256 257 258 259
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
260 261
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
C
Chen Weihang 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
      paddle::memory::Copy(
          place,
          reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data),
          dense_tensor->place(),
          dense_tensor->data(),
          sizeof_dtype * numel);
    }
#endif
280 281
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
282
    eager_gil_scoped_release guard;
283 284 285 286
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
287 288
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
289 290 291 292
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
293
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
294 295 296 297
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
298 299
      // TODO(qili93): temporary for ascned npu performance to be removed along
      // with npu_identity op
300
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
301 302 303 304 305
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
306 307 308 309
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
          ->MemoryCopyD2H(
              pybind11::detail::array_proxy(array)->data,
              dense_tensor->data(),
310
              phi::SizeOf(dense_tensor->dtype()) * dense_tensor->numel());
311 312
    }
#endif
313 314 315
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
316
    RETURN_PY_NONE
317 318 319 320 321 322
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
338 339 340 341 342
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
356 357
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
    auto sp = std::make_unique<uint32_t[]>(max_unicode_length * numel);
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
381 382 383
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
384 385 386 387
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
388
    RETURN_PY_NONE
J
Jack Zhou 已提交
389 390 391 392
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

393 394 395 396
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
397
  return ToPyObject(self->tensor.initialized());
398 399 400
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

415
static void IncreaseTensorReferenceCountUntilCopyComplete(
416
    const paddle::Tensor& tensor, const platform::Place& place) {
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
  // CUDAPinned Mem -> CUDA by cudamemcpyAsync.
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

433 434
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
435 436
                                        PyObject* kwargs) {
  EAGER_TRY
437 438
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
439
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
440 441 442 443 444 445 446 447 448 449
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
450
  }
451 452 453 454
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

455 456
static PyObject* tensor_method_cpu(TensorObject* self,
                                   PyObject* args,
457 458
                                   PyObject* kwargs) {
  EAGER_TRY
459
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
460 461 462 463 464 465 466 467
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(phi::CPUPlace(), true);
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  }
468 469 470 471
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

472 473 474 475
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
476
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
477
  std::string orig_name = self->tensor.name();
478 479
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
480
  self->tensor = src_tensor;
481 482

  // Recover source name
483
  self->tensor.set_name(orig_name);
484 485

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
486
          << " to " << self->tensor.name();
487 488
  RETURN_PY_NONE

489 490 491
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

492 493
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
494 495
                                     PyObject* kwargs) {
  EAGER_TRY
496
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
497
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
498
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
499
          << self->tensor.name();
500
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
501
    eager_gil_scoped_release guard;
502
    egr::EagerUtils::autograd_meta(&(self->tensor))
503 504
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
505
    egr::EagerUtils::autograd_meta(&(self->tensor))
506 507
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
508
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
509
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
510 511 512
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
513
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
514
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
515
    }
516 517
  }

518
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
519
          << self->tensor.name();
520 521
  RETURN_PY_NONE

522 523 524
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

525 526 527 528
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
529
  paddle::Tensor out;
W
wanghuancoder 已提交
530 531 532 533 534 535 536 537 538
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
539

W
wanghuancoder 已提交
540 541
    out = assign_ad_func(self->tensor);
  }
542 543 544 545
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

546 547
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
548
                                     PyObject* kwargs) {
549
  EAGER_TRY
550
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
551
    eager_gil_scoped_release guard;
552
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
553
    if (!meta->GetMutableGradNode()) {
554
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
555
              << "become accumulation node";
556
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
557
    }
558
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
559
  }
560 561
  RETURN_PY_NONE

562 563 564
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

565 566
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
567
                                       PyObject* kwargs) {
568
  EAGER_TRY
569
  VLOG(4) << "ClearGradient " << self->tensor.name();
570

571 572 573
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
574
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
575 576
  }

577
  paddle::Tensor* grad;
J
Jiabin Yang 已提交
578 579
  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
580 581 582 583 584 585
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
586
  } else {
587
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
588
    grad = meta->MutableGrad();
589 590
  }

