optimizer.py 313.4 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
21

22

23 24 25 26 27 28 29 30 31
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
32

33 34
from . import framework
from . import layers
35
from . import unique_name
36 37 38 39 40 41
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
42 43
from .framework import program_guard
from .layer_helper import LayerHelper
44
from .dygraph import base as imperative_base
45
from .dygraph import no_grad
46 47 48 49
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
50 51 52
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
53
from functools import cmp_to_key
54
from .wrapped_decorator import signature_safe_contextmanager
55
import warnings
56
from paddle import _C_ops, _legacy_C_ops
57 58 59 60
from ..fluid.framework import (
    in_dygraph_mode,
    _current_expected_place,
)
61

62
__all__ = [
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
90
]
Q
Qiao Longfei 已提交
91 92


93
class Optimizer:
Q
Qiao Longfei 已提交
94 95 96
    """Optimizer Base class.

    Define the common interface of an optimizer.
97 98
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
99 100
    """

101
    @imperative_base.no_grad
102 103 104 105 106 107 108 109 110 111
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
112 113
        """
        Args:
114 115
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
116 117
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
118
        # Because of the loop import, so place it in the function body
119
        from paddle.optimizer.lr import LRScheduler
120 121 122 123

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
124
        self._name = name
姜永久 已提交
125
        if in_dygraph_mode():
126 127 128
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
129
                raise TypeError(
130
                    "learning rate should be float or LRScheduler, got %s here"
131 132
                    % type(learning_rate)
                )
133
            if self._parameter_list is None:
134 135 136
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
137 138 139 140 141 142
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
143 144
                            % regularization.__str__()
                        )
145
                        break
M
minqiyang 已提交
146
        else:
147 148 149
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
150
                raise TypeError(
151
                    "learning rate should be float or LRScheduler, got %s here"
152 153
                    % type(learning_rate)
                )
M
minqiyang 已提交
154

155
        if grad_clip is not None:
156
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
157 158 159
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
160
        self.regularization = regularization
161
        self._grad_clip = grad_clip
162
        self._learning_rate = learning_rate
163 164
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
165

D
dzhwinter 已提交
166
        self._dtype = None
L
Leo Chen 已提交
167 168 169 170
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

171
        # each program should have a independent learning rate
172
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
173
        self._learning_rate_map = dict()
174
        if isinstance(self._learning_rate, framework.Variable):
175
            self._learning_rate_map[
176 177
                framework.default_main_program()
            ] = self._learning_rate
178 179 180 181 182
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
183 184
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
185
        self.helper = LayerHelper(self.__class__.__name__)
186
        self._opti_name_list = []
H
hong 已提交
187
        self._accumulators_holder = {}
188
        self._param_device_map = dict()
189 190
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
191
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
192 193
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
194 195 196 197

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
198 199
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
200 201 202

        Args: None
        Return:
T
tianshuo78520a 已提交
203
            state_dict(dict) : dict contains all the variable used by optimizer
204

H
hong 已提交
205 206 207 208
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
209
                import paddle
210 211

                with fluid.dygraph.guard():
212
                    emb = paddle.nn.Embedding(10, 10)
213 214 215

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
216 217

        '''
218
        from paddle.optimizer.lr import LRScheduler
219

H
hong 已提交
220 221 222 223
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
224 225
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
226
        # global step if use lr decay
227
        if isinstance(self._learning_rate, LRScheduler):
228 229
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
230
        if isinstance(self._learning_rate, LearningRateDecay):
231 232 233 234
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
235 236 237
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
238

239 240 241
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
242

243
                state_dict['global_step'] = var_temp
H
hong 已提交
244 245 246
        return state_dict

    @framework.dygraph_only
247
    def set_state_dict(self, state_dict):
H
hong 已提交
248
        '''
T
tianshuo78520a 已提交
249
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
250

251
        Args:
H
hong 已提交
252 253 254
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
255

H
hong 已提交
256 257
        Examples:
            .. code-block:: python
258

259
                import paddle
260 261 262

                paddle.disable_static()

263
                emb = paddle.nn.Embedding(10, 10)
264

265
                state_dict = emb.state_dict()
266
                paddle.save(state_dict, "paddle_dy.pdparams")
267

268
                scheduler = paddle.optimizer.lr.NoamDecay(
269 270 271 272
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
273
                state_dict = adam.state_dict()
274
                paddle.save(state_dict, "paddle_dy.pdopt")
275

276 277
                para_state_dict = paddle.load("paddle_dy.pdparams")
                opti_state_dict = paddle.load("paddle_dy.pdopt")
H
hong 已提交
278
        '''
279
        from paddle.optimizer.lr import LRScheduler
280

281
        if isinstance(self._learning_rate, LRScheduler):
282
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
283 284

        if isinstance(self._learning_rate, LearningRateDecay):
285 286 287
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
288 289 290
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
291 292 293 294 295
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
296 297 298 299 300
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
301 302 303

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
304 305 306 307 308
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
309 310 311 312
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
313 314
                        type(global_step),
                    )
H
hong 已提交
315

316 317 318 319 320 321 322 323 324 325 326 327
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
328 329 330
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
331

332 333 334 335 336
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
337

338 339 340 341 342
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
343 344 345

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
346 347 348
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
349 350 351
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
352
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
353

354
        for k, v in self._global_accumulators.items():
355 356 357
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
358
            _load_state_para(state_dict, v)
359

360 361 362
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

363 364
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
365

366 367 368 369 370 371 372 373 374
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
375
    def _create_global_learning_rate(self):
376
        from paddle.optimizer.lr import LRScheduler
377

378
        if isinstance(self._learning_rate, LRScheduler):
379 380 381 382 383 384 385 386 387 388
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
389 390
                    dtype='float32' if self._dtype is None else self._dtype,
                )
391 392 393
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
394
                self._learning_rate_map[
395 396
                    framework.default_main_program()
                ] = lr_var
397 398 399

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
400 401
                lr_var,
                initializer=paddle.nn.initializer.Constant(value=lr_value),
402
            )
403 404
            return

405 406 407
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
408 409 410 411 412
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
413 414
                    self._learning_rate_map[
                        framework.default_main_program()
415
                    ] = paddle.static.create_global_var(
M
minqiyang 已提交
416 417 418 419
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
420 421
                        persistable=True,
                    )
422
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
423
            elif isinstance(self._learning_rate, LearningRateDecay):
424
                self._learning_rate_map[
425 426
                    framework.default_main_program()
                ] = self._learning_rate()
427
            else:
Q
qiaolongfei 已提交
428
                raise TypeError(
429 430
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
431
        else:
432 433 434 435
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
436 437 438 439 440 441
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
442

443
            # create learning rate in the current main program
444
            self._learning_rate_map[
445
                framework.default_main_program()
446
            ] = paddle.static.create_global_var(
447 448 449 450 451 452
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
453

454 455 456 457
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
458

459 460 461 462 463 464 465 466
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
467

468 469 470
        Examples:
            .. code-block:: python

471
                import paddle
472
                import paddle.fluid as fluid
473
                import paddle
474

475
                with fluid.dygraph.guard():
476
                    linear = paddle.nn.Linear(10, 10)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
495
                    lr_var = paddle.static.create_global_var(
496 497 498 499 500 501 502 503 504 505 506 507 508
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
509 510
                % (type(value))
            )
511 512 513 514 515 516 517 518
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
519 520
                if in_dygraph_mode():
                    place = _current_expected_place()
521 522 523 524 525 526 527
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
528
                else:
529 530 531 532 533 534 535 536 537 538 539 540 541
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
542
        else:
543 544 545
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
546 547
            self._learning_rate_map[framework.default_main_program()] = value

548 549 550
    @framework.dygraph_only
    def current_step_lr(self):
        """
551
        :api_attr: imperative
552

553 554 555 556 557 558 559 560 561 562 563
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
564
                import paddle
565 566 567

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
568
                    emb = paddle.nn.Embedding(10, 10)
569 570 571 572 573 574 575
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
576
                    linear = paddle.nn.Linear(10, 10)
577 578
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
579
                    loss = paddle.mean(out)
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
598
        if isinstance(current_lr, framework.Variable):
599 600 601 602
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
603 604 605
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
606 607 608 609 610 611 612
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
613
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
614 615 616 617
        """
        get global decayed learning rate
        :return:
        """
618 619
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
620
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
621

Q
Qiao Longfei 已提交
622
    def _append_optimize_op(self, block, param_and_grad):
623
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
624 625
        raise NotImplementedError()

626 627 628 629
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
630 631
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
632
        else:
W
Wu Yi 已提交
633
            if param_lr == 1.0:
Y
yuyang18 已提交
634
                return self._global_learning_rate()
W
Wu Yi 已提交
635
            else:
X
Xin Pan 已提交
636
                with default_main_program()._lr_schedule_guard(
637 638
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
639
                    return self._global_learning_rate() * param_lr
640 641 642 643 644 645 646

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
647
        """
648 649
        pass

650
    def _finish_update(self, block, parameters_and_grads):
651 652 653 654 655 656 657 658
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
659
            None
660 661 662
        """
        pass

663 664 665 666 667 668 669 670 671 672
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
673 674 675 676 677 678 679 680 681
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
682 683
        if self._name is not None:
            name = self._name + "_" + name
684 685 686 687
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
姜永久 已提交
688
            if in_dygraph_mode():
X
polish  
Xin Pan 已提交
689
                return self._accumulators[name][param.name]
690 691
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
692 693 694
                    name, param.name
                )
            )
695
        if shape is None:
696
            shape = param.shape
Q
Qiao Longfei 已提交
697
        assert isinstance(self.helper, LayerHelper)
698 699 700 701 702

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
703
        var = self.helper.create_global_variable(
704
            name=var_name,
Q
Qiao Longfei 已提交
705
            persistable=True,
F
fengjiayi 已提交
706
            dtype=dtype or param.dtype,
707
            type=core.VarDesc.VarType.LOD_TENSOR
姜永久 已提交
708
            if in_dygraph_mode()
709
            else (param.type if type is None else type),
H
hong 已提交
710
            shape=shape,
711 712
            belong_to_optimizer=True,
        )
713 714 715 716
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
717 718 719 720
                var,
                initializer=paddle.nn.initializer.Constant(
                    value=float(fill_value)
                ),
721
            )
H
hong 已提交
722

姜永久 已提交
723
        if in_dygraph_mode():
H
hong 已提交
724
            if len(self._accumulators_holder) > 0:
725 726 727 728 729
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
730 731
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
732
        self._accumulators[name][param.name] = var
733
        return var
734

735 736 737 738 739 740 741 742 743
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
744 745 746 747 748 749 750 751 752 753 754 755 756
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
757
        if name in self._global_accumulators:
姜永久 已提交
758
            if in_dygraph_mode():
759 760
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
761
        if shape is None:
762 763 764 765 766 767 768 769 770 771 772 773 774
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
775 776
            belong_to_optimizer=True,
        )
777 778 779 780
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
781 782 783 784
                var,
                initializer=paddle.nn.initializer.Constant(
                    value=float(fill_value)
                ),
785
            )
786

姜永久 已提交
787
        if in_dygraph_mode():
788
            if len(self._accumulators_holder) > 0:
789 790 791 792 793
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
794 795 796 797 798
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

799 800 801 802 803 804 805 806
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
807
            accumulator variable
808
        """
W
whs 已提交
809 810
        if self._name is not None:
            name = self._name + "_" + name
811 812 813 814
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
815 816
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
817 818 819
                    name, param.name
                )
            )
820 821
        return self._accumulators[name][param.name]

822 823 824 825 826 827 828 829 830 831 832
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
833
        if name not in self._global_accumulators:
834 835 836
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

837 838 839 840 841
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
842 843
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
844 845 846 847 848
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
849 850
                            device_attr_name
                        )
851
                        break
852 853 854 855 856 857 858

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

859
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
860 861 862
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
863
          parameters_and_grads(list(tuple(Variable, Variable))):
864
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
865 866

        Returns:
867
          return_op_list: a list of operators that will complete one step of
868 869 870
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
871
        """
872 873 874 875 876
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
877
        # for parameters and extend _finish_update method to add custom ops.
878

879
        # Allways called under program_guard use global block as loss block
880 881 882
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

883
        global_block = framework.default_main_program().global_block()
884 885 886
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
887 888 889
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
890
            target_block = framework.default_main_program().blocks[
891 892
                current_block.backward_block_idx
            ]
893 894

        start = len(target_block.ops)
895

896
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
897
        self._create_accumulators(
898 899
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
900 901
        self._create_global_learning_rate()

姜永久 已提交
902
        if in_dygraph_mode():
903 904 905 906 907
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
908 909 910 911 912
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
913 914
                    param_and_grad
                ), name_scope("optimizer"):
915
                    if param_and_grad[0].trainable is True:
916
                        device = self._get_device_for_param(
917 918
                            param_and_grad[0].name
                        )
919 920
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
921 922
                                target_block, param_and_grad
                            )
923 924 925

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
926
        self._finish_update(target_block, parameters_and_grads)
927

928 929
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
930 931

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
932 933 934 935 936 937 938 939 940
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
941 942 943 944
        from paddle.distributed.distribute_lookup_table import (
            find_distributed_lookup_table,
        )

945 946
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
947 948 949 950 951 952 953 954
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
955 956
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
957 958 959 960 961 962
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
963
            param_and_grad = [table_param, table_grad]
964 965 966
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
967 968 969 970 971 972 973
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
974
                        "LearningRate": self._create_param_lr(param_and_grad),
975
                    },
976 977
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
978 979
        return new_param_grads, (table_param, table_grad), sgd_op

980 981 982 983 984 985 986 987
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
988
        """
989
        The first part of ``minimize``, do auto-diff to append backward operations for
990 991 992
        the current program.

