op_param.h 90.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
77 78 79 80 81 82 83

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

84 85 86 87 88
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

89 90 91 92 93 94 95 96 97
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
98 99 100 101 102
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

130 131 132 133
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
134 135 136 137 138 139

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

140 141 142 143 144
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
145 146 147 148 149
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

150 151 152 153 154
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
155 156 157 158
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
159 160 161 162 163 164 165 166 167 168 169 170
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
191

E
eclipsess 已提交
192 193 194 195 196 197 198 199 200 201
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
202 203 204 205
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
206

207
  template <typename T>
W
wangliu 已提交
208 209
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
210 211 212
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
213 214 215 216 217
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
218 219 220 221 222 223
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
224 225 226 227 228
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
240 241 242 243 244 245
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
246 247 248 249 250 251 252 253 254 255 256 257
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

258 259 260 261 262
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
263 264 265 266 267
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

268 269 270 271 272
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
273 274 275 276 277 278
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

279 280 281 282 283
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
284 285 286 287 288 289
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
290 291 292 293 294 295
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
296 297 298 299 300
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
301 302 303 304 305
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
306 307 308 309 310 311
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

312 313 314 315 316 317 318 319 320 321 322
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
323
  static const T GetAttr(const string &key, const AttributeMap &map) {
324 325
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
326 327
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
328 329
    return ((Attribute)map.at(key)).GetString();
  }
330

331 332 333 334
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

335
  template <typename T>
W
wangliu 已提交
336
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
337
                        const Scope &scope) {
W
wangliu 已提交
338 339
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
340 341 342 343 344 345
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
346
    }
347
  }
朔-望's avatar
朔-望 已提交
348

E
eclipsess 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

382
  template <typename T>
W
wangliu 已提交
383 384 385
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
386 387
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
388
    vector<T *> var_res;
389 390 391
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
392
    }
393 394
    return var_res;
  }
E
eclipsess 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
408 409
};

N
nhzlx 已提交
410
template <typename Dtype>
411
class ConvParam : public OpParam {
N
nhzlx 已提交
412 413 414
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
415
 public:
416
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
417
            const AttributeMap &attrs, const Scope &scope) {
418 419 420 421 422 423 424 425 426
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
427
  }
朔-望's avatar
朔-望 已提交
428

429
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
430

431
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
432

433
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
434

W
wangliu 已提交
435
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
436

W
wangliu 已提交
437
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
438

W
wangliu 已提交
439
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
440

H
hjchen2 已提交
441 442 443
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
444 445
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
446 447
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
448
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
449
    EXEC_GEMM_INT8,
H
hjchen2 已提交
450
    EXEC_DEPTHWISE3x3_INT8,
451
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
452 453 454 455
  };

  ExecMode &ExecMode() const { return exec_mode_; }

456
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
457

458 459 460 461 462 463 464
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
465
 public:
466 467 468 469
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
470 471 472
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
473
  mutable enum ExecMode exec_mode_;
474
  int groups;
475 476 477 478

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
479 480 481

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
482
 public:
Z
zhangyang 已提交
483 484 485 486 487
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
488 489 490 491 492 493 494

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
495
#endif
朔-望's avatar
朔-望 已提交
496
};
N
nhzlx 已提交
497 498
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
499

N
nhzlx 已提交
500
template <typename Dtype>
朔-望's avatar
朔-望 已提交
501
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
502 503 504
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
505
 public:
506
  ElementwiseAddParam(const VariableNameMap &inputs,
507 508
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
509 510 511
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
512 513 514
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
515
  const GType *InputX() const { return input_x_; }
516

xiebaiyuan's avatar
xiebaiyuan 已提交
517
  const GType *InputY() const { return input_y_; }
518

xiebaiyuan's avatar
xiebaiyuan 已提交
519
  GType *Out() const { return out_; }
520 521 522