591
  if (grad->impl()) {
W
wanghuancoder 已提交
592
    eager_gil_scoped_release guard;
593 594 595 596 597 598 599 600 601 602
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
603 604 605 606
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
607 608 609 610 611
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
612 613 614 615 616 617 618
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
619 620
      }
    }
621
  }
622

623 624
  RETURN_PY_NONE

625 626 627
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

628 629
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
630
                                    PyObject* kwargs) {
631
  EAGER_TRY
632
  VLOG(4) << "ZeroGrads " << self->tensor.name();
633

634
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
635
    eager_gil_scoped_release guard;
636
    // Add RetainGrad as PostHook to AccumulationNode
637
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
638 639 640 641 642 643
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
                       "Detected NULL grad"
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
644 645 646 647 648 649 650
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
651
    }
652
  } else {
W
wanghuancoder 已提交
653
    eager_gil_scoped_release guard;
654
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
655
    if (meta->MutableGrad()->initialized()) {
656 657 658 659 660 661 662 663 664
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
665
    }
666 667
  }

668 669
  RETURN_PY_NONE

670 671 672
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

673 674
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
675 676
                                         PyObject* kwargs) {
  EAGER_TRY
677
  paddle::Tensor* dst_ptr =
678
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
679 680
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
681 682 683
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
684
                        self->tensor.name()));
685
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
686 687 688
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
689
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
690
  dst_tensor->ShareBufferWith(*src_tensor);
691
  dst_tensor->ShareDataTypeWith(*src_tensor);
692 693
  RETURN_PY_NONE

694 695 696
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

697 698 699 700
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
701
  paddle::Tensor* dst_ptr =
702
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
703 704
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
705 706 707
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
708
                        self->tensor.name()));
709
  bool res = false;
710
  if (!self->tensor.defined() || !dst_ptr->defined()) {
711 712
    return ToPyObject(res);
  }
713 714
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
715 716 717 718 719
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

720 721 722 723
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
724
  paddle::Tensor* src_ptr =
725
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
726 727
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
728 729 730
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
731 732
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
733 734
  RETURN_PY_NONE

735 736 737
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

738 739 740 741
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
742
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
743 744
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
745 746 747 748 749
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
750
  if (!self->tensor.defined() || !src_tensor.defined()) {
751 752
    return ToPyObject(res);
  }
753
  res = (self->tensor.impl().get() == src_tensor.impl().get());
754 755 756 757
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

758 759
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
760 761
                                      PyObject* kwargs) {
  EAGER_TRY
762
  PADDLE_ENFORCE_EQ(
763
      self->tensor.defined(),
764
      true,
765
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
766
                                        self->tensor.name()));
767

768
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
769
  if (obj) {
770
    auto v = reinterpret_cast<TensorObject*>(obj);
771
    new (&(v->tensor)) paddle::Tensor();
772 773 774 775
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
776 777 778 779 780 781 782 783 784 785
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

786 787 788 789
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
790
  if (!self->tensor.defined()) {
791 792 793
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
794
  }
795
  if (self->tensor.is_dense_tensor()) {
796
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
797 798 799
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
800
    RETURN_PY_NONE
801 802 803 804
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

805 806 807 808 809
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
810
    RETURN_PY_NONE
811 812 813 814 815 816
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
817
    RETURN_PY_NONE
818 819 820 821
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

836 837
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
838
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
839

840
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
841 842 843 844 845 846 847
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
848 849 850
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
851
  EAGER_TRY
J
Jiabin Yang 已提交
852 853 854 855 856 857
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
      decrease_axis, none_axes, infer_flags, list_select_idxs;
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
858 859
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
860
  PADDLE_ENFORCE_EQ(
861
      self->tensor.defined(),
862
      true,
J
Jiabin Yang 已提交
863 864 865 866 867
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
868 869 870 871 872 873 874 875 876 877 878
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
879

880 881 882 883
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
900 901 902 903 904 905
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
906
    if (op_type == "slice") {
W
wanghuancoder 已提交
907
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
908 909 910 911 912 913
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
914
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
915
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
916
      out = strided_slice_ad_func(
917
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
J
Jiabin Yang 已提交
918 919 920 921 922 923 924 925 926
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