        Args:
993 994 995 996
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
997
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
998 999
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1000
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1001 1002 1003
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1004

1005
        Return:
1006 1007
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1008

1009
        Examples:
1010
            See examples in ``apply_gradients``.
1011
        """
1012
        act_no_grad_set = None
姜永久 已提交
1013
        if in_dygraph_mode():
1014
            pass
L
Leo Chen 已提交
1015 1016
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1017

L
Leo Chen 已提交
1018 1019 1020 1021
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

姜永久 已提交
1022
        if in_dygraph_mode():
1023 1024 1025
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1026

C
chengduo 已提交
1027
            params_grads = []
1028
            for param in parameter_list:
C
chengduo 已提交
1029 1030
                if not param.trainable:
                    continue
1031
                if param._grad_ivar() is not None:
C
chengduo 已提交
1032
                    # create gradient variable
1033
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1034
                    params_grads.append((param, grad_var))
1035
        else:
C
chengduo 已提交
1036
            if callbacks is None:
1037
                callbacks = [paddle.nn.clip.error_clip_callback]
C
chengduo 已提交
1038
            else:
1039
                assert isinstance(callbacks, list)
C
chengduo 已提交
1040
            program = loss.block.program
1041 1042
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
1043
                "Maybe that you should call paddle.mean to process the current loss.".format(
1044 1045 1046 1047 1048 1049
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1050
            with program_guard(program, startup_program):
1051 1052 1053
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1054
        return params_grads
1055

1056
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1057
        """Create and add backward regularization Operators
1058

1059 1060 1061
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1062
        if grad is None or (
1063 1064 1065 1066 1067 1068
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

姜永久 已提交
1079
        if in_dygraph_mode():
1080
            return _legacy_C_ops.sum([grad, regularization_term])
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1093 1094
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1095 1096 1097

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1098
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1099 1100 1101

        return new_grad

1102 1103 1104
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1105
        r"""Create and add backward regularization Operators
1106

1107 1108 1109 1110
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1111

1112 1113 1114 1115 1116
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1117

1118 1119 1120
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1121

1122 1123 1124 1125
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
姜永久 已提交
1126
        if in_dygraph_mode():
1127
            for param, grad in parameters_and_grads:
1128
                new_grad = self._create_regularization_of_grad(
1129 1130
                    param, grad, regularization
                )
1131 1132 1133 1134 1135
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1136 1137 1138 1139 1140
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1141 1142 1143 1144
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1145 1146
                            % regularization.__str__()
                        )
1147 1148
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1149 1150
                            param, grad, regularization
                        )
1151 1152 1153
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1154 1155 1156 1157 1158 1159 1160
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1161 1162 1163 1164
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1165 1166
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1167 1168
                    "the regularizer is set".format(p.name)
                )
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1183 1184
            belong_to_optimizer=True,
        )
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1195 1196
            belong_to_optimizer=True,
        )
1197 1198

        with program_guard(default_main_program()):
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1228

1229
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1230
        # so the shape of flatten_param and flatten_grad will be inferred.
1231
        self.helper.set_variable_initializer(
1232 1233
            flatten_param,
            initializer=paddle.nn.initializer.Constant(0.0),
1234 1235
        )
        self.helper.set_variable_initializer(
1236 1237
            flatten_grad,
            initializer=paddle.nn.initializer.Constant(0.0),
1238
        )
1239 1240 1241

        return [(flatten_param, flatten_grad)]

1242 1243 1244 1245 1246 1247 1248
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1249

1250 1251
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1252

1253 1254 1255
        Examples:
            .. code-block:: python

1256
                import paddle.fluid as fluid
1257 1258 1259 1260 1261 1262 1263 1264 1265
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1266 1267
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1268
            if self._grad_clip is None or isinstance(
1269
                self._grad_clip, paddle.nn.ClipGradByGlobalNorm
1270
            ):
1271 1272
                params_grads = self.flatten_param_grads(params_grads)

1273
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1274 1275 1276
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
1277
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
1278 1279

        # Add regularization if any
1280 1281 1282
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1283 1284 1285 1286

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
姜永久 已提交
1299
        if in_dygraph_mode():
1300 1301 1302 1303
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1304 1305
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1306
                params_grads = self.append_regularization_ops(
1307 1308
                    params_grads, self.regularization
                )
C
chengduo 已提交
1309 1310 1311 1312 1313 1314 1315
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1316
    def _get_no_grad_set(self, loss, no_grad_set=None):
1317
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1318 1319
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1320 1321
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1322 1323 1324 1325 1326
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1327 1328 1329 1330
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1331 1332

        If not, new gradient will accumulat on previous gradient.
1333

1334 1335
        Returns:
            None
1336

1337 1338 1339 1340
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1341
                import paddle
1342 1343 1344 1345 1346
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
1347
                    linear = paddle.nn.Linear(13, 5)
1348
                    # This can be any optimizer supported by dygraph.
1349
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1361
    @imperative_base.no_grad
1362 1363 1364
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1365
        """
1366
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1367

1368
        Args:
1369 1370 1371 1372
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1373
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1374 1375
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1376
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1377
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1378

1379
        Returns:
1380 1381 1382
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1383 1384
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1385
            ``fetch_list`` before run, see details in ``Executor``.
1386 1387 1388

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1389
        """
C
chengduo 已提交
1390
        assert isinstance(loss, Variable), "The loss should be an Variable."
1391

1392 1393 1394
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1395

1396 1397 1398 1399 1400 1401
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1402

1403 1404 1405
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1406

Q
Qiao Longfei 已提交
1407
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1408 1409 1410


class SGDOptimizer(Optimizer):
1411
    r"""
Q
qiaolongfei 已提交
1412 1413 1414 1415 1416 1417
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1418 1419 1420
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1421
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1422
            This parameter is required in dygraph mode. \
1423
            The default value is None in static graph mode, at this time all parameters will be updated.
1424 1425 1426 1427 1428
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1429 1430 1431
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1432
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1433 1434
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1435 1436 1437 1438

    Examples:
        .. code-block:: python

1439 1440 1441 1442
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1443
            paddle.enable_static()
1444 1445 1446
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
1447 1448
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
1449
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1450
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1451
                avg_cost = paddle.mean(cost)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1465 1466
    """

1467 1468 1469 1470 1471 1472 1473 1474 1475
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1476
        assert learning_rate is not None
1477
        super().__init__(
1478 1479 1480 1481 1482 1483
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1484
        self.type = "sgd"
1485
        self._use_mkldnn = False
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1497
            var = paddle.static.create_global_var(
1498 1499 1500 1501 1502 1503
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1504
            block = self.helper.startup_program.global_block()
1505 1506 1507 1508 1509 1510 1511 1512 1513
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
1527 1528 1529 1530
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1531 1532 1533 1534
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1535

1536
    @no_grad
1537
    def _append_optimize_op(self, block, param_and_grad):
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1548

1549
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1550
        if in_dygraph_mode():
1551 1552 1553 1554 1555 1556 1557
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1558
            return None
姜永久 已提交
1559 1560 1561 1562 1563 1564 1565 1566
        else:
            assert isinstance(block, framework.Block)
            # create the optimize op
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
            }
1567

姜永久 已提交
1568
            outputs = {"ParamOut": param_and_grad[0]}
1569

姜永久 已提交
1570
            attrs = {"multi_precision": find_master}
1571

姜永久 已提交
1572 1573 1574
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight
1575

姜永久 已提交
1576 1577 1578 1579 1580 1581 1582
            sgd_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
Q
Qiao Longfei 已提交
1583

姜永久 已提交
1584
            return sgd_op
1585 1586 1587


class MomentumOptimizer(Optimizer):
1588
    r"""
Q
qiaolongfei 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1602
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1603 1604 1605

        & else:

Q
qiaolongfei 已提交
1606
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1607

1608 1609 1610 1611
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1612
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1613
            This parameter is required in dygraph mode. \
1614
            The default value is None in static graph mode, at this time all parameters will be updated.
1615
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1616 1617 1618 1619 1620
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1621 1622 1623
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1624
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1625 1626
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1627 1628 1629 1630

    Examples:
        .. code-block:: python

1631 1632 1633 1634
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1635
            paddle.enable_static()
1636 1637 1638
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
1639 1640
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
1641
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
1642
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1643
                avg_cost = paddle.mean(cost)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1657 1658 1659
    """
    _velocity_acc_str = "velocity"

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1670 1671
        assert learning_rate is not None
        assert momentum is not None
1672
        super().__init__(
1673 1674 1675 1676 1677 1678
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1679 1680
        self.type = "momentum"
        self._momentum = momentum
1681
        self._use_nesterov = bool(use_nesterov)
1682 1683 1684 1685 1686

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1687
            self._add_accumulator(self._velocity_acc_str, p)
1688 1689 1690 1691

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1692 1693 1694
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1695
        lr = self._create_param_lr(param_and_grad)
1696
        master_weight = None
姜永久 已提交
1697
        if in_dygraph_mode():
1698
            _, _, _ = _legacy_C_ops.momentum(
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1712
            return None
姜永久 已提交
1713 1714 1715 1716 1717 1718 1719 1720
        else:
            attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "Velocity": [velocity_acc],
                "LearningRate": [lr],
            }
1721

姜永久 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
            outputs = {
                "ParamOut": [param_and_grad[0]],
                "VelocityOut": [velocity_acc],
            }
            # create the momentum optimize op
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1734

姜永久 已提交
1735
            return momentum_op
1736 1737


1738
class LarsMomentumOptimizer(Optimizer):
1739
    r"""
1740 1741 1742 1743 1744 1745 1746 1747 1748
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1749
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1750 1751 1752

        & param = param - velocity

1753 1754 1755 1756 1757 1758
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1759
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1760
            This parameter is required in dygraph mode. \
1761
            The default value is None in static graph mode, at this time all parameters will be updated.
1762 1763 1764 1765 1766
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1767 1768 1769
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1770
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1771 1772
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1773 1774
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1775 1776 1777
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1778

1779 1780 1781
    Examples:
        .. code-block:: python

1782
            import paddle
1783 1784 1785
            import paddle.fluid as fluid
            import numpy as np

1786
            paddle.enable_static()
1787
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
G
GGBond8488 已提交
1788 1789
            inp = paddle.static.data(
                name="inp", shape=[2, 2], dtype='float32')
C
Charles-hit 已提交
1790
            out = paddle.static.nn.fc(inp, size=3)
1791
            out = paddle.sum(out)
1792 1793 1794 1795 1796 1797 1798 1799
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1800 1801 1802
    """
    _velocity_acc_str = "velocity"

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
1818 1819
        assert learning_rate is not None
        assert momentum is not None
1820
        super().__init__(
1821 1822 1823 1824 1825 1826
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1827 1828 1829 1830
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1831 1832 1833 1834 1835
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1836 1837 1838 1839 1840
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
1841 1842 1843 1844
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
1845

1846 1847
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
1848
            var = paddle.static.create_global_var(
1849 1850 1851 1852 1853 1854
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1855
            block = self.helper.startup_program.global_block()
1856 1857 1858 1859 1860 1861 1862 1863 1864
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1865
            self._master_weights[param.name] = var
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
1878 1879 1880 1881 1882 1883
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
1884
        target_name = target_param.name
1885 1886 1887 1888
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
1889 1890
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
1891 1892 1893
                    name, target_name
                )
            )
1894
        return self._accumulators[name][target_name]
1895 1896 1897 1898 1899

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1900 1901 1902 1903
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
1904 1905 1906 1907
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1908 1909 1910 1911
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1912 1913 1914 1915
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1916 1917 1918 1919 1920 1921 1922 1923
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1924 1925 1926
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1927 1928
        lr = self._create_param_lr(param_and_grad)

1929 1930 1931 1932 1933 1934 1935 1936 1937
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1938 1939 1940

        attrs = {
            "mu": self._momentum,
1941
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
1942
            "lars_weight_decay": [_lars_weight_decay],
1943
            "multi_precision": find_master,
L
limingshu 已提交
1944
            "epsilon": self._epsilon,
1945
            "rescale_grad": self._rescale_grad,
1946 1947 1948 1949 1950 1951
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
1952
            "LearningRate": lr,
1953 1954 1955 1956 1957 1958 1959 1960
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

姜永久 已提交
1961
        if in_dygraph_mode():
1962
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
1982 1983
        else:
            # create the momentum optimize op
1984 1985 1986 1987 1988 1989 1990
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1991

1992
            return momentum_op
1993 1994


1995
class AdagradOptimizer(Optimizer):
1996
    r"""
1997 1998
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1999

2000
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2001 2002 2003 2004 2005 2006 2007

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2008 2009 2010 2011 2012 2013
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2014 2015 2016
    for numerical stability to avoid the division by zero error.

