op_param.h 66.7 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
50
class OpParam {
朔-望's avatar
朔-望 已提交
51
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
52 53 54 55
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
56 57 58 59 60
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

61 62 63 64 65 66 67 68 69
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
70 71 72 73 74
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

102 103 104 105
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
106 107 108 109 110 111

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

112 113 114 115 116
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
117 118 119 120 121
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

122 123 124 125 126
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
131 132 133 134 135 136 137 138 139 140 141 142
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
143 144 145 146
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
163

E
eclipsess 已提交
164 165 166 167 168 169 170 171 172 173
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
174 175 176 177
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
178

179
  template <typename T>
W
wangliu 已提交
180 181
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
182 183 184
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

214 215 216 217 218 219 220 221 222 223
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
224 225 226 227 228 229
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
235 236 237 238 239 240
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
241 242 243 244 245
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

252 253 254 255 256 257 258 259 260 261 262
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
263
  static const T GetAttr(const string &key, const AttributeMap &map) {
264 265
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
266 267
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
268 269
    return ((Attribute)map.at(key)).GetString();
  }
270

271 272 273 274
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

275
  template <typename T>
W
wangliu 已提交
276
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
277
                        const Scope &scope) {
W
wangliu 已提交
278 279
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
280 281 282 283 284 285
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
286
    }
287
  }
朔-望's avatar
朔-望 已提交
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

309
  template <typename T>
W
wangliu 已提交
310 311 312
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
313 314
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
315
    vector<T *> var_res;
316 317 318
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
319
    }
320 321
    return var_res;
  }
朔-望's avatar
朔-望 已提交
322 323
};

N
nhzlx 已提交
324
template <typename Dtype>
325
class ConvParam : public OpParam {
N
nhzlx 已提交
326 327 328
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
329
 public:
330
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
331
            const AttributeMap &attrs, const Scope &scope) {
332 333 334 335 336 337 338 339 340
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
341
  }
朔-望's avatar
朔-望 已提交
342

N
nhzlx 已提交
343
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
344

N
nhzlx 已提交
345
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
346

N
nhzlx 已提交
347
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
348

W
wangliu 已提交
349
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
350

W
wangliu 已提交
351
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
352

W
wangliu 已提交
353
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
354

355
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
356

朔-望's avatar
朔-望 已提交
357
 private:
N
nhzlx 已提交
358 359 360
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
361 362 363
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
364
  int groups;
朔-望's avatar
朔-望 已提交
365
};
N
nhzlx 已提交
366 367
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
368

N
nhzlx 已提交
369
template <typename Dtype>
朔-望's avatar
朔-望 已提交
370
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
371 372 373
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
374
 public:
375
  ElementwiseAddParam(const VariableNameMap &inputs,
376 377
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
378 379 380
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
381 382 383
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
384
  const GType *InputX() const { return input_x_; }
385

xiebaiyuan's avatar
xiebaiyuan 已提交
386
  const GType *InputY() const { return input_y_; }
387

xiebaiyuan's avatar
xiebaiyuan 已提交
388
  GType *Out() const { return out_; }
389 390 391

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
392
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
393 394 395
  GType *input_x_;
  GType *input_y_;
  GType *out_;
396
  int axis_;
Z
zhangyang 已提交
397 398 399
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
400
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
401 402

 public:
H
hanbuhe 已提交
403 404
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
405
#endif
朔-望's avatar
朔-望 已提交
406 407
};

408
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
409 410
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
411 412 413
#endif

#ifdef MUL_OP
N
nhzlx 已提交
414
template <typename Dtype>
朔-望's avatar
朔-望 已提交
415
class MulParam : OpParam {
N
nhzlx 已提交
416 417 418
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
419
 public:
420
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
421
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
422 423 424
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
425 426 427
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
428

xiebaiyuan's avatar
xiebaiyuan 已提交
429
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
430

xiebaiyuan's avatar
xiebaiyuan 已提交
431
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
432

xiebaiyuan's avatar
xiebaiyuan 已提交
433
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
434

435
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
436

437
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
438

朔-望's avatar
朔-望 已提交
439
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
440 441 442
  GType *input_x_;
  GType *input_y_;
  GType *out_;
443 444
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
445 446 447 448 449 450 451 452 453
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::WrapperConvArgs fpga_conv_args;

 public:
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
454
};
L
liuruilong 已提交
455
#endif
朔-望's avatar
朔-望 已提交
456