927
  bool set_to_1d = FLAGS_set_to_1d;
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
      VLOG(0)
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
947 948 949
        none_axes.pop_back();
      }
    }
950 951 952 953 954 955 956 957 958 959 960 961 962 963
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
964 965
          }
        }
966
        axis -= len;
J
Jiabin Yang 已提交
967
      }
968
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
969
    }
970
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
971 972 973 974
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
975
    eager_gil_scoped_release guard;
976 977
    auto select_index =
        paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
978
    auto idx_tensor = std::make_shared<phi::DenseTensor>();
W
wanghuancoder 已提交
979
    select_index.set_impl(idx_tensor);
J
Jiabin Yang 已提交
980 981
    auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
        egr::Controller::Instance().GetExpectedPlace());
982 983
    paddle::framework::TensorFromVector(
        list_select_idxs, *dev_ctx, idx_tensor.get());
J
Jiabin Yang 已提交
984
    framework::AttributeMap attrs = {{"dim", 0}};
J
Jiabin Yang 已提交
985
    out = index_select_ad_func(self->tensor, select_index, 0);
J
Jiabin Yang 已提交
986 987 988
  }

  return ToPyObject(out);
989 990 991
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

992 993
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
994 995
                                             PyObject* kwargs) {
  EAGER_TRY
996 997 998 999 1000 1001 1002 1003
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1004 1005 1006
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1007 1008
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1009 1010
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
  std::vector<size_t> strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    strides[i] = numel;
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1028 1029
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1030 1031 1032 1033 1034 1035
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1036 1037
        offset,
        numel,
W
wanghuancoder 已提交
1038 1039 1040
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1041 1042
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1043 1044 1045 1046 1047 1048
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1049 1050
          index,
          dims[i],
W
wanghuancoder 已提交
1051
          platform::errors::InvalidArgument(
1052 1053 1054
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
              dims[i]));
      offset += index * strides[i];
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];                  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];               \
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1084 1085
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1086
        0,                                                                   \
1087 1088 1089
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1090 1091 1092 1093 1094
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1095 1096
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
        infer_flags, list_select_idxs;
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
          egr::egr_utils_api::IsLeafTensor(self->tensor) &&
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1174 1175 1176 1177 1178
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1179 1180
    }

1181
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1182 1183 1184 1185

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1186
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1187 1188 1189 1190
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1191
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1192 1193 1194
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1195
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1196 1197 1198
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1199
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1200 1201 1202
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1203
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1204 1205 1206
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1207
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1208 1209 1210
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1221 1222 1223 1224
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1225
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1226 1227 1228
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1229 1230 1231 1232 1233
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1234 1235 1236 1237 1238 1239 1240

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1241 1242
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1243
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1244 1245
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1246
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1247 1248
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1249
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1250 1251
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1252
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1253 1254
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1255
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1256 1257
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1258
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1259 1260 1261 1262 1263 1264 1265 1266
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1267 1268 1269 1270
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1271 1272
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1273 1274 1275 1276 1277 1278 1279
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1280
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1281 1282 1283 1284 1285 1286 1287
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1288
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1289 1290
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1291
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1292 1293 1294 1295 1296 1297 1298
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1299 1300 1301
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1302
      }
1303 1304
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1305 1306 1307 1308 1309 1310 1311 1312 1313
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    }
  } else {
    auto self_numpy = TensorToPyArray(*self_tensor);
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1328
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1329
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1330 1331 1332 1333
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1334
#else
1335 1336 1337 1338
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1339 1340
#endif
    } else {
1341 1342
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1343 1344
    }
  }
1345 1346
  RETURN_PY_NONE

W
wanghuancoder 已提交
1347 1348 1349
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1350 1351
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1352 1353 1354 1355 1356
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
  if (egr::egr_utils_api::IsLeafTensor(self->tensor)) {
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
        VLOG(6) << "Detected NULL grad_node, Leaf tensor should have had "
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1369 1370 1371 1372 1373 1374 1375 1376 1377
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1378 1379
        rank_info.first,
        rank_info.second,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1392 1393
        rank_info.first,
        rank_info.second,
1394 1395 1396 1397 1398 1399
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1400 1401
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1414 1415
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1416 1417 1418 1419 1420 1421
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1422 1423
  PADDLE_ENFORCE_EQ(egr::egr_utils_api::IsLeafTensor(self->tensor),
                    true,
1424 1425 1426 1427
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1428 1429 1430 1431
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
      paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1442
      std::make_shared<PyVoidHook>(hook_func));
1443