    Args:
2017 2018 2019 2020
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2021
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2022
            This parameter is required in dygraph mode. \
2023
            The default value is None in static graph mode, at this time all parameters will be updated.
2024 2025 2026 2027 2028
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2029 2030 2031
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2032
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2033 2034 2035 2036 2037
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2038 2039 2040 2041

    Examples:
        .. code-block:: python

2042
            import paddle
2043
            import numpy as np
2044
            import paddle.fluid as fluid
2045

2046
            paddle.enable_static()
2047
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2048
            inp = fluid.data(name="inp", shape=[2, 2])
C
Charles-hit 已提交
2049
            out = paddle.static.nn.fc(inp, size=3)
2050
            out = paddle.sum(out)
2051
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2052 2053 2054 2055 2056 2057 2058
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2059 2060 2061
    """
    _moment_acc_str = "moment"

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2072 2073
        assert learning_rate is not None
        assert epsilon is not None
2074
        super().__init__(
2075 2076 2077 2078 2079 2080
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2081
        self.type = "adagrad"
2082
        self._multi_precision = False
2083
        self._epsilon = epsilon
2084
        self.initial_accumulator_value = initial_accumulator_value
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]
2142 2143 2144 2145 2146

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._moment_acc_str, master_p)
                continue
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2159 2160 2161 2162 2163
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2164 2165 2166 2167

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2168 2169 2170
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )

C
caozhou 已提交
2182
        if in_dygraph_mode():
2183 2184 2185 2186 2187
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
2188
                master_weight,
2189
                self._epsilon,
2190
                find_master,
2191
            )
C
caozhou 已提交
2192
            return None
2193 2194
        else:
            # Create the adagrad optimizer op
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment_acc,
            }

            attrs = {"epsilon": self._epsilon, "multi_precision": find_master}

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

2212 2213
            adagrad_op = block.append_op(
                type=self.type,
2214 2215 2216
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
2217 2218
                stop_gradient=True,
            )
2219

2220
            return adagrad_op
2221 2222 2223


class AdamOptimizer(Optimizer):
2224
    r"""
T
tianshuo78520a 已提交
2225
    The Adam optimizer uses an optimization described at the end
2226 2227 2228
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2229

2230
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2245 2246
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2247
    Args:
2248 2249
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2250 2251
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2252
            The default value is 0.9.
2253 2254
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2255
            The default value is 0.999.
2256 2257
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2258
            The default value is 1e-08.
H
hong 已提交
2259
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2260
            This parameter is required in dygraph mode. \
2261
            The default value is None in static graph mode, at this time all parameters will be updated.
2262 2263 2264 2265 2266
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2267 2268 2269
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2270
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2281
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2282
            for whole model instead of creating beta_pow for each parameter. Default is false.
2283 2284
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2285
            use same align_size as allocator.
Q
qiaolongfei 已提交
2286 2287 2288 2289

    Examples:
        .. code-block:: python

2290 2291 2292
            import paddle
            import paddle.fluid as fluid

2293
            paddle.enable_static()
2294 2295 2296
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2297 2298
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2299
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2300
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2301
                avg_cost = paddle.mean(cost)
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2314

2315 2316 2317 2318 2319 2320 2321
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

2322
            paddle.enable_static()
2323 2324 2325 2326 2327
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2328
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
2329
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2330
                avg_cost = paddle.mean(cost)
2331 2332

                # define beta decay variable
2333
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2334 2335
                    global_step = lr_scheduler._decay_step_counter()

2336
                    beta1 = paddle.static.create_global_var(
2337 2338 2339 2340 2341 2342
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
2343
                    beta2 = paddle.static.create_global_var(
2344 2345 2346 2347 2348 2349
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2350
                    epsilon = paddle.static.create_global_var(
2351 2352 2353 2354 2355 2356
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2357 2358 2359 2360 2361 2362 2363

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2364
                    return beta1, beta2, epsilon
2365

2366
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2367 2368
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2369
                                                    beta1=beta1,
2370 2371
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2382 2383 2384
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2385 2386
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2387

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2403 2404 2405 2406
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2407
        super().__init__(
2408 2409 2410 2411 2412 2413 2414 2415
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2416 2417 2418 2419
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2420
        self._lazy_mode = lazy_mode
2421
        self._use_global_beta_pow = use_global_beta_pow
2422 2423 2424 2425 2426 2427

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2428 2429
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2430 2431 2432 2433
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2434 2435 2436
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2437
                    shape=[1],
2438 2439 2440
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2441 2442 2443
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2444 2445 2446
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2447
                    shape=[1],
2448 2449 2450
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2451 2452
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2453
                name=self._beta1_pow_acc_str,
2454 2455 2456
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2457
                shape=[1],
2458 2459 2460
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2461
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2462
                name=self._beta2_pow_acc_str,
2463 2464 2465
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2466
                shape=[1],
2467 2468 2469
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2470 2471 2472 2473

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2474 2475 2476 2477 2478 2479
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2480 2481
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2482 2483
                self._beta1_pow_acc_str
            )
2484
            beta2_pow_acc = self._get_global_accumulator(
2485 2486
                self._beta2_pow_acc_str
            )
2487
        else:
2488 2489 2490 2491 2492 2493
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2494
        lr = self._create_param_lr(param_and_grad)
2495
        # create the adam optimize op
2496

姜永久 已提交
2497
        if in_dygraph_mode():
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
2508
            master_weight = None
2509
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2537 2538 2539

            return None

2540
        inputs = {
2541 2542
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2543
            "LearningRate": [lr],
2544 2545 2546
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2547
            "Beta2Pow": [beta2_pow_acc],
2548
        }
2549 2550 2551 2552 2553 2554 2555

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2556
        outputs = {
2557 2558 2559 2560 2561
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2562 2563 2564
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2565
            "min_row_size_to_use_multithread": 1000,
2566
            'use_global_beta_pow': self._use_global_beta_pow,
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2577 2578 2579 2580
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2581

2582 2583 2584 2585 2586 2587 2588
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2589 2590 2591

        return adam_op

2592
    def _finish_update(self, block, parameters_and_grads):
2593
        r"""Update beta1_pow and beta2_pow accumulator"""
2594 2595 2596
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2597 2598
                self._beta1_pow_acc_str
            )
2599
            beta2_pow_acc = self._get_global_accumulator(
2600 2601
                self._beta2_pow_acc_str
            )
2602 2603 2604

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2605
                outputs = {"Out": beta1_pow_acc}
2606 2607
                attrs = {}
                if isinstance(self._beta1, Variable):
2608 2609
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2610 2611 2612 2613 2614 2615 2616
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2617 2618
                else:
                    attrs['scale'] = self._beta1
2619 2620 2621 2622 2623 2624 2625
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2626 2627

                inputs = {"X": beta2_pow_acc}
2628
                outputs = {"Out": beta2_pow_acc}
2629 2630
                attrs = {}
                if isinstance(self._beta2, Variable):
2631 2632
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2633 2634 2635 2636 2637 2638 2639
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2640 2641
                else:
                    attrs['scale'] = self._beta2
2642 2643 2644 2645 2646 2647 2648
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2649

2650 2651

class AdamaxOptimizer(Optimizer):
2652
    r"""
2653
    The Adamax optimizer is implemented based on the Adamax Optimization
2654 2655 2656
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2657

2658
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2672
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2673

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2686
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2687
            This parameter is required in dygraph mode. \
2688
            The default value is None in static graph mode, at this time all parameters will be updated.
2689 2690 2691 2692 2693
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2694 2695 2696
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2697
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2698 2699 2700 2701 2702 2703
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2704

2705 2706 2707 2708 2709
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2710 2711
          import paddle
          paddle.enable_static()
2712 2713 2714 2715 2716 2717 2718 2719

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2720
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
2721
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2722
              loss = paddle.mean(hidden)
2723
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2724 2725 2726 2727 2728 2729 2730 2731 2732
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2733 2734 2735
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2736
    _beta1_pow_acc_str = "beta1_pow_acc"
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2749 2750 2751 2752
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2753
        super().__init__(
2754 2755 2756 2757 2758 2759
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2760 2761 2762 2763
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
        self._multi_precision = False
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var
2794 2795 2796 2797

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._moment_acc_str, master_p)
                self._add_accumulator(self._inf_norm_acc_str, master_p)
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=master_p,
                    fill_value=self._beta1,
                    shape=[1],
                )
                continue
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
Q
Qiao Longfei 已提交
2817 2818
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2819 2820 2821 2822 2823 2824
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = (
            self._multi_precision and core.VarDesc.VarType.FP16 == param.dtype
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

2854 2855 2856 2857
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
2858 2859 2860 2861 2862 2863
        inf_norm = self._get_accumulator(
            self._inf_norm_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
姜永久 已提交
2874
        if in_dygraph_mode():
2875 2876 2877 2878 2879 2880 2881
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
2882
                master_weight,
2883 2884 2885
                self._beta1,
                self._beta2,
                self._epsilon,
2886
                find_master,
2887
            )
2888 2889
        else:
            # create the adamax optimize op
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": beta1_pow_acc,
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm,
            }
            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            attrs = {
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "multi_precision": find_master,
            }

2914 2915
            adamax_op = block.append_op(
                type=self.type,
2916 2917 2918
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
2919 2920
                stop_gradient=True,
            )
2921

2922
            return adamax_op
2923

2924
    def _finish_update(self, block, parameters_and_grads):
2925
        """Update Beta1 Power accumulator"""
2926
        assert isinstance(block, framework.Block)
2927
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2928
            if grad is None or param.trainable is False:
2929
                continue
2930 2931 2932 2933 2934 2935
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
                beta1_pow_acc = self._get_accumulator(
                    self._beta1_pow_acc_str, param
                )
姜永久 已提交
2936 2937
                if in_dygraph_mode():
                    tmp = _C_ops.scale(beta1_pow_acc, self._beta1, 0.0, True)
2938 2939
                    beta1_pow_acc.copy_(tmp, False)
                else:
2940 2941 2942 2943 2944 2945 2946
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
2947 2948


2949
class DpsgdOptimizer(Optimizer):
2950
    r"""
2951 2952 2953 2954 2955 2956 2957 2958
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2959 2960
          import paddle
          paddle.enable_static()
2961 2962 2963 2964 2965 2966 2967 2968

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
G
GGBond8488 已提交
2969
              data = paddle.static.data(name='X', shape=[-1,1], dtype='float32')
C
Charles-hit 已提交
2970
              hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
2971
              loss = paddle.mean(hidden)
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2989
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2990
            This parameter is required in dygraph mode. \
2991
            The default value is None in static graph mode, at this time all parameters will be updated.
2992 2993 2994 2995
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

2996 2997 2998 2999 3000 3001 3002 3003
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
3004 3005 3006 3007
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
3008
        super().__init__(
3009 3010
            learning_rate=learning_rate, parameter_list=parameter_list
        )
3011 3012 3013 3014
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
3015 3016 3017 3018 3019 3020 3021
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
3022 3023 3024 3025 3026

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
3027
        if self._seed is None:
Z
zhongpu 已提交
3028 3029
            self._seed = 0

姜永久 已提交
3030
        if in_dygraph_mode():
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
3045
        else:
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
3062

3063
            return dpsgd_op
3064 3065


3066
class DecayedAdagradOptimizer(Optimizer):
3067
    r"""
3068 3069 3070
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
3071

3072
    The parameter ``param_out`` update rule with gradient ``grad``:
3073 3074 3075 3076 3077 3078 3079

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

3080 3081 3082 3083
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
3084 3085 3086
    stability to avoid the division by zero error.