L
liuruilong 已提交
457
#ifdef CONCAT_OP
N
nhzlx 已提交
458
template <typename Dtype>
朔-望's avatar
朔-望 已提交
459
class ConcatParam : public OpParam {
N
nhzlx 已提交
460 461 462
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
463
 public:
464
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
465
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
466 467
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
468 469
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
470

N
nhzlx 已提交
471
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
472

xiebaiyuan's avatar
xiebaiyuan 已提交
473
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
474

475
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
476

朔-望's avatar
朔-望 已提交
477
 private:
N
nhzlx 已提交
478
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
479
  GType *out_;
480
  int axis_;
Z
zhangyang 已提交
481 482 483 484 485 486 487 488 489
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
490
};
L
liuruilong 已提交
491
#endif
朔-望's avatar
朔-望 已提交
492

L
liuruilong 已提交
493
#ifdef LRN_OP
N
nhzlx 已提交
494
template <typename Dtype>
E
eclipsess 已提交
495
class LrnParam : public OpParam {
N
nhzlx 已提交
496 497 498
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
499
 public:
500
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
501
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
502 503 504
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
505 506 507 508
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
509
    data_format_ = GetStringAttr("data_format", attrs);
510
  }
E
eclipsess 已提交
511

N
nhzlx 已提交
512
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
513

N
nhzlx 已提交
514
  RType *Out() const { return out_; }
E
eclipsess 已提交
515

N
nhzlx 已提交
516
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
517

518
  const int &N() const { return n_; }
E
eclipsess 已提交
519

520
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
521

522
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
523

524
  const float &K() const { return k_; }
E
eclipsess 已提交
525

W
wangliu 已提交
526
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
527

朔-望's avatar
朔-望 已提交
528
 private:
N
nhzlx 已提交
529 530 531
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
532 533 534 535
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
536
  string data_format_;
E
eclipsess 已提交
537
};
L
liuruilong 已提交
538 539 540
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
541
template <typename Dtype>
E
eclipsess 已提交
542
class BatchNormParam : OpParam {
N
nhzlx 已提交
543 544 545
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
546
 public:
547
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
548
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
549 550 551 552 553 554
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
555 556
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
557
    //    is_test_ = GetAttr<bool>("is_test", attrs);
558
  }
E
eclipsess 已提交
559

N
nhzlx 已提交
560
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
561

N
nhzlx 已提交
562
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
563

N
nhzlx 已提交
564
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
565

N
nhzlx 已提交
566
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
567

N
nhzlx 已提交
568
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
569

N
nhzlx 已提交
570
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
571

572
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
573

574
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
575

576
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
577

W
wangliu 已提交
578
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
579

朔-望's avatar
朔-望 已提交
580
 private:
N
nhzlx 已提交
581 582 583 584 585 586
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
587 588 589
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
590
  string data_format_;
E
eclipsess 已提交
591
};
L
liuruilong 已提交
592 593 594
#endif

#ifdef POOL_OP
N
nhzlx 已提交
595
template <typename Dtype>
596
class PoolParam : public OpParam {
N
nhzlx 已提交
597 598 599
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
600
 public:
601
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
602
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
603
    input_ = InputXFrom<GType>(inputs, scope);
604

N
nhzlx 已提交
605
    output_ = OutFrom<GType>(outputs, scope);
606
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
607 608 609
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
610
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
611
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
612
  }
613

N
nhzlx 已提交
614
  const RType *Input() const { return input_; }
615

N
nhzlx 已提交
616
  RType *Output() const { return output_; }
617

W
wangliu 已提交
618
  const string &PoolingType() const { return pooling_type_; }
619

W
wangliu 已提交
620
  const vector<int> &Ksize() const { return ksize_; }
621

W
wangliu 已提交
622
  const vector<int> &Strides() const { return strides_; }
623

W
wangliu 已提交
624
  const vector<int> &Paddings() const { return paddings_; }
625

626
  bool isCeilMode() const { return ceil_mode_; }
627

Z
zhangyang 已提交
628
  bool isGlobalPooling() const { return global_pooling_; }
629