1444 1445
  RETURN_PY_NONE

1446 1447 1448
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1449 1450
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1451
                                       PyObject* kwargs) {
1452 1453 1454
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1455
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1456
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1457
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1458
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1459
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1460
  }
1461 1462
  RETURN_PY_NONE

1463 1464 1465
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1466 1467
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1468 1469 1470
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1471 1472
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1473 1474 1475
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1476 1477
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1478 1479 1480
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1481
  if (self->tensor.initialized()) {
1482 1483
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1484 1485
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1486 1487
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1488 1489 1490 1491 1492
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1493 1494
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1495 1496 1497 1498
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1499 1500
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1501 1502 1503 1504
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1505 1506
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1507 1508
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1509

1510 1511 1512
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1513 1514 1515
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1516
                     "function _use_gpudnn is only effective for DenseTensor"));
1517

1518
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1519

1520
  // Set the same use_gpudnn attribute, return directly
1521 1522 1523 1524
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1525
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1526 1527 1528
    return ToPyObject(self->tensor);
  }

1529
  // Share all other members of Tensor except use_gpudnn
1530
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1531
  target_dense_meta.use_gpudnn = use_gpudnn;
1532 1533 1534 1535
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1536
  paddle::Tensor target_tensor(
1537 1538 1539 1540
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1541
          << " set use_gpudnn = " << use_gpudnn;
1542 1543 1544 1545 1546

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1547 1548
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1549 1550
                                         PyObject* kwargs) {
  EAGER_TRY
1551
  using Vocab = paddle::framework::Vocab;
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1564
  using Strings = paddle::framework::Strings;
1565
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1578 1579
      egr::IsVariableCompatTensor(self->tensor),
      true,
1580 1581
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1582
  using Vocab = paddle::framework::Vocab;
1583 1584 1585 1586 1587 1588
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1610 1611 1612 1613 1614 1615 1616 1617 1618
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1619
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1637
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1638 1639 1640 1641 1642
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1643
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1659
  paddle::Tensor tensor(
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1674
  paddle::Tensor tensor(
1675 1676 1677 1678 1679
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1680 1681
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
1682 1683 1684 1685 1686 1687 1688 1689 1690
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1691 1692
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
1693 1694
                                         PyObject* kwargs) {
  EAGER_TRY
1695 1696 1697
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1698 1699 1700 1701 1702
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1703 1704
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
1705 1706
                                             PyObject* kwargs) {
  EAGER_TRY
1707 1708 1709
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1710 1711 1712 1713
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1714 1715
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
1716 1717
                                             PyObject* kwargs) {
  EAGER_TRY
1718 1719 1720
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1721 1722 1723 1724
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1725 1726
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1740 1741 1742 1743 1744 1745 1746 1747 1748
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1749 1750
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
1751 1752 1753 1754 1755 1756 1757 1758
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1759 1760
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
1761 1762
                                            PyObject* kwargs) {
  EAGER_TRY
1763
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
1764 1765 1766 1767 1768

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1769 1770 1771 1772 1773
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
1774
  RETURN_PY_NONE
1775 1776 1777
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1778 1779 1780 1781
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
1782 1783 1784
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
1785 1786 1787 1788
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1789 1790
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

1812
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1813 1814 1815 1816
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
1817 1818
  RETURN_PY_NONE

1819 1820 1821
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1822 1823
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1824 1825 1826
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
1827 1828
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
1845 1846 1847 1848 1849
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
1850 1851 1852 1853 1854
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
1855 1856
  RETURN_PY_NONE