    Args:
3087 3088 3089 3090 3091
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
3092
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3093
            This parameter is required in dygraph mode. \
3094
            The default value is None in static graph mode, at this time all parameters will be updated.
3095 3096 3097 3098 3099
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3100 3101 3102
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3103
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3104 3105 3106 3107 3108 3109
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
3110 3111 3112 3113

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
3114
            import paddle
3115 3116
            import paddle.fluid as fluid

C
Charles-hit 已提交
3117 3118 3119 3120
            paddle.enable_static()
            x = fluid.data(name='x', shape=[None, 10], dtype='float32')
            trans = paddle.static.nn.fc(x, 100)
            cost = paddle.mean(trans)
3121
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
3122
            optimizer.minimize(cost)
3123 3124 3125
    """
    _moment_acc_str = "moment"

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3136 3137 3138 3139
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3140
        super().__init__(
3141 3142 3143 3144 3145 3146
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3160 3161 3162
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3163

姜永久 已提交
3164
        if in_dygraph_mode():
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3177 3178 3179 3180 3181 3182 3183 3184
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3185
                    "LearningRate": self._create_param_lr(param_and_grad),
3186 3187 3188
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3189
                    "MomentOut": moment_acc,
3190
                },
3191 3192 3193
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3194

3195
            return decayed_adagrad_op
3196 3197


3198
class AdadeltaOptimizer(Optimizer):
3199
    r"""
Z
Zeng Jinle 已提交
3200
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3201

Z
Zeng Jinle 已提交
3202
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3203 3204 3205
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3206

Z
Zeng Jinle 已提交
3207 3208
    .. math::

Z
Zeng Jinle 已提交
3209
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3210

Z
Zeng Jinle 已提交
3211
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3212

Z
Zeng Jinle 已提交
3213
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3214 3215

    Args:
Z
Zeng Jinle 已提交
3216 3217 3218
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3219
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3220
            This parameter is required in dygraph mode. \
3221
            The default value is None in static graph mode, at this time all parameters will be updated.
3222 3223 3224 3225 3226
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3227 3228 3229
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3230
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3231 3232 3233
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3234 3235 3236 3237

    Examples:
        .. code-block:: python

C
Charles-hit 已提交
3238
            import paddle
3239
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3240

C
Charles-hit 已提交
3241
            paddle.enable_static()
3242
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
C
Charles-hit 已提交
3243 3244
            fc = paddle.static.nn.fc(image, size=10)
            cost = paddle.mean(fc)
3245 3246
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3247

Z
Zeng Jinle 已提交
3248 3249 3250 3251
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3252
    """
3253

3254 3255 3256
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3267 3268 3269 3270 3271 3272
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3273
        super().__init__(
3274 3275 3276 3277 3278 3279
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3280
        self.type = "adadelta"
3281 3282
        self._multi_precision = False
        self._master_weights = {}
3283 3284 3285
        self._epsilon = epsilon
        self._rho = rho

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]

3342
    def _create_accumulators(self, block, parameters):
3343 3344
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3345 3346

        for p in parameters:
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._avg_squared_grad_acc_str, master_p)
                self._add_accumulator(
                    self._avg_squared_update_acc_str, master_p
                )
                continue
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
3362 3363 3364 3365
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3366 3367
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3368 3369

        avg_squared_grad_acc = self._get_accumulator(
3370 3371
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3372
        avg_squared_update_acc = self._get_accumulator(
3373 3374
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3375 3376 3377 3378 3379 3380 3381 3382 3383
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
3384

姜永久 已提交
3385
        if in_dygraph_mode():
3386 3387 3388 3389 3390
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
3391
                master_weight,
3392 3393
                self._rho,
                self._epsilon,
3394
                find_master,
3395
            )
3396 3397
        else:
            # Create the adadelta optimizer op
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc,
            }
            outputs = {
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

3414 3415
            adadelta_op = block.append_op(
                type=self.type,
3416 3417 3418 3419 3420 3421
                inputs=inputs,
                outputs=outputs,
                attrs={
                    "epsilon": self._epsilon,
                    "rho": self._rho,
                    "multi_precision": find_master,
3422 3423 3424
                },
                stop_gradient=True,
            )
3425

3426
            return adadelta_op
3427 3428


Q
qingqing01 已提交
3429
class RMSPropOptimizer(Optimizer):
3430
    r"""
Q
qingqing01 已提交
3431 3432 3433 3434 3435 3436 3437 3438
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3439
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3440 3441 3442 3443

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3444
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3445 3446 3447 3448 3449 3450

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3451
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3452

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3467 3468 3469 3470
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3471
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3472 3473 3474 3475 3476
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3477 3478 3479
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3480
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3481
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3482
        momentum(float): :math:`\\beta` in equation is the momentum term,
3483
            default is 0.0.
3484 3485 3486 3487
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3488
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3489
            This parameter is required in dygraph mode. \
3490
            The default value is None in static graph mode, at this time all parameters will be updated.
3491 3492 3493 3494 3495
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3496 3497 3498
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3499
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3500 3501
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3502 3503 3504 3505 3506 3507 3508

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3509 3510 3511 3512
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3513
            paddle.enable_static()
3514 3515 3516
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
3517 3518
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
3519
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3520
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3521
                avg_cost = paddle.mean(cost)
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3535 3536 3537 3538
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3539
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3540

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3553
        super().__init__(
3554 3555 3556 3557 3558 3559
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3573
        self._centered = centered
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
        self._multi_precision = False
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
            var = paddle.static.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
            block = self.helper.startup_program.global_block()
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
            self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
        target_name = target_param.name
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name
                )
            )
        return self._accumulators[name][target_name]
Q
qingqing01 已提交
3632 3633 3634 3635 3636 3637

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._momentum_acc_str, master_p)
                self._add_accumulator(self._mean_square_acc_str, master_p)
                self._add_accumulator(self._mean_grad_acc_str, master_p)
                continue
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
Q
qingqing01 已提交
3652 3653
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3654
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3655 3656 3657 3658 3659

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3660 3661 3662 3663 3664 3665 3666 3667 3668
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
3669 3670 3671 3672 3673 3674 3675 3676 3677
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
C
caozhou 已提交
3678
        if in_dygraph_mode():
3679 3680 3681 3682 3683 3684 3685
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
3686
                master_weight,
3687 3688 3689 3690
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
3691
                find_master,
3692
            )
C
caozhou 已提交
3693
            return None
3694
        else:
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
            inputs = {
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "MeanGrad": mean_grad_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            }

            outputs = {
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc,
            }

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

3715 3716
            rmsprop_op = block.append_op(
                type=self.type,
3717 3718
                inputs=inputs,
                outputs=outputs,
3719 3720 3721 3722
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3723
                    "centered": self._centered,
3724
                    "multi_precision": find_master,
3725
                },
3726 3727
                stop_gradient=True,
            )
Q
qingqing01 已提交
3728

3729
            return rmsprop_op
Q
qingqing01 已提交
3730 3731


Q
qiaolongfei 已提交
3732
class FtrlOptimizer(Optimizer):
3733
    r"""
Q
qiaolongfei 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3772 3773 3774 3775 3776
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3777
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3778
            This parameter is required in dygraph mode. \
3779
            The default value is None in static graph mode, at this time all parameters will be updated.
3780 3781 3782 3783 3784
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3785 3786 3787
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3788
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3789 3790
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3791 3792 3793 3794 3795 3796 3797

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3798 3799 3800 3801
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3802 3803
            paddle.enable_static()

3804 3805 3806
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
G
GGBond8488 已提交
3807 3808
                x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
C
Charles-hit 已提交
3809
                y_predict = paddle.static.nn.fc(x, size=1, activation=None)
3810
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3811
                avg_cost = paddle.mean(cost)
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3824

3825
    NOTE:
C
chengduo 已提交
3826
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3827 3828 3829 3830 3831
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3843
        super().__init__(
3844 3845 3846 3847 3848 3849
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3870 3871 3872 3873 3874 3875
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
姜永久 已提交
3876
        if in_dygraph_mode():
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
3893 3894

        else:
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
3916

3917
            return ftrl_op
Q
qiaolongfei 已提交
3918 3919


Y
Yibing Liu 已提交
3920
class LambOptimizer(AdamOptimizer):
3921
    r"""
Y
Yibing Liu 已提交
3922 3923
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3924 3925 3926
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3927
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3928 3929 3930 3931 3932

    The updating of parameters follows:

    ..  math::

3933
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3934

Y
Yibing Liu 已提交
3935
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3936

3937 3938 3939 3940
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3941
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3942

Y
Yibing Liu 已提交
3943
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3944 3945


3946
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3947 3948 3949
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3950 3951 3952 3953 3954 3955 3956 3957
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3958
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3959
            This parameter is required in dygraph mode. \
3960
            The default value is None in static graph mode, at this time all parameters will be updated.
3961 3962 3963 3964 3965
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3966 3967
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3968 3969 3970
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3971 3972
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3973
            Default None.
3974
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3975
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3976 3977 3978

    Examples:
        .. code-block:: python
3979

2
201716010711 已提交
3980
            import paddle
3981
            import paddle.fluid as fluid
2
201716010711 已提交
3982
            paddle.enable_static()
Y
Yibing Liu 已提交
3983

Y
Yibing Liu 已提交
3984
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
C
Charles-hit 已提交
3985
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
3986
            cost = paddle.mean(hidden)
Y
Yibing Liu 已提交
3987

Y
Yibing Liu 已提交
3988 3989 3990 3991 3992
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3993 3994 3995 3996 3997 3998 3999
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
4013 4014 4015 4016 4017
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
4018
        super().__init__(
4019 4020 4021 4022 4023 4024 4025 4026 4027
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
4028 4029
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
4030
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
4031 4032 4033

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
4034
        block.program._use_lamb = True
Y
Yibing Liu 已提交
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
4053 4054 4055
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
4056
        lr = self._create_param_lr(param_and_grad)
4057
        master_weight = None
姜永久 已提交
4058
        if in_dygraph_mode():
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
4083
            return None
Y
Yibing Liu 已提交
4084

Y
Yibing Liu 已提交
4085
        # create the lamb optimize op
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
4112 4113 4114 4115

        return lamb_op


4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
4129
Dpsgd = DpsgdOptimizer
4130
DecayedAdagrad = DecayedAdagradOptimizer
4131
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
4132
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
4133
Ftrl = FtrlOptimizer
4134
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
4135
Lamb = LambOptimizer
4136 4137 4138


class ModelAverage(Optimizer):
4139
    r"""
4140
	:api_attr: Static Graph
S
swtkiwi 已提交
4141

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
4160

4161 4162 4163 4164 4165 4166 4167 4168 4169
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
4170 4171

    Args:
4172 4173 4174
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
4175 4176 4177 4178 4179
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
4180 4181 4182
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
4183

4184
    Examples:
Q
qiaolongfei 已提交
4185 4186 4187

      .. code-block:: python

2
201716010711 已提交
4188
        import paddle
4189 4190
        import paddle.fluid as fluid
        import numpy
2
201716010711 已提交
4191
        paddle.enable_static()
4192 4193 4194 4195

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
4196

4197 4198 4199 4200
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
4201
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4202
            hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4203
            loss = paddle.mean(hidden)
4204 4205 4206 4207 4208 4209
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
4210
                                                         max_average_window=12500)
4211 4212

            exe.run(startup_program)
4213 4214 4215 4216 4217
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
4218 4219

            # apply ModelAverage
4220
            with model_average.apply(exe):
4221 4222 4223 4224
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
4225 4226
    """

4227 4228 4229 4230 4231 4232 4233 4234
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
姜永久 已提交
4235
        if in_dygraph_mode():
Z
zhongpu 已提交
4236
            raise Exception("In dygraph, don't support ModelAverage.")
4237
        super().__init__(0.0, regularization=regularization, name=name)
4238 4239 4240
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
4241

4242
        self.params_grads = []
4243 4244 4245
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
4246
            if param.do_model_average != False:
4247
                grad = param.block.create_var(
4248 4249 4250
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
4251 4252
                    dtype=param.dtype,
                    persistable=False,
4253 4254
                    stop_gradient=True,
                )
4255
                self.params_grads.append((param, grad))
4256