朔-望's avatar
朔-望 已提交
630
 private:
N
nhzlx 已提交
631 632
  RType *input_;
  RType *output_;
W
wangliu 已提交
633 634 635 636
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
637
  bool ceil_mode_;
638
  bool global_pooling_ = false;
Z
zhangyang 已提交
639
#ifdef PADDLE_MOBILE_FPGA
640 641

 private:
H
hanbuhe 已提交
642
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
643 644

 public:
H
hanbuhe 已提交
645 646
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
647
#endif
648
};
L
liuruilong 已提交
649 650 651
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
652
template <typename Dtype>
E
eclipsess 已提交
653
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
654 655 656
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
657 658
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
659
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
660 661 662 663
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
664 665 666 667
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
668 669 670 671 672

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
673 674 675 676 677 678
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
679
  const RType *Input() const { return input_; }
E
eclipsess 已提交
680

N
nhzlx 已提交
681
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
682

N
nhzlx 已提交
683
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
684

N
nhzlx 已提交
685
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
686

W
wangliu 已提交
687
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
688

W
wangliu 已提交
689
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
690

W
wangliu 已提交
691
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
692

W
wangliu 已提交
693
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
694 695 696 697 698 699 700 701 702 703 704

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

705 706 707 708
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
709
 private:
N
nhzlx 已提交
710 711 712 713
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
714 715 716 717
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
718 719 720 721 722
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
723
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
724
};
L
liuruilong 已提交
725
#endif
E
eclipsess 已提交
726

L
liuruilong 已提交
727
#ifdef BOXCODER_OP
N
nhzlx 已提交
728
template <typename Dtype>
E
eclipsess 已提交
729
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
730 731 732
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
733 734
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
735
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
736 737 738 739
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
740
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
741
  }
N
nhzlx 已提交
742
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
743

N
nhzlx 已提交
744
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
745

N
nhzlx 已提交
746
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
747

N
nhzlx 已提交
748
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
749 750 751 752

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
753 754 755 756
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
757 758
  std::string code_type_;
};
L
liuruilong 已提交
759
#endif
W
wangliu 已提交
760

L
liuruilong 已提交
761
#ifdef SOFTMAX_OP
N
nhzlx 已提交
762
template <typename Dtype>
W
wangliu 已提交
763
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
764 765 766
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
767 768
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
769
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
770 771
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
772
  }
N
nhzlx 已提交
773 774
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
775 776

 private:
N
nhzlx 已提交
777 778
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
779 780 781 782

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
783
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
784 785 786
  fpga::BypassArgs fpga_bypass_args;

 public:
787
  RType *FloatInput() const {
H
hanbuhe 已提交
788 789 790 791 792 793
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
794
};
L
liuruilong 已提交
795
#endif
W
wangliu 已提交
796

L
liuruilong 已提交
797
#ifdef SIGMOID_OP
N
nhzlx 已提交
798
template <typename Dtype>
W
wangliu 已提交
799
class SigmoidParam : public OpParam {
N
nhzlx 已提交
800 801 802
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
803 804
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
805
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
806 807
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
808
  }
N
nhzlx 已提交
809 810
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
811 812

 private:
N
nhzlx 已提交
813 814
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
815
};
L
liuruilong 已提交
816 817 818
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
819
template <typename Dtype>
E
eclipsess 已提交
820
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
821 822 823
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
824 825 826 827
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
828 829 830
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
831 832 833 834 835 836 837 838
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
839
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
840

N
nhzlx 已提交
841
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
842

N
nhzlx 已提交
843
  RType *Out() const { return out_; }
E
eclipsess 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
858 859 860
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
861 862 863 864 865 866 867
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
868
#endif
W
wangliu 已提交
869

N
nhzlx 已提交
870
template <typename Dtype>
L
liuruilong 已提交
871
class FeedParam : public OpParam {
N
nhzlx 已提交
872 873 874
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
875 876
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
877
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
878 879
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
880
    auto var = scope->Var("batch_size");
W
wangliu 已提交
881
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
882
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
883 884
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
885
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
886

L
liuruilong 已提交
887
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
888 889
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
890
  int batch_size;
L
liuruilong 已提交
891 892
};