W
wanghuancoder 已提交
1857 1858 1859 1860
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1861 1862
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
1863 1864 1865 1866
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
1867 1868
      t->IsInitialized(),
      true,
1869 1870 1871 1872 1873 1874 1875
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1876 1877
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
1878 1879
                                   PyObject* kwargs) {
  EAGER_TRY
1880
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1881 1882
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1883 1884 1885 1886 1887 1888 1889
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1890 1891
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
1892 1893
                                    PyObject* kwargs) {
  EAGER_TRY
1894
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1895 1896
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1897 1898 1899 1900 1901
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  if (!grad->defined()) {
1902
    RETURN_PY_NONE
1903 1904
  }
  if (grad->is_dense_tensor()) {
1905
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
1906 1907 1908 1909
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
1910
    RETURN_PY_NONE
1911 1912 1913 1914
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1915 1916
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
1917 1918
                                          PyObject* kwargs) {
  EAGER_TRY
1919
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
1920 1921
  PADDLE_ENFORCE_EQ(grad != nullptr,
                    true,
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
                    platform::errors::InvalidArgument(
                        "Detected NULL grad. Please check if you have manually "
                        "cleared the grad inside autograd_meta"));

  bool is_leaf = egr::egr_utils_api::IsLeafTensor(self->tensor);
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1936 1937 1938 1939 1940
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
1941 1942 1943 1944
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
1945 1946 1947 1948 1949
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1965
#if defined(PADDLE_WITH_CUDA)
1966 1967
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
1968 1969 1970
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
1971 1972
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
1973 1974 1975
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
1976 1977
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
1978 1979 1980 1981
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
1982
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1983 1984
  tensor_uva(self_tensor, device_id);