4257
        for param, grad in self.params_grads:
4258 4259
            if grad is None:
                continue
X
Xin Pan 已提交
4260
            with param.block.program._optimized_guard(
4261 4262
                [param, grad]
            ), name_scope('move_average'):
4263
                self._append_average_accumulate_op(param)
4264

4265 4266 4267 4268
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
4269
                self._add_average_apply_op(block, param_grad)
4270 4271 4272 4273 4274

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
4275
                self._add_average_restore_op(block, param_grad)
4276

4277
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
4278 4279 4280 4281 4282 4283
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
4284 4285
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
4286
        old_num_accumulates = block._clone_variable(
4287 4288
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
4289
        num_updates = block._clone_variable(
4290 4291
            self._get_accumulator('num_updates', param)
        )
4292
        # backup param value to grad
4293
        paddle.assign(param, output=grad)
4294
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
4295 4296
        tmp = paddle.add_n([num_accumulates, old_num_accumulates])
        sum = paddle.add_n([sum_1, sum_2, sum_3])
4297
        tmp = paddle.cast(
4298
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
4299
        )
4300
        sum = paddle.cast(
4301
            x=sum, dtype='float32' if self._dtype is None else self._dtype
4302
        )
4303
        paddle.assign(paddle.divide(sum, tmp), output=param)
4304 4305

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
4306 4307
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
4308
        paddle.assign(grad, output=param)
4309 4310 4311 4312 4313 4314

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4351

S
rename  
sneaxiy 已提交
4352
    @signature_safe_contextmanager
4353
    def apply(self, executor, need_restore=True):
4354 4355
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4356 4357

        Args:
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4369 4370
            import paddle
            paddle.enable_static()
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4381
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4382
                loss = paddle.mean(hidden)
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4404
        """
4405 4406 4407 4408 4409 4410
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4411 4412

    def restore(self, executor):
4413 4414
        """
        Restore ``Parameter`` values of current model.
4415

4416
        Args:
4417 4418 4419 4420 4421 4422 4423 4424
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4425 4426
            import paddle
            paddle.enable_static()
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
C
Charles-hit 已提交
4437
                hidden = paddle.static.nn.fc(x=data, size=10)
2
201716010711 已提交
4438
                loss = paddle.mean(hidden)
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4463
        """
4464
        executor.run(self.restore_program)
4465 4466


4467
class ExponentialMovingAverage:
4468
    r"""
S
swtkiwi 已提交
4469

4470 4471 4472 4473 4474 4475
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4476
        \text{EMA}_0 & = 0
4477

4478
        \text{EMA}_t & = \text{decay} * \text{EMA}_{t-1} + (1 - \text{decay}) * \theta_t
4479

4480 4481 4482
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4483
    the **restore()** method is used to restore the parameters.
4484

4485 4486
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
4487
    :math:`(1 - \text{decay}^t)` , i.e., the actual EMAs applied to parameters
4488
    when calling **apply()** method would be
4489 4490

    ..  math::
4491

4492
        \widehat{\text{EMA}}_t = \frac{\text{EMA}_t}{1 - \text{decay}^t}
4493

4494 4495
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4496
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4497
    allows users to pass a Variable to schedule the decay rate, in this case,
4498
    the actual decay rate becomes
4499

4500
    ..  math::
4501

4502
        \min(\text{decay}, \frac{1 + \text{thres_steps}}{10 + \text{thres_steps}})
4503 4504

    Usually **thres_steps** can be the global training steps.
4505 4506 4507


    Args:
4508 4509 4510
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4511 4512 4513 4514


    Examples:

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4543
                    feed={'x': data},
4544 4545 4546 4547 4548 4549
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4550
                        feed={'x': data},
4551 4552 4553 4554 4555 4556
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4557
                        feed={'x': data},
4558 4559 4560
                        fetch_list=[hidden.name])
                ema.restore(exe)

4561 4562
    """

4563
    def __init__(self, decay=0.999, thres_steps=None, name=None):
姜永久 已提交
4564
        if in_dygraph_mode():
Z
zhongpu 已提交
4565
            raise Exception(
4566 4567
                "In dygraph, don't support ExponentialMovingAverage."
            )
4568
        self._decay = decay
4569
        self._thres_steps = thres_steps
4570
        self._name = name if name is not None else ''
4571 4572
        self._decay_var = self._get_ema_decay()

4573
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4574
        self._params_tmps = []
4575
        for param in default_main_program().global_block().all_parameters():
4576
            if param.do_model_average != False:
4577 4578 4579 4580 4581 4582 4583 4584
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4585
                self._params_tmps.append((param, tmp))
4586

Y
Yibing Liu 已提交
4587 4588
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4589 4590 4591
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4592
                self._ema_vars[param.name] = self._create_ema_vars(param)
4593 4594 4595 4596

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4597
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4598
            for param, tmp in self._params_tmps:
4599 4600
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4601
                ema = block._clone_variable(self._ema_vars[param.name])
4602
                paddle.assign(param, output=tmp)
4603
                # bias correction
4604 4605
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4606
                        paddle.assign(ema / (1.0 - decay_pow), output=param)
4607
                    with switch.default():
4608
                        paddle.assign(ema, output=param)
4609 4610 4611 4612

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4613
            for param, tmp in self._params_tmps:
4614 4615
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
4616
                paddle.assign(tmp, output=param)
4617

4618 4619
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
4620
            decay_var = paddle.static.create_global_var(
4621 4622 4623 4624
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4625 4626
                name="scheduled_ema_decay_rate",
            )
4627 4628 4629 4630 4631

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
4632
                        paddle.assign(decay_t, decay_var)
4633
                    with switch.default():
4634
                        paddle.assign(
4635 4636
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4637 4638 4639
        return decay_var

    def _get_decay_pow(self, block):
4640
        global_step = paddle.static.create_global_var(
4641 4642 4643 4644 4645 4646
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4647
        global_step = paddle.cast(global_step, "float32")
4648
        decay_var = block._clone_variable(self._decay_var)
4649
        decay_pow_acc = paddle.pow(decay_var, global_step)
4650
        return decay_pow_acc, global_step
4651

Y
Yibing Liu 已提交
4652
    def _create_ema_vars(self, param):
4653
        param_ema = paddle.static.create_global_var(
4654 4655 4656 4657
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4658 4659
            persistable=True,
        )
4660 4661 4662

        return param_ema

Y
Yibing Liu 已提交
4663
    def update(self):
4664 4665
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4666 4667
        train program.
        """
4668
        global_step = layers.autoincreased_step_counter(
4669 4670
            counter_name=self._step_counter_name
        )
4671
        param_master_emas = []
Y
Yibing Liu 已提交
4672
        for param, tmp in self._params_tmps:
4673 4674 4675
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4676
                param_ema = self._ema_vars[param.name]
4677
                if param.name + '.master' in self._ema_vars:
4678 4679 4680 4681
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4682 4683
                        1 - self._decay_var
                    )
4684
                    paddle.assign(ema_t, output=param_ema)
4685 4686 4687 4688 4689 4690 4691 4692 4693

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4694 4695 4696
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4697

4698 4699 4700 4701
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4702

4703 4704
        Args:
            executor (Executor): The Executor to execute applying.
4705
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4706
                applying. Default True.
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4717

4718 4719 4720 4721
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4722 4723


4724
class PipelineOptimizer:
4725
    """
4726
        :api_attr: Static Graph
S
swtkiwi 已提交
4727

4728 4729 4730 4731
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4732

4733
    Args:
4734 4735 4736
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4737

4738 4739
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4740

C
Charles-hit 已提交
4741
            import paddle
4742
            import paddle.fluid as fluid
H
hutuxian 已提交
4743
            import paddle.fluid.layers as layers
G
GGBond8488 已提交
4744
            import numpy as np
H
hutuxian 已提交
4745

C
Charles-hit 已提交
4746
            paddle.enable_static()
4747
            with fluid.device_guard("gpu:0"):
G
GGBond8488 已提交
4748 4749
                x = paddle.static.data(name='x', shape=[-1, 1], dtype='int64', lod_level=0)
                y = paddle.static.data(name='y', shape=[-1, 1], dtype='int64', lod_level=0)
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
C
Charles-hit 已提交
4761 4762
                fc = paddle.static.nn.fc(x=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = paddle.mean(fc)
H
hutuxian 已提交
4763
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4764
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4765
            optimizer.minimize(loss)
4766 4767 4768 4769 4770 4771 4772 4773 4774

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4775 4776
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4777 4778
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4779
            exe.train_from_dataset(
4780
                    fluid.default_main_program())
4781
            data_loader.reset()
4782 4783
    """

4784
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4785 4786 4787 4788 4789
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
姜永久 已提交
4790
        if in_dygraph_mode():
Z
zhongpu 已提交
4791
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4792 4793 4794
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
4795
            paddle.static.amp.decorator.OptimizerWithMixedPrecision,
4796
        )
4797
        if not isinstance(optimizer, valid_optimizers):
4798 4799 4800 4801 4802 4803 4804
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4805
        self._optimizer = optimizer
4806 4807 4808 4809 4810 4811

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4812 4813 4814
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4815
        self._num_microbatches = num_microbatches
4816 4817 4818
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4819
        self._start_cpu_core_id = start_cpu_core_id
4820 4821 4822 4823 4824 4825
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4826
        self._param_device_map = None
4827 4828
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4829 4830
        self.output_var_to_op = None
        self.input_var_to_op = None
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4860 4861 4862 4863
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
4864 4865
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
4866 4867 4868
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4869
                'ring_id': self.global_ring_id,
4870
                self._op_role_key: self._op_role.Optimize,
4871 4872 4873
                'use_calc_stream': True,
            },
        )
4874 4875
        offset += 1
        if op.type == "reduce_any":
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4887
            offset += 1
4888
        return offset
H
hutuxian 已提交
4889

4890
    def _create_vars(self, block, ori_block):
4891
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4892
        used_var_set = set()
4893 4894 4895 4896 4897 4898 4899 4900 4901
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4902
            # For op process vars on all devices, remove its input
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4928 4929 4930 4931 4932 4933 4934 4935
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4936
            for var in vars:
4937 4938
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4939
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4940 4941
                    continue
                used_var_set.add(var)
4942 4943
                if block._find_var_recursive(str(var)):
                    continue
4944
                source_var = ori_block._var_recursive(str(var))
4945
                if source_var.type == core.VarDesc.VarType.READER:
4946
                    dest_var = block.create_var(
4947 4948
                        name=var,
                        type=core.VarDesc.VarType.READER,
4949 4950
                        persistable=source_var.persistable,
                    )
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
4962 4963
                        error_clip=source_var.error_clip,
                    )
4964
                else:
4965
                    dest_var = block._clone_variable(source_var, False)
4966
                self._clone_var_attr(dest_var, source_var)
4967 4968 4969
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
4970 4971
            if self.use_sharding or not should_insert:
                continue
4972 4973 4974 4975
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4976

4977
    def _is_loss_grad_op(self, op):
4978 4979
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4980
        return op_role & int(self._op_role.Backward) and op_role & int(
4981 4982
            self._op_role.Loss
        )
4983

4984
    def _is_forward_op(self, op):
4985 4986 4987
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
4988

4989
    def _is_backward_op(self, op):
4990
        return self._op_role_key in op.attr_names and (
4991 4992
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
4993 4994 4995 4996

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4997 4998

    def _is_optimize_op(self, op):
4999
        return self._op_role_key in op.attr_names and (
5000 5001
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
5002 5003

    def _is_update_op(self, op):
5004 5005 5006 5007 5008
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
5009

5010
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
5011
        """
5012
        Split a program into sections according to devices that ops run on.
5013
        The op whose op_device attr is "gpu:all" is copied to all sections.
5014 5015 5016

        Args:
            main_program (Program): the main program
5017
            devices: all used devices
H
hutuxian 已提交
5018
        """
5019
        # Map from device to its corresponding section program info
5020
        device_program_map = defaultdict(Program)
5021

5022
        block = main_program.block(0)
5023 5024
        for op in block.ops:
            device = op.attr(self._op_device_key)
5025
            # Copy ops whose op_device set to "gpu:all" to all sections.
5026
            if device == f"{self._device}:all":
5027
                for device in devices:
5028 5029
                    program = device_program_map[device]
                    op_desc = op.desc
5030
                    ap_op = program.global_block().desc.append_op()
5031
                    ap_op.copy_from(op_desc)
5032
                    ap_op._set_attr(self._op_device_key, "")
5033 5034 5035
            else:
                program = device_program_map[device]
                op_desc = op.desc
5036
                ap_op = program.global_block().desc.append_op()
5037
                ap_op.copy_from(op_desc)
5038
                ap_op._set_attr(self._op_device_key, "")
5039