N
nhzlx 已提交
893
template <typename Dtype>
L
liuruilong 已提交
894
class FetchParam : public OpParam {
N
nhzlx 已提交
895 896 897
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
898 899
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
900
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
901 902
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
903
  }
N
nhzlx 已提交
904 905
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
906

L
liuruilong 已提交
907
 private:
N
nhzlx 已提交
908 909
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
910 911
};

L
liuruilong 已提交
912
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
913
template <typename Dtype>
E
eclipsess 已提交
914
class TransposeParam : public OpParam {
N
nhzlx 已提交
915 916 917
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
918 919 920
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
921 922
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
923 924 925
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
926
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
927

N
nhzlx 已提交
928
  RType *Out() const { return out_; }
E
eclipsess 已提交
929 930 931 932

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
933 934
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
935 936
  vector<int> axis_;
};
L
liuruilong 已提交
937
#endif
E
eclipsess 已提交
938

xiebaiyuan's avatar
xiebaiyuan 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1005
#ifdef RESHAPE_OP
N
nhzlx 已提交
1006
template <typename Dtype>
E
eclipsess 已提交
1007
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1008 1009 1010
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1011 1012 1013
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1014 1015 1016
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1017
    shape_ = GetAttr<vector<int>>("shape", attrs);
1018 1019 1020 1021 1022 1023 1024

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1025 1026
  }

N
nhzlx 已提交
1027
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1028

N
nhzlx 已提交
1029
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1030

N
nhzlx 已提交
1031
  RType *Out() const { return out_; }
E
eclipsess 已提交
1032 1033 1034 1035 1036 1037

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1038 1039 1040
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1041 1042 1043
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1044
#endif
E
eclipsess 已提交
1045

T
Tian 已提交
1046
#ifdef SCALE_OP
N
nhzlx 已提交
1047
template <typename Dtype>
I
itminner 已提交
1048
class ScaleParam : public OpParam {
N
nhzlx 已提交
1049 1050 1051
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1052 1053 1054
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1055 1056 1057
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1058 1059 1060 1061 1062 1063
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1064
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1065

N
nhzlx 已提交
1066
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1067

N
nhzlx 已提交
1068
  RType *Out() const { return out_; }
I
itminner 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1079 1080 1081
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1082 1083 1084 1085 1086
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1087 1088 1089
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1090
template <typename Dtype>
I
itminner 已提交
1091
class SliceParam : public OpParam {
N
nhzlx 已提交
1092 1093 1094
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1095 1096 1097
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1098 1099 1100
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1101 1102 1103 1104 1105
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1106
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1107

N
nhzlx 已提交
1108
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1109

N
nhzlx 已提交
1110
  RType *Out() const { return out_; }
I
itminner 已提交
1111 1112 1113 1114 1115 1116 1117 1118

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1119 1120 1121
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1122 1123 1124 1125
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1126 1127 1128
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1129
template <typename Dtype>
T
Tian 已提交
1130
class ResizeParam : public OpParam {
N
nhzlx 已提交
1131 1132 1133
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1134 1135 1136
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1137 1138 1139
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1140 1141 1142 1143 1144 1145
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1146

N
nhzlx 已提交
1147
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1148

N
nhzlx 已提交
1149
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1150

N
nhzlx 已提交
1151
  RType *Out() const { return out_; }
T
Tian 已提交
1152

I
itminner 已提交
1153
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1154

I
itminner 已提交
1155
  const int &Height() const { return height_; }
T
Tian 已提交
1156

I
itminner 已提交
1157
  const int &Width() const { return width_; }
T
Tian 已提交
1158

I
itminner 已提交
1159
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1160

I
itminner 已提交
1161
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1162

I
itminner 已提交
1163
 private:
N
nhzlx 已提交
1164 1165 1166
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1167 1168 1169 1170 1171
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1172 1173 1174
};
#endif

L
liuruilong 已提交
1175
#ifdef RELU_OP
L
liuruilong 已提交
1176 1177 1178
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1179
template <typename Dtype>
E
eclipsess 已提交
1180
class ReluParam : public OpParam {
N
nhzlx 已提交
1181 1182 1183
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1184 1185 1186
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1187 1188
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1189 1190
  }