1985 1986
  RETURN_PY_NONE

1987 1988 1989
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2002

2003
PyMethodDef variable_methods[] = {
2004 2005 2006 2007
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2008
    {"_is_initialized",
2009
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2010 2011
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2012
    {"_is_dense_tensor_hold_allocation",
2013 2014
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_copy_to",
     (PyCFunction)(void (*)(void))tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"copy_",
     (PyCFunction)(void (*)(void))tensor_method_copy_,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2025 2026 2027 2028
    {"clone",
     (PyCFunction)(void (*)(void))tensor_method_clone,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2029
    {"reconstruct_from_",
2030
     (PyCFunction)(void (*)(void))tensor_method_reconstruct_from_,
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"retain_grads",
     (PyCFunction)(void (*)(void))tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"clear_gradient",
     (PyCFunction)(void (*)(void))tensor_clear_gradient,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_dense",
     (PyCFunction)(void (*)(void))tensor_method_is_dense,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_zero_grads",
     (PyCFunction)(void (*)(void))tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_buffer_to",
     (PyCFunction)(void (*)(void))tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2053
    {"_is_shared_buffer_with",
2054
     (PyCFunction)(void (*)(void))tensor__is_shared_buffer_with,
2055 2056
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2057
    {"_share_underline_tensor_to",
2058
     (PyCFunction)(void (*)(void))tensor__share_underline_tensor_to,
2059 2060
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2061
    {"_is_shared_underline_tensor_with",
2062
     (PyCFunction)(void (*)(void))tensor__is_shared_underline_tensor_with,
2063 2064 2065 2066 2067 2068
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"detach",
     (PyCFunction)(void (*)(void))tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2069
    {"get_tensor",
2070
     (PyCFunction)(void (*)(void))tensor_method_get_underline_tensor,
2071 2072
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2073 2074
    {"get_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_get_underline_selected_rows,
2075 2076
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2077 2078 2079 2080
    {"_get_tensor_from_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method__get_tensor_from_selected_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2081 2082
    {"_getitem_index_not_tensor",
     (PyCFunction)(void (*)(void))tensor__getitem_index_not_tensor,
2083 2084
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2085 2086
    {"_getitem_from_offset",
     (PyCFunction)(void (*)(void))tensor__getitem_from_offset,
2087 2088
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2089 2090
    {"__setitem_eager_tensor__",
     (PyCFunction)(void (*)(void))tensor_method__setitem_eager_tensor,
2091 2092
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2093 2094
    {"_register_grad_hook",
     (PyCFunction)(void (*)(void))tensor_register_grad_hook,
2095 2096 2097 2098 2099 2100
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_remove_grad_hook",
     (PyCFunction)(void (*)(void))tensor_remove_grad_hook,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2101 2102
    {"_register_backward_hook",
     (PyCFunction)(void (*)(void))tensor_register_reduce_hook,
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_set_grad_type",
     (PyCFunction)(void (*)(void))tensor__set_grad_type,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_clear",
     (PyCFunction)(void (*)(void))tensor__clear,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jiabin Yang 已提交
2113 2114
    {"_copy_gradient_from",
     (PyCFunction)(void (*)(void))tensor__copy_gradient_from,
2115 2116
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2117 2118
    {"_tensor_use_gpudnn",
     (PyCFunction)(void (*)(void))tensor__use_gpudnn,
2119 2120
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2121 2122 2123
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
     (PyCFunction)(void (*)(void))tensor_method_set_string_list,
2124 2125 2126 2127 2128 2129
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"set_vocab",
     (PyCFunction)(void (*)(void))tensor_method_set_vocab,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2130 2131
    {"get_map_tensor",
     (PyCFunction)(void (*)(void))tensor_method_get_map_tensor,
2132 2133
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2134
    /***the method of sparse tensor****/
2135 2136 2137 2138
    {"nnz",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_nums,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
    {"indices",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"values",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"crows",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"cols",
     (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_coo",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"is_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2167 2168 2169 2170
    {"is_same_shape",
     (PyCFunction)(void (*)(void))tensor_method_is_same_shape,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2171 2172 2173 2174 2175 2176 2177 2178
    {"to_sparse_csr",
     (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"element_size",
     (PyCFunction)(void (*)(void))tensor_method_element_size,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2179
    /***the method of sparse tensor****/
2180 2181 2182 2183
    {"_inplace_version",
     (PyCFunction)(void (*)(void))tensor__inplace_version,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2184 2185
    {"_bump_inplace_version",
     (PyCFunction)(void (*)(void))tensor__bump_inplace_version,
2186 2187
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2188 2189
    {"is_selected_rows",
     (PyCFunction)(void (*)(void))tensor_method_is_selected_rows,
2190 2191 2192 2193 2194 2195
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"rows",
     (PyCFunction)(void (*)(void))tensor_method_get_rows,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2196 2197
    {"_reset_grad_inplace_version",
     (PyCFunction)(void (*)(void))tensor__reset_grad_inplace_version,
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_share_memory",
     (PyCFunction)(void (*)(void))tensor_method__share_memory,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_offset",
     (PyCFunction)(void (*)(void))tensor__offset,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_name",
     (PyCFunction)(void (*)(void))tensor__grad_name,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_grad_value",
     (PyCFunction)(void (*)(void))tensor__grad_value,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
    {"_unset_fake_empty",
     (PyCFunction)(void (*)(void))tensor__unset_fake_empty,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2220 2221 2222 2223
    {"data_ptr",
     (PyCFunction)(void (*)(void))tensor_data_ptr,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
2224 2225 2226 2227
    {"_grad_ivar",
     (PyCFunction)(void (*)(void))tensor__grad_ivar,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2228
#if defined(PADDLE_WITH_CUDA)
2229 2230 2231 2232
    {"_tensor_uva",
     (PyCFunction)(void (*)(void))tensor_method__uva,
     METH_VARARGS | METH_KEYWORDS,
     NULL},
2233
#endif
2234 2235
    {NULL, NULL, 0, NULL}};

J
Jack Zhou 已提交
2236 2237 2238 2239
// variable_methods for core.eager.StringTensor
PyMethodDef string_tensor_variable_methods[] = {
    {"numpy",
     (PyCFunction)(void (*)(void))tensor_method_numpy_for_string_tensor,
2240 2241
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2242 2243
    {"_is_initialized",
     (PyCFunction)(void (*)(void))tensor_method__is_initialized,
2244 2245
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2246
    {"_is_string_tensor_hold_allocation",
2247 2248
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2249 2250
     METH_VARARGS | METH_KEYWORDS,
     NULL},
J
Jack Zhou 已提交
2251 2252 2253
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
    {NULL, NULL, 0, NULL}};

2254 2255
}  // namespace pybind
}  // namespace paddle