5040
        program_list = []
5041
        for key in devices:
5042
            program = device_program_map[key]
5043 5044
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
5045

5046
        return program_list
H
hutuxian 已提交
5047

5048 5049 5050 5051 5052 5053 5054
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
5055 5056
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
5057
            'or beta2_pow_acc.'
5058 5059
        )
        param_name = var_name[0 : var_name.index('_beta')]
5060 5061 5062
        device = self._param_device_map[param_name]
        return device

5063 5064
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
5065 5066 5067
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
5068 5069
            if device == "cpu":
                assert op.type == "fill_constant", (
5070
                    "For ops in startup program with the op_device attribute "
5071 5072
                    "of cpu, they must be of type fill_constant."
                )
5073 5074 5075
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

5076
            if device:
5077
                device_index = int(device.split(':')[1])
5078
            else:
5079 5080
                # LR related ops
                device = None
5081 5082
            if device and device_index != device_id:
                continue
5083
            op_desc = op.desc
5084
            ap_op = new_startup_program.global_block().desc.append_op()
5085 5086 5087
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
5088
        self._create_vars(new_startup_program.global_block(), block)
5089 5090
        return new_startup_program

5091
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
5092
        """
5093
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
5094
        """
5095 5096 5097 5098 5099 5100
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

5101
        post_ops = self.input_var_to_op[var_name]
5102
        if post_ops is None:
5103
            return None
5104 5105 5106 5107 5108 5109
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
5110

5111
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
5112
        """
5113 5114
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
5115
        """
5116
        prev_ops = self.output_var_to_op[var_name]
5117
        if prev_ops is None:
5118
            return None
5119 5120 5121 5122
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
5123
                break
5124
        return result_op
5125 5126

    def _rename_arg(self, op, old_name, new_name):
5127 5128
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
5129

5130
    def _create_var(self, block, ref_var, name, dtype=None):
5131 5132 5133 5134 5135 5136 5137 5138
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
5139
            dtype=ref_var.dtype if dtype is None else dtype,
5140 5141
            type=ref_var.type,
            lod_level=ref_var.lod_level,
5142 5143
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
5144 5145
            need_check_feed=ref_var.desc.need_check_feed(),
        )
5146
        self._clone_var_attr(new_var, ref_var)
5147 5148
        return new_var

5149 5150 5151 5152 5153
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

5154 5155 5156 5157 5158 5159
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
5160

5161 5162 5163 5164 5165 5166
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

5167
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
5168
        """
5169
        Get the op_device attribute of a op.
H
hutuxian 已提交
5170
        """
5171 5172 5173 5174 5175
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
5176
        if device:
5177 5178
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
5179
                "supported in pipeline parallemism."
5180
            )
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
5194
            op._set_attr(self._op_device_key, f"{self._device}:all")
5195 5196 5197 5198
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
5199 5200 5201
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
5202 5203 5204 5205
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
5206 5207 5208 5209
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
5210 5211 5212
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
5213 5214 5215
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
5216
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
5217 5218
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
5219
            # for checkpoint offloading
5220 5221 5222
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
5223 5224 5225
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
5226
                post_op = self._find_post_op(idx, output_name)
5227 5228 5229
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
5230
            else:
5231
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
5232 5233 5234
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
5235 5236 5237
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
5238 5239 5240
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
5241 5242 5243 5244 5245 5246 5247 5248 5249
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
5250
            param_name = self._strip_grad_suffix(grad_name[0])
5251 5252 5253 5254 5255
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
5256 5257
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
5258
                "and regularization ops must have op_role_var attribute."
5259
            )
5260
            op_role_var = op.attr(self._op_role_var_key)
5261 5262
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
5263
                "regularization ops must have two elements."
5264
            )
5265 5266
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
5267
            # For sum op added by global gradient clip, it must be
5268
            # put on all devices
5269 5270 5271 5272 5273 5274 5275
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
5276
                device = f"{self._device}:all"
5277
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
5278
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
5279
            op._set_attr(self._op_device_key, f"{self._device}:all")
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
5290 5291
        else:
            other_known_ops = [
5292 5293 5294 5295 5296 5297
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
5298
            ]
5299 5300 5301
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
5302
                "is {}".format(other_known_ops, op.type)
5303
            )
5304
            assert self._is_optimize_op(op)
5305
            op._set_attr(self._op_device_key, f"{self._device}:all")
5306 5307

    def _add_op_device_attr(self, block):
5308
        """
5309
        Add op_device attrribute for ops in block that have
5310
        not that attribute set.
5311
        """
5312
        for idx, op in enumerate(list(block.ops)):
5313 5314 5315 5316 5317
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
5318
                # Copy read related ops to all section to make them exit
5319 5320 5321 5322
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5323
                op._set_attr(self._op_device_key, f"{self._device}:all")
5324 5325
                continue
            # op_device attribute has been set
5326 5327
            if self._get_op_device_attr(op):
                continue
5328
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5329

5330 5331
    def _check_validation(self, block):
        """
5332
        Check whether ops in a block have both the op_device and the
5333 5334
        op_role attributes set.
        Then, return all devices in order.
5335
        """
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5346
        for op in block.ops:
5347
            if not op._has_kernel(op.type):
5348 5349 5350 5351 5352 5353
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5354
            assert op.has_attr(
5355 5356
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5357
            op_role = op.attr(self._op_role_key)
5358 5359 5360 5361 5362
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5363

5364
            assert op.has_attr(
5365 5366 5367 5368
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5369 5370

            device = op.attr(self._op_device_key)
5371 5372 5373 5374 5375 5376 5377
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5378

5379
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
5380 5381
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
5382 5383
                "for pipeline parallelism."
            )
5384 5385

            if device not in device_list:
5386
                device_list.append(device)
5387

5388
        return device_list
5389

5390
    def _insert_sendrecv_ops_for_boundaries(self, block):
5391
        """
5392
        Insert a pair of send and recv ops for every two
5393 5394
        consecutive ops on different devices.
        """
5395
        # A map from var to device where op takes it as input,
5396
        # avoiding multiple send and recv ops.
5397
        input_var_to_device = dict()
5398 5399 5400 5401 5402 5403 5404 5405
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5406
            'first_optimize_index': first_optimize_index,
5407
        }
5408

5409
        for index, op in enumerate(list(block.ops)):
5410
            cur_device = op.attr(self._op_device_key)
5411 5412
            if cur_device == f"{self._device}:all":
                continue
5413 5414
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5415
                # skip data var
5416 5417
                if var.is_data:
                    continue
5418
                prev_device = None
5419 5420 5421

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5422 5423
                    if var_name not in self._param_device_map:
                        continue
5424
                    prev_device = self._param_device_map[var_name]
5425

5426
                if not prev_device:
5427 5428 5429
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5430

5431 5432
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5433

5434 5435
                if prev_device == cur_device:
                    continue
5436

5437 5438 5439 5440 5441 5442 5443
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5444 5445 5446 5447
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5448 5449
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5450
                        'please check the op_role of op={}'.format(op)
5451
                    )
5452 5453

                    if is_forward:
5454 5455
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5456
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5457 5458 5459
                                prev_id, cur_id, op
                            )
                        )
5460
                    elif is_backward:
5461 5462
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5463
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5464 5465 5466
                                prev_id, cur_id, op
                            )
                        )
5467

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5478 5479
                            (cur_dev, prev_dev)
                        )
5480 5481 5482 5483 5484
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5485 5486
                            (cur_dev, prev_dev)
                        )
5487 5488 5489 5490 5491 5492
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5493
                    var = block.vars[var_name]
5494 5495 5496
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5497 5498 5499 5500 5501 5502 5503
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5504

5505
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5506
                        block._insert_op_without_sync(
5507
                            index=index + extra_index_info['index'],
5508 5509 5510
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5511
                                self._op_device_key: prev_dev,
5512 5513 5514
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5515 5516 5517
                                'ring_id': ring_id,
                            },
                        )
5518
                        extra_index_info['index'] += 1
5519
                        var_shape = list(var.shape)
5520 5521 5522 5523 5524
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5525
                        block._insert_op_without_sync(
5526
                            index=index + extra_index_info['index'],
5527 5528 5529
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5530
                                'out_shape': var_shape,
5531
                                'dtype': var.dtype,
5532
                                self._op_device_key: cur_dev,
5533 5534 5535
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5536 5537 5538
                                'ring_id': ring_id,
                            },
                        )
5539
                        extra_index_info['index'] += 1
5540
                    elif self.schedule_mode == '1F1B':  # 1F1B
5541
                        var_shape = list(var.shape)
5542 5543 5544 5545 5546
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5547

5548
                        numel = np.prod(var_shape)
5549 5550 5551
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5574 5575
                                },
                            )
5576 5577 5578
                            extra_index_info['index'] += 1
                            return

5579 5580
                        _check_stage(cur_id, prev_id)

5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5591
                        extra_index_info['index'] += 1
5592 5593
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5594 5595 5596
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5597
                        block._insert_op_without_sync(
5598
                            index=index + extra_index_info['index'],
5599
                            type='send_v2'
5600 5601
                            if not use_mp or is_param
                            else 'partial_send',
5602 5603
                            inputs={'X': var},
                            attrs={
5604
                                self._op_device_key: prev_dev,
5605 5606 5607 5608
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5609 5610 5611
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5612 5613
                            },
                        )
5614
                        extra_index_info['index'] += 1
5615 5616 5617
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5618 5619
                                'first_optimize_index'
                            ]
5620 5621 5622 5623
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5624
                        sync_comm_op = block._insert_op_without_sync(
5625
                            index=insert_index + extra_index_info['index'],
5626 5627 5628 5629
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5630
                                self._op_device_key: prev_dev,
5631
                                self._op_role_key: new_op_role,
5632
                                'ring_id': ring_id,
5633 5634
                            },
                        )
5635
                        if int(op_role) == int(self._op_role.Forward):
5636
                            sync_comm_op._set_attr('pipeline_flag', '')
5637
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5638
                        block._insert_op_without_sync(
5639
                            index=index + extra_index_info['index'],
5640
                            type='recv_v2'
5641 5642
                            if not use_mp or is_param
                            else 'partial_recv',
5643 5644 5645 5646
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5647
                                self._op_device_key: cur_dev,
5648 5649 5650
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5651 5652 5653 5654
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5655 5656
                            },
                        )
5657
                        extra_index_info['index'] += 1
5658
                        if use_mp and not is_param:
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5672 5673
                                },
                            )
5674
                            extra_index_info['index'] += 1
5675 5676 5677
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5678 5679
                            "The given value is {}.".format(self.schedule_mode)
                        )
5680

5681 5682 5683 5684
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5685 5686
        block._sync_with_cpp()

5687
    def _insert_loss_scale(self, block):
5688
        """
5689
        Scale the loss corresponding to number of micro-batches.
5690
        """
5691 5692
        if self._num_microbatches == 1:
            return
5693
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5694
            if self._is_loss_grad_op(op):
5695 5696
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5697
                    "but this op is {}".format(op.type)
5698
                )
5699 5700 5701 5702
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5703 5704
                break

5705 5706
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5707 5708
            if not self._is_optimize_op(op):
                continue
5709 5710 5711
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5712 5713
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5714 5715 5716
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5717 5718
                if not core.grad_var_suffix() in name:
                    continue
5719 5720 5721 5722
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5723 5724 5725
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5726 5727 5728 5729
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5730 5731
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5732
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5733 5734
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5735 5736
            return fused_gradient_names

5737 5738 5739
        merged_gradient_names = []
        first_opt_op_idx = None

5740 5741 5742
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5743 5744 5745 5746 5747 5748 5749 5750
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5751
                    continue
5752

5753
            if self._is_backward_op(op) and first_opt_op_idx is None:
5754
                first_opt_op_idx = index + 1
5755 5756
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5757

5758 5759 5760
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5761
                op_role_var = op.attr(self._op_role_var_key)
5762 5763
                if len(op_role_var) == 0:
                    continue
5764 5765
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5766 5767
                    offset = 0
                    param_name = op_role_var[i]
5768 5769 5770 5771
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5772

5773
                    param_grad_name = param_name + core.grad_var_suffix()
5774
                    merged_param_grad_name = param_grad_name + merged_suffix
5775
                    if not block.has_var(merged_param_grad_name):
5776 5777 5778 5779 5780 5781
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5782
                    assert block.has_var(merged_param_grad_name)
5783