N
nhzlx 已提交
1191
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1192

N
nhzlx 已提交
1193
  RType *Out() const { return out_; }
E
eclipsess 已提交
1194 1195

 private:
N
nhzlx 已提交
1196 1197
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1198
};
L
liuruilong 已提交
1199
#endif
E
eclipsess 已提交
1200

T
Tian 已提交
1201
#ifdef PRELU_OP
N
nhzlx 已提交
1202
template <typename Dtype>
T
Tian 已提交
1203
class PReluParam : public OpParam {
N
nhzlx 已提交
1204 1205 1206
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1207 1208 1209
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1210
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1211
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1212
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1213
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1214
    out_ = OutFrom<GType>(outputs, scope);
1215
    mode_ = GetStringAttr("mode", attrs);
1216
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1217
  }
N
nhzlx 已提交
1218
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1219
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1220
  RType *Out() const { return out_; }
1221
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1222

I
itminner 已提交
1223
 private:
N
nhzlx 已提交
1224 1225
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1226
  RType *alpha_;
1227
  std::string mode_;
T
Tian 已提交
1228 1229 1230
};
#endif

N
nhzlx 已提交
1231
template <typename Dtype>
L
liuruilong 已提交
1232
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1233 1234 1235
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1236
 public:
L
liuruilong 已提交
1237
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1238
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1239 1240 1241 1242
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1243 1244 1245 1246
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1247
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1248

N
nhzlx 已提交
1249
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1250

N
nhzlx 已提交
1251
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1252

xiebaiyuan's avatar
xiebaiyuan 已提交
1253
  GType *Out() const { return out_; }
E
eclipsess 已提交
1254 1255 1256 1257 1258 1259 1260 1261

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1262
  GType *input_x_;
N
nhzlx 已提交
1263 1264
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1265
  GType *out_;
E
eclipsess 已提交
1266 1267 1268
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1269 1270 1271
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1272
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1273 1274

 public:
Z
zhangyang 已提交
1275 1276
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1277
#endif
E
eclipsess 已提交
1278
};
1279 1280

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1281 1282
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1283
#endif
E
eclipsess 已提交
1284

N
nhzlx 已提交
1285
template <typename Dtype>
1286
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1287 1288 1289
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1290
 public:
L
liuruilong 已提交
1291
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1292
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1293 1294 1295 1296 1297
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1298
  }
N
nhzlx 已提交
1299
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1300 1301 1302

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1303
  RType *Output() const { return output_; }
W
wangliu 已提交
1304

L
liuruilong 已提交
1305
 protected:
N
nhzlx 已提交
1306
  RType *bias_;
W
wangliu 已提交
1307
  int axis_;
N
nhzlx 已提交
1308
  RType *output_;
Z
zhangyang 已提交
1309 1310 1311
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1312
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1313 1314

 public:
Z
zhangyang 已提交
1315 1316
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1317
#endif
W
wangliu 已提交
1318 1319
};

N
nhzlx 已提交
1320 1321
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1322

Z
zhangyang 已提交
1323
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1324 1325
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1326
 public:
L
liuruilong 已提交
1327
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1328 1329
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1330
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1331 1332 1333
};
#endif

1334
#ifdef FUSION_CONVADDPRELU_OP
1335 1336 1337 1338
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1339 1340 1341 1342

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1343 1344 1345
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1346
    mode_ = OpParam::GetStringAttr("mode", attrs);
1347
    framework::DDim dims = alpha_->dims();
1348 1349 1350
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1367
  fpga::WrapperConvArgs fpga_conv_args;
1368 1369

 public:
Z
zhangyang 已提交
1370 1371
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1372 1373 1374 1375 1376
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1377 1378 1379 1380
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1381 1382 1383 1384

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1385 1386 1387 1388
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1389
    mode_ = OpParam::GetStringAttr("mode", attrs);
1390
    framework::DDim dims = alpha_->dims();
1391 1392 1393 1394 1395 1396
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1397
    if (keyX1_ == keyOutput_) {
1398
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1399
    } else if (keyY1_ == keyOutput_) {
1400
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1425
  fpga::WrapperConvArgs fpga_conv_args;
1426 1427

 public:
Z
zhangyang 已提交
1428 1429
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1430 1431 1432 1433
#endif
};
#endif