5784 5785 5786
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5787
                    block._insert_op(
5788 5789 5790 5791
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5792
                        attrs={
5793 5794 5795
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5796
                            # a trick to run this op once per mini-batch
5797 5798 5799
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5800
                    offset += 1
5801 5802
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5803 5804

                    is_fp16_grad = 'cast_fp16' in grad_name
5805
                    need_cast = is_fp16_grad is not fp16_allreduce
5806 5807 5808 5809 5810 5811

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5812
                        cast_grad_var_name = param_grad_name + '@TMP'
5813
                        cast_grad_var = self._create_var(
5814 5815
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5816
                        cast_grad_var.persistable = False
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5828
                        offset += 1
5829 5830 5831 5832 5833 5834 5835
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5836 5837
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5838 5839
                        },
                    )
5840 5841 5842
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5843 5844
        if not fp16_allreduce:
            return merged_gradient_names
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5879

5880
        return merged_gradient_names
5881

5882 5883 5884
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
5885
        grad_param_pairs = self._sort_grad_param_by_dtype(
5886 5887
            main_block, grad_param_pairs
        )
5888

5889 5890 5891
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
5892
        cur_size = 0.0
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
5903 5904
                stop_gradient=False,
            )
5905
            real_param = main_block.var(param)
5906 5907
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5908 5909 5910 5911
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
5912 5913 5914 5915 5916
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
5917
                grad_param_segments.append(
5918 5919
                    ([real_grad], [real_param], [merged_grad_var])
                )
5920
                last_dtype = real_grad.dtype
5921
                cur_size = 0.0
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5934 5935 5936 5937 5938 5939
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
5940
            # keep the '.cast_fp16' info in the fuse var name
5941 5942 5943 5944 5945 5946 5947 5948 5949
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
5950 5951 5952 5953
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
5954 5955
                stop_gradient=False,
            )
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5981
                outputs={"Output": grads, "FusedOutput": fused_grad},
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5998 5999 6000 6001 6002 6003 6004
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
6005 6006
                },
            )
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
6017
                    "FusedOutput": fused_merged_grad,
6018 6019 6020 6021 6022 6023 6024 6025
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
6026 6027 6028
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
6029 6030 6031 6032 6033 6034 6035 6036 6037
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
6038
            need_cast = is_fp16_grad is not fp16
6039 6040 6041 6042
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
6060 6061 6062 6063 6064 6065 6066
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
6067 6068
                attrs={self._op_role_key: self._op_role.Backward},
            )
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
6097 6098 6099 6100 6101 6102
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

6103
        return fused_merged_gradients, first_opt_op_idx
6104

6105 6106 6107
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

6127 6128 6129
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
6141 6142
                        (op_role_var[i + 1], op_role_var[i])
                    )
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
6156 6157 6158 6159 6160 6161
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
6162 6163 6164 6165
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
6166

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
6197 6198 6199 6200 6201 6202
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
6203

6204 6205
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
6206
        for prog in program_list:
6207 6208 6209 6210 6211 6212
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
6213 6214
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
6215 6216 6217
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
6218
                self._create_vars(new_sub_block, origin_sub_block)
6219
                op._set_attr('sub_block', new_sub_block)
6220 6221 6222

    def _get_device_info(self, block):
        for op in block.ops:
6223 6224
            if not op._has_kernel(op.type):
                continue
6225 6226 6227
            op_device = op.attr(self._op_device_key)
            return op_device

6228 6229 6230
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
6231 6232 6233 6234 6235 6236 6237
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
6238
        for prog in program_list:
6239 6240
            block = prog.block(0)
            for var_name in block.vars:
6241 6242
                if var_name == "double_buffer_0":
                    continue
6243
                var = block.var(var_name)
6244 6245
                if not var.persistable:
                    continue
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
6261 6262 6263 6264 6265 6266
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
6267
                        continue
6268 6269
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
6270 6271
                        self._op_role.Optimize.LRSched
                    ):
6272 6273 6274 6275
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
6276 6277
                            "op {}.".format(var_name, op)
                        )
6278 6279 6280 6281 6282
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
6283 6284
            if not var_name in write_info:
                continue
6285 6286 6287 6288 6289

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
6290
            write_dev_index = int(write_device.split(':')[1])
6291 6292
            all_progs = var_info[var_name]
            for prog in all_progs:
6293 6294
                if prog == write_prog:
                    continue
6295 6296 6297
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
6298 6299 6300 6301 6302 6303 6304 6305 6306
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
6307 6308 6309

                write_block._insert_op(
                    index=0,
6310
                    type='send_v2',
6311 6312 6313
                    inputs={
                        'X': write_block.var(var_name),
                    },
6314
                    attrs={
6315 6316
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
6317 6318
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6319 6320 6321 6322 6323
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6324 6325
                read_block._insert_op(
                    index=0,
6326
                    type='recv_v2',
6327 6328
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6329 6330 6331 6332
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6333 6334
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6335 6336 6337 6338 6339
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6340 6341 6342 6343 6344 6345
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6346
                        self._op_device_key: read_device,
6347 6348
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6349 6350 6351 6352
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6353 6354

    def _is_gradient_clip_op(self, op):
6355 6356 6357
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6358 6359

    def _is_regularization_op(self, op):
6360 6361 6362
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6363

6364 6365
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6366 6367 6368
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6369

6370 6371 6372 6373 6374
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6375
        output_var_to_op = defaultdict(list)
6376
        # A map from var to op which takes it as input.
6377
        input_var_to_op = defaultdict(list)
6378

6379
        for index, op in enumerate(block.ops):
6380
            for var_name in op.input_arg_names:
6381
                input_var_to_op[var_name].append([op, index])
6382
            for var_name in op.output_arg_names:
6383 6384 6385 6386 6387 6388 6389 6390
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6391 6392
        if self.schedule_mode != '1F1B':
            return
6393 6394 6395

        block = program.block(0)

6396
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6397 6398
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6399
            if op.type == recv_type and self._is_backward_op(op):
6400 6401 6402
                backward_recv_index = index
                break

6403
        # last pipeline stage
6404 6405
        if backward_recv_index is None:
            return
6406 6407 6408

        offset = 0
        for index, op in enumerate(list(block.ops)):
6409 6410
            if index >= backward_recv_index:
                break
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6427 6428
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6429
        block._sync_with_cpp()
6430

6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6444 6445 6446 6447
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6448
                backward_insert_index = i
6449 6450 6451 6452 6453 6454
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6474 6475 6476 6477 6478 6479 6480
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6481 6482 6483 6484 6485 6486 6487
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6515 6516
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6517

6518 6519 6520
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6521
        main_block = loss.block
6522
        self.origin_main_block = main_block
6523
        main_program = main_block.program
6524 6525
        if startup_program is None:
            startup_program = default_startup_program()
6526

6527 6528
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6529 6530 6531 6532 6533 6534 6535
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6536 6537
            'mp_degree',
            'mp_rank',
6538 6539
        ]
        for key in required_keys:
6540 6541 6542
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6543 6544 6545 6546 6547 6548 6549 6550
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6551
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6552 6553
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6554 6555

        optimize_ops, params_grads = self._optimizer.minimize(
6556 6557
            loss, startup_program, parameter_list, no_grad_set
        )
6558
        self._param_device_map = self._origin_optimizer._param_device_map
6559

6560 6561 6562 6563
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6564 6565 6566
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6578 6579 6580
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6581 6582
            "another in the order of their ids."
        )
6583
        # Step2: add send and recv ops between section boundaries
6584
        self._insert_sendrecv_ops_for_boundaries(main_block)
6585

6586
        # Step3: split program into sections and add pairs of
6587 6588
        # send and recv ops for data var.
        main_program = main_block.program
6589
        program_list = self._split_program(main_program, device_list)
6590
        for p in program_list:
6591
            self._create_vars(p.global_block(), main_block)
6592

L
lilong12 已提交
6593 6594 6595 6596 6597
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6598 6599
                "stages."
            )
L
lilong12 已提交
6600 6601
        else:
            self.local_rank %= len(device_list)
6602 6603 6604
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6605
        # Step4: Special Case: process persistable vars that exist in
6606
        # multiple sections
6607
        # FIXME
6608 6609
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6610

6611
        # Step5: Add sub blocks for section programs
6612 6613
        self._add_sub_blocks(main_block, program_list)

6614
        place_list = []
6615 6616
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6617 6618 6619 6620
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6621

6622
        # Step6: Split startup program
6623
        new_startup_program = self._split_startup_program(
6624 6625
            startup_program, self.local_rank
        )
6626 6627 6628 6629

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6630
        real_block = program_list[self.local_rank].global_block()
6631 6632
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6633
        if not self.use_sharding:
6634
            # Step7: clear gradients before each mini-batch and
6635 6636 6637 6638 6639
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6640

6641 6642 6643 6644
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6645 6646 6647
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6648 6649 6650 6651 6652

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6653
        main_program._pipeline_opt = {
H
hutuxian 已提交
6654 6655
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6656
            "pipeline_stage": self.local_rank,
6657
            "num_pipeline_stages": len(device_list),
6658
            "schedule_mode": self.schedule_mode,
6659
            "inner_parallelism": len(device_list),
6660 6661
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6662
            "place_id": place_id,
6663
            "sync_steps": -1,
L
lilong12 已提交
6664
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6665 6666
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6667 6668 6669 6670 6671 6672 6673
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6674 6675


M
mapingshuo 已提交
6676 6677
class RecomputeOptimizer(Optimizer):
    """
6678
        :api_attr: Static Graph
S
swtkiwi 已提交
6679

M
mapingshuo 已提交
6680 6681 6682
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6683
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6684 6685 6686
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6687
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6688 6689 6690
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6691
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6692 6693
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6694

M
mapingshuo 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

6704
            import paddle
M
mapingshuo 已提交
6705 6706
            import paddle.fluid as fluid
            import numpy as np
6707 6708 6709

            paddle.enable_static()

M
mapingshuo 已提交
6710 6711 6712 6713 6714
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
C
Charles-hit 已提交
6715 6716
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6717 6718 6719 6720 6721
                cost = paddle.nn.functional.cross_entropy(
                    input=prediction, label=input_y,
                    reduction='none', use_softmax=False
                )
                sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6722
                return sum_cost, fc_1, prediction
G
GGBond8488 已提交
6723 6724
            input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
            input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
姜永久 已提交
6747
        if in_dygraph_mode():
Z
zhongpu 已提交
6748
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6749 6750
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6751 6752
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6753
        self.enable_offload = False
M
mapingshuo 已提交
6754 6755

    def _set_checkpoints(self, checkpoints):
6756 6757
        """
        Args:
6758
            checkpoints (list): List of Variable or string
6759 6760 6761 6762 6763
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6764 6765
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6766
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6767 6768
        self._checkpoints = checkpoints

6769
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6770 6771 6772
    def _enable_offload(self):
        self.enable_offload = True

6773 6774
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6775
        """
6776
            :api_attr: Static Graph
S
swtkiwi 已提交
6777

M
mapingshuo 已提交
6778 6779 6780 6781
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6782
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6783 6784 6785 6786

        Examples:
            .. code-block:: python

6787
                import paddle
M
mapingshuo 已提交
6788
                import paddle.fluid as fluid
6789

6790
                paddle.enable_static()
M
mapingshuo 已提交
6791
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6792 6793
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6794 6795 6796 6797 6798
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6799
                    return sum_cost, fc_1, prediction
6800

G
GGBond8488 已提交
6801 6802
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6803 6804
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6805

M
mapingshuo 已提交
6806 6807 6808 6809
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6810 6811
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6812
                except NotImplementedError as e:
6813
                    print(e)
M
mapingshuo 已提交
6814 6815
        """
        raise NotImplementedError(
6816 6817
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

6832
                import paddle
M
mapingshuo 已提交
6833 6834 6835
                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

6836 6837
                paddle.enable_static()

M
mapingshuo 已提交
6838
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
6839 6840
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
6841 6842 6843 6844 6845
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
6846 6847 6848
                    return sum_cost, fc_1, prediction


G
GGBond8488 已提交
6849 6850
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
6851 6852 6853 6854 6855
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6856
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6857 6858 6859 6860
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6861
                    no_grad_set=None)
M
mapingshuo 已提交
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6872 6873 6874 6875 6876 6877 6878 6879 6880
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6881 6882
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
6883 6884 6885 6886 6887 6888

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6889 6890
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
6891 6892 6893 6894 6895 6896 6897 6898

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6899 6900 6901
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
6928 6929 6930

        return

6931 6932 6933
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
6934 6935 6936 6937 6938 6939 6940 6941
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6942 6943
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
6944 6945

    def _insert_fetch_op(self, idx, varname):
6946 6947 6948 6949 6950
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6951 6952 6953

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6954
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6955 6956

    def _insert_offload_op(self, idx, varname):
6957 6958 6959 6960 6961
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6962
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6963
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6964 6965

    def _insert_sync_op(self, op_idx, checkpoint_name):
6966
        # single stream offload no need sync
J
JZ-LIANG 已提交
6967 6968 6969
        pass

    def _record_fetch_op(self, idx):
6970 6971 6972
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
6973 6974 6975 6976 6977 6978 6979 6980
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
6981 6982 6983 6984 6985
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
6986 6987 6988 6989
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
6990 6991 6992
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
6993 6994 6995 6996 6997 6998 6999
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
7000
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
7015 7016
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
7017 7018 7019

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
7020 7021
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
7022 7023
        last_last_fetch_checkpoint = None

7024
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
7034 7035 7036
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
7037
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
7038
                            if input_var != self.sorted_checkpoint_names[0]:
7039 7040 7041
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
7042

7043
                        # should check the current used checkpoint is ths last fetch one
7044 7045 7046 7047 7048
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
7049 7050 7051
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
7052 7053
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
7054 7055 7056 7057
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
7058 7059 7060
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
7061

7062 7063 7064 7065 7066
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
7077
                    logging.debug(
7078 7079
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7080 7081 7082 7083 7084
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
7085 7086 7087 7088 7089
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7090 7091 7092 7093

    def _parse_forward(self):

        self.idx2insertions = {}
7094
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
7095 7096 7097 7098 7099 7100 7101
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
7102
                'idx': -1,
J
JZ-LIANG 已提交
7103 7104 7105 7106 7107 7108 7109 7110 7111
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
7112 7113
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
7114 7115
        last_offload_checkpoint = None

7116
        for i, op in enumerate(
7117 7118
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
7119 7120 7121 7122 7123 7124 7125

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
7126 7127 7128 7129 7130
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
7131 7132 7133

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
7134
                        if last_offload_checkpoint is not None:
7135 7136 7137 7138 7139 7140 7141 7142 7143
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
7144
                            else:
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
7158 7159 7160 7161 7162
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
7163 7164 7165 7166
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
7167 7168
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
7182
                    # sync if last checkpoint has not been sync
7183 7184 7185 7186 7187 7188
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
7189 7190 7191
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
7202
            # record checkpoint usage
J
JZ-LIANG 已提交
7203 7204
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
7205 7206 7207
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
7208 7209 7210
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

7211 7212 7213 7214 7215
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
7216 7217 7218
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
7219 7220
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
7221 7222 7223 7224 7225

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
7226 7227
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
7228 7229 7230 7231
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
7232
                    logging.debug(
7233 7234
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7235 7236 7237
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
7238
                    logging.debug(
7239 7240
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7241 7242 7243
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
7244 7245 7246 7247 7248
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7249 7250 7251 7252 7253 7254 7255 7256

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
7257
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
7258 7259 7260 7261 7262 7263
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
7264
        if startup_program is None:
J
JZ-LIANG 已提交
7265
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
7266 7267

        with program_guard(self._main_program, startup_program):
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
7278 7279 7280 7281
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
7282 7283
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
7284
                self.checkpoint_name2pinned_name[
7285 7286
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
7287
                self.checkpoint_name2fetch_name[
7288 7289
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

7303 7304 7305 7306 7307 7308 7309 7310
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
7311 7312 7313 7314 7315 7316 7317
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
7318 7319
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
7320 7321 7322 7323 7324 7325 7326
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

7327
                import paddle
M
mapingshuo 已提交
7328
                import paddle.fluid as fluid
7329

7330 7331
                paddle.enable_static()

M
mapingshuo 已提交
7332
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7333 7334
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7335 7336 7337 7338 7339
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
M
mapingshuo 已提交
7340
                    return sum_cost, fc_1, prediction
7341 7342


G
GGBond8488 已提交
7343 7344
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
7345 7346
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7347

M
mapingshuo 已提交
7348 7349
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7350
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7351 7352 7353 7354
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7355
                    no_grad_set=None)
M
mapingshuo 已提交
7356 7357
                print("Finished backward")
        """
7358 7359 7360
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7361

姜永久 已提交
7362
        if in_dygraph_mode():
M
mapingshuo 已提交
7363
            raise NotImplementedError(
7364 7365
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7366 7367 7368 7369

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7370 7371 7372 7373 7374 7375 7376
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7377 7378 7379 7380 7381 7382
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7383 7384
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7385
            else:
7386 7387 7388 7389 7390 7391
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7392 7393 7394 7395 7396

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
7409
                import paddle
M
mapingshuo 已提交
7410
                import paddle.fluid as fluid
7411

7412 7413
                paddle.enable_static()

M
mapingshuo 已提交
7414
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7415 7416
                    fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
                    prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7417 7418 7419 7420 7421
                    cost = paddle.nn.functional.cross_entropy(
                        input=prediction, label=input_y,
                        reduction='none', use_softmax=False
                    )
                    sum_cost = paddle.mean(cost)
7422 7423
                    return sum_cost, fc_1, prediction

G
GGBond8488 已提交
7424 7425
                input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
                input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
M
mapingshuo 已提交
7426 7427
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7428

M
mapingshuo 已提交
7429 7430
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7431
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7432 7433 7434 7435
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7436
                    no_grad_set=None)
7437

M
mapingshuo 已提交
7438 7439
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7440

M
mapingshuo 已提交
7441 7442 7443
                print("Finished apply_optimize")
        """

7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7456
        assert isinstance(loss, Variable), "The loss should be an Variable."
7457 7458 7459
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
姜永久 已提交
7460
        if in_dygraph_mode():
M
mapingshuo 已提交
7461
            raise NotImplementedError(
7462 7463 7464 7465 7466 7467 7468 7469
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7470

7471 7472 7473
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7474 7475 7476 7477

        return optimize_ops, params_grads


7478
class LookaheadOptimizer:
7479
    r"""
7480
        :api_attr: Static Graph
S
swtkiwi 已提交
7481

M
mapingshuo 已提交
7482 7483 7484 7485
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7486 7487
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7488 7489 7490
    every k training steps as follows:

    .. math::
7491

M
mapingshuo 已提交
7492
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7493

7494
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7495 7496

    Args:
7497
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7498 7499 7500 7501 7502 7503 7504 7505 7506
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7507
            import numpy.random as random
M
mapingshuo 已提交
7508

7509
            paddle.enable_static()
7510

G
GGBond8488 已提交
7511 7512
            x = paddle.static.data(name='x', shape=[-1,2], dtype='float32')
            label = paddle.static.data(name="label", shape=[-1,1], dtype="int64")
C
Charles-hit 已提交
7513
            y = paddle.static.nn.fc(x=[x], size=2, activation="softmax")
7514 7515 7516 7517
            loss = paddle.nn.functional.cross_entropy(
                input=y, label=label,
                reduction='none', use_softmax=False
            )
7518
            loss = paddle.mean(x=loss)
7519 7520 7521 7522 7523 7524 7525 7526 7527
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7528

7529 7530 7531
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7532

7533 7534
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7535

7536 7537 7538
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7539 7540 7541 7542 7543

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

姜永久 已提交
7544
        if in_dygraph_mode():
Z
zhongpu 已提交
7545
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7546
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7547 7548 7549
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7550
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7551 7552 7553 7554 7555 7556 7557 7558 7559 7560

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7561 7562
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7574 7575 7576 7577 7578 7579 7580
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7581 7582 7583 7584 7585 7586
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7587 7588 7589 7590 7591 7592 7593
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7594

7595 7596 7597
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7598

7599 7600
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7601
            k = paddle.static.create_global_var(
7602 7603 7604 7605 7606 7607
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7608

7609
            # Add Var alpha to main prog and startup prog
7610
            alpha = paddle.static.create_global_var(
7611 7612 7613 7614 7615 7616
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7617

7618
            # Add Var step
7619
            step = paddle.static.create_global_var(
7620 7621 7622 7623 7624 7625
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7626
            paddle.increment(x=step, value=1.0)
7627 7628

            # lookahead
7629 7630 7631
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0
            )
7632

7633 7634 7635
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0
            )
7636

7637
            mod = paddle.remainder(step, k)
7638
            with layers.control_flow.Switch() as switch:
7639 7640 7641 7642
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7643
                        paddle.assign(fast_var, output=slow_var)
7644 7645 7646 7647
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7648 7649 7650 7651
                        tmp_var = paddle.add(
                            paddle.multiply(fast_var, alpha),
                            paddle.multiply(
                                slow_var, paddle.subtract(one_var, alpha)
7652 7653
                            ),
                        )
7654 7655
                        paddle.assign(tmp_var, output=slow_var)
                        paddle.assign(tmp_var, output=fast_var)
7656 7657
                with switch.default():
                    pass
M
mapingshuo 已提交
7658
        return mini_out
7659 7660


7661
class GradientMergeOptimizer:
7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

7684
        import paddle
7685 7686 7687 7688 7689 7690 7691 7692
        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
C
Charles-hit 已提交
7693 7694
            fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim)
            prediction = paddle.static.nn.fc(x=[fc_1], size=label_dim, activation='softmax')
7695 7696 7697 7698 7699
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=input_y,
                reduction='none', use_softmax=False
            )
            sum_cost = paddle.mean(cost)
7700 7701
            return sum_cost, fc_1, prediction

G
GGBond8488 已提交
7702 7703
        input_x = paddle.static.data(name="x", shape=[-1,32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1,1], dtype='int64')
7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7720 7721
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7722
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
姜永久 已提交
7723
        if in_dygraph_mode():
7724 7725 7726
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7727 7728
                "and one-time optimizer.minimize()"
            )
7729

7730 7731 7732 7733
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7734 7735 7736 7737 7738

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7739
        self._optimize_ops = None
7740

7741 7742 7743 7744 7745 7746
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7747 7748 7749 7750 7751 7752 7753 7754
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7755 7756 7757 7758 7759 7760 7761 7762 7763
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7764 7765
            loss, startup_program=startup_program
        )
7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7777 7778 7779
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7780 7781 7782 7783 7784 7785
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7786 7787 7788 7789 7790
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7791 7792 7793

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7830
        k_step_var = paddle.static.create_global_var(
7831 7832 7833 7834 7835 7836 7837 7838
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

7839
        zero_var = paddle.static.create_global_var(
7840 7841 7842 7843 7844 7845 7846
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7847 7848

        # Add step var & cond var
7849
        step_var = paddle.static.create_global_var(
7850 7851 7852 7853 7854 7855 7856
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7857

7858 7859 7860
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7861 7862 7863

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
7864
            paddle.increment(x=step_var, value=1.0)
7865 7866 7867 7868 7869 7870
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7871 7872

            # cond_var = (step_var == 0)
7873 7874 7875 7876 7877
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7888

7889
        # TODO(mapingshuo) support sparse embedding
7890 7891
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7892
            assert (
7893
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7894 7895
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7896
            self._remove_op_role_var(param, grad)
7897

7898
        param_to_grad = {k.name: v for (k, v) in params_grads}
7899 7900 7901
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7902 7903 7904 7905 7906
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7907
            param_var = main_block.var(param_name)
7908 7909 7910 7911 7912 7913 7914
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
7915
            param_to_gradient_merge[param_name] = gradient_merge_var
7916

7917 7918 7919 7920
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
7932

7933 7934 7935
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7936
                inputs={'X': grad, 'Y': gradient_merge_var},
7937
                outputs={'Out': gradient_merge_var},
7938 7939 7940 7941 7942
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
7943 7944 7945 7946 7947 7948 7949 7950
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7951
            op_maker = core.op_proto_and_checker_maker
7952 7953 7954 7955

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
7969

7970 7971 7972 7973 7974 7975
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7976

7977
            self._optimize_ops = self.inner_optimizer.apply_gradients(
7978 7979
                new_params_grads
            )
7980

7981 7982
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7983 7984 7985 7986 7987 7988 7989 7990 7991
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
7992 7993

        # step3. apply gradient
7994
        paddle.static.nn.cond(cond, true_fn=true_apply_gradient, false_fn=None)
7995 7996 7997

        return self._optimize_ops

7998 7999 8000
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
8001 8002
        assert isinstance(loss, Variable), "The loss should be an Variable."

8003 8004 8005 8006 8007 8008
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
8009

8010 8011 8012
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
8013 8014

        return optimize_ops, params_grads