E
eclipsess 已提交
1434
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1435
template <typename Dtype>
1436
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1437 1438 1439
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1440 1441 1442
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1455
  }
N
nhzlx 已提交
1456
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1457 1458 1459

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1460
  RType *Output() const { return output_; }
E
eclipsess 已提交
1461

N
nhzlx 已提交
1462
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1463

N
nhzlx 已提交
1464
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1465

N
nhzlx 已提交
1466
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1467

N
nhzlx 已提交
1468
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1469 1470 1471 1472 1473 1474 1475

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1476
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1477

N
nhzlx 已提交
1478
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1479

N
nhzlx 已提交
1480
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1481

N
nhzlx 已提交
1482
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1483 1484

 protected:
N
nhzlx 已提交
1485
  RType *bias_;
E
eclipsess 已提交
1486
  int axis_;
N
nhzlx 已提交
1487 1488 1489 1490 1491
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1492 1493 1494
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1495 1496
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1497 1498 1499
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1500
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1501 1502

 public:
Z
zhangyang 已提交
1503 1504
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1505 1506 1507 1508 1509 1510
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1511
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1512 1513 1514 1515 1516 1517
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1532
    if (keyX_ == keyBNY_) {
1533
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1534
    } else if (keyY_ == keyBNY_) {
1535
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1536
    }
1537
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1586
  fpga::WrapperConvArgs fpga_conv_args;
1587 1588

 public:
Z
zhangyang 已提交
1589 1590
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1591
#endif
E
eclipsess 已提交
1592
};
1593
#endif
E
eclipsess 已提交
1594

Z
zhangyang 已提交
1595
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1596
template <typename Dtype>
1597
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1598 1599 1600
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1601 1602 1603
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1614
  }
N
nhzlx 已提交
1615
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1616

N
nhzlx 已提交
1617
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1618

N
nhzlx 已提交
1619
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1620

N
nhzlx 已提交
1621
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1622

N
nhzlx 已提交
1623
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1624 1625 1626 1627 1628 1629 1630

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1631
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1632

N
nhzlx 已提交
1633
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1634

N
nhzlx 已提交
1635
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1636

N
nhzlx 已提交
1637
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1638 1639

 protected:
N
nhzlx 已提交
1640 1641 1642 1643 1644
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1645 1646 1647
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1648 1649
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1650 1651 1652
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1653
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1654 1655

 public:
Z
zhangyang 已提交
1656 1657
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1658 1659 1660 1661
#endif
};
#endif

1662
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1663
template <typename Dtype>
1664
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1665 1666 1667
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1668 1669 1670
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1683
  }
N
nhzlx 已提交
1684
  RType *Bias() const { return bias_; }
1685 1686 1687

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1688
  RType *Output() const { return output_y_; }
1689

N
nhzlx 已提交
1690
  const RType *InputBias() const { return input_bias_; }
1691

N
nhzlx 已提交
1692
  const RType *InputMean() const { return input_mean_; }
1693

N
nhzlx 已提交
1694
  const RType *InputScale() const { return input_scale_; }
1695

N
nhzlx 已提交
1696
  const RType *InputVariance() const { return input_variance_; }
1697 1698 1699 1700 1701 1702 1703

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1704
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1705

N
nhzlx 已提交
1706
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1707

N
nhzlx 已提交
1708
  const RType *NewScale() const { return new_scale_; }
1709

N
nhzlx 已提交
1710
  const RType *NewBias() const { return new_bias_; }
1711 1712

 protected:
N
nhzlx 已提交
1713
  RType *bias_;
1714
  int axis_;
N
nhzlx 已提交
1715 1716 1717 1718 1719
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1720 1721 1722
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1723 1724
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1725 1726 1727
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1728
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1729 1730

 public:
Z
zhangyang 已提交
1731 1732
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1733
#endif
1734
};
E
eclipsess 已提交
1735
#endif
Y
Yao,kun 已提交
1736

E
eclipsess 已提交
1737
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1738
template <typename Dtype>
1739
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1740 1741 1742
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1743 1744 1745
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1756
  }
N
nhzlx 已提交
1757
  RType *Output() const { return output_; }
E
eclipsess 已提交
1758

N
nhzlx 已提交
1759
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1760

N
nhzlx 已提交
1761
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1762

N
nhzlx 已提交
1763
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1764

N
nhzlx 已提交
1765
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1766 1767 1768 1769 1770 1771 1772

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1773
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1774

N
nhzlx 已提交
1775
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1776

N
nhzlx 已提交
1777
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1778

N
nhzlx 已提交
1779
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1780 1781

 protected:
N
nhzlx 已提交
1782 1783 1784 1785 1786
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1787 1788 1789
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1790 1791
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1792 1793 1794 1795
};

#endif

1796
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1797
template <typename Dtype>
1798
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1799 1800 1801
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1802 1803 1804
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1815
  }
N
nhzlx 已提交
1816
  RType *Output() const { return output_; }
1817

N
nhzlx 已提交
1818
  const RType *InputBias() const { return input_bias_; }
1819

N
nhzlx 已提交
1820
  const RType *InputMean() const { return input_mean_; }
1821

N
nhzlx 已提交
1822
  const RType *InputScale() const { return input_scale_; }
1823

N
nhzlx 已提交
1824
  const RType *InputVariance() const { return input_variance_; }
1825 1826 1827 1828 1829 1830 1831

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1832
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1833

N
nhzlx 已提交
1834
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1835

N
nhzlx 已提交
1836
  const RType *NewScale() const { return new_scale_; }
1837

N
nhzlx 已提交
1838
  const RType *NewBias() const { return new_bias_; }
1839 1840

 protected:
N
nhzlx 已提交
1841 1842 1843 1844 1845
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1846 1847 1848
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1849 1850
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1851 1852 1853
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1854
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1855 1856

 public:
Z
zhangyang 已提交
1857 1858
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1859
#endif
1860 1861 1862
};
#endif

Y
Yao,kun 已提交
1863
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1864
template <typename Dtype>
Y
Yao,kun 已提交
1865
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1866 1867 1868
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1869 1870 1871 1872
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1873 1874
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1875 1876 1877 1878 1879
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1880
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1881

N
nhzlx 已提交
1882
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1883 1884 1885 1886 1887 1888 1889 1890

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1891 1892
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1893 1894 1895 1896
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1897
#endif
Y
Yao,kun 已提交
1898

1899
#ifdef DROPOUT_OP
N
nhzlx 已提交
1900
template <typename Dtype>
Y
Yao,kun 已提交
1901
class DropoutParam : public OpParam {
N
nhzlx 已提交
1902 1903 1904
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1905 1906 1907
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1908 1909
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1910 1911

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1912 1913
  }

N
nhzlx 已提交
1914
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1915

N
nhzlx 已提交
1916
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1917

Y
yangfei 已提交
1918 1919
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1920
 private:
N
nhzlx 已提交
1921 1922
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1923
  float dropout_prob_;
Y
Yao,kun 已提交
1924
};
1925
#endif
Y
Yao,kun 已提交
1926

H
hjchen2 已提交
1927
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
1928
template <typename Dtype>
L
liuruilong 已提交
1929
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1930 1931 1932
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1933 1934 1935 1936
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1937 1938 1939
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1940 1941 1942 1943 1944 1945
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1946
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1947

N
nhzlx 已提交
1948
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1949

N
nhzlx 已提交
1950
  RType *Output() const { return output_; }
L
liuruilong 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1961 1962 1963
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1964 1965 1966 1967 1968 1969 1970
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
1996 1997
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2042
    axis = GetAttr<int>("axis", attrs);
2043 2044 2045
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2046
  const int &Axis() const { return axis; }
2047 2048 2049 2050

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2051
  int axis;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2065
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2066
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2067 2068 2069 2070 2071 2072
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2073 2074
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2075 2076 2077 2078 2079
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2080 2081 2082

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2083
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2084
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2085 2086 2087
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2104 2105
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2106 2107
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2108
  const RType *InputOutPutSize() const { return input_outsize_; }
2109
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2110 2111
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2112 2113 2114 2115 2116

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2117 2118
  int out_h_;
  int out_w_;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2134
  const RType *Input() const { return input_; }
2135 2136 2137 2138 2139 2140 2141 2142
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2143
template <typename Dtype>
2144 2145 2146 2147 2148
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2149 2150
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

2185
template <typename Dtype>
2186 2187 2188 2189 2190
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2191 2192
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2213 2214
}  // namespace operators
}  // namespace paddle_mobile