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
523
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
524 525 526
  GType *input_x_;
  GType *input_y_;
  GType *out_;
527
  int axis_;
Z
zhangyang 已提交
528 529 530
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
531
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
532 533

 public:
H
hanbuhe 已提交
534 535
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
536
#endif
朔-望's avatar
朔-望 已提交
537 538
};

E
eclipsess 已提交
539
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
569
#endif
E
eclipsess 已提交
570

571
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
572 573
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
574 575
#endif

576
#ifdef ELEMENTWISESUB_OP
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
606
#endif
607

L
liuruilong 已提交
608
#ifdef MUL_OP
N
nhzlx 已提交
609
template <typename Dtype>
朔-望's avatar
朔-望 已提交
610
class MulParam : OpParam {
N
nhzlx 已提交
611 612 613
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
614
 public:
615
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
616
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
617 618 619
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
620 621 622
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
623

xiebaiyuan's avatar
xiebaiyuan 已提交
624
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
625

xiebaiyuan's avatar
xiebaiyuan 已提交
626
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
627

xiebaiyuan's avatar
xiebaiyuan 已提交
628
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
629

630
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
631

632
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
633

朔-望's avatar
朔-望 已提交
634
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
635 636 637
  GType *input_x_;
  GType *input_y_;
  GType *out_;
638 639
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
640
};
L
liuruilong 已提交
641
#endif
朔-望's avatar
朔-望 已提交
642

L
liuruilong 已提交
643
#ifdef CONCAT_OP
N
nhzlx 已提交
644
template <typename Dtype>
朔-望's avatar
朔-望 已提交
645
class ConcatParam : public OpParam {
N
nhzlx 已提交
646 647 648
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
649
 public:
650
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
651
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
652 653
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
654 655
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
656

N
nhzlx 已提交
657
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
658

xiebaiyuan's avatar
xiebaiyuan 已提交
659
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
660

661
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
662

朔-望's avatar
朔-望 已提交
663
 private:
N
nhzlx 已提交
664
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
665
  GType *out_;
666
  int axis_;
Z
zhangyang 已提交
667 668 669 670 671 672 673 674 675
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
676
};
L
liuruilong 已提交
677
#endif
朔-望's avatar
朔-望 已提交
678

E
eclipsess 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
710
#ifdef LRN_OP
N
nhzlx 已提交
711
template <typename Dtype>
E
eclipsess 已提交
712
class LrnParam : public OpParam {
N
nhzlx 已提交
713 714 715
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
716
 public:
717
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
718
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
719 720 721
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
722 723 724 725
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
726
    data_format_ = GetStringAttr("data_format", attrs);
727
  }
E
eclipsess 已提交
728

729
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
730

731
  GType *Out() const { return out_; }
E
eclipsess 已提交
732

733
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
734

735
  const int &N() const { return n_; }
E
eclipsess 已提交
736

737
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
738

739
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
740

741
  const float &K() const { return k_; }
E
eclipsess 已提交
742

W
wangliu 已提交
743
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
744

朔-望's avatar
朔-望 已提交
745
 private:
746 747 748
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
749 750 751 752
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
753
  string data_format_;
E
eclipsess 已提交
754
};
L
liuruilong 已提交
755 756
#endif

Z
zhaojiaying01 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
#ifdef NORM_OP
template <typename Dtype>
class NormParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_norm_ = OutputNormFrom<GType>(outputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

773
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
774

775
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
776

777
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
778 779 780 781 782 783

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
784 785 786
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
787 788 789 790 791
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
792
#ifdef BATCHNORM_OP
N
nhzlx 已提交
793
template <typename Dtype>
E
eclipsess 已提交
794
class BatchNormParam : OpParam {
N
nhzlx 已提交
795 796 797
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
798
 public:
799
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
800
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
801 802 803 804 805 806
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
807 808
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
809
    //    is_test_ = GetAttr<bool>("is_test", attrs);
810
  }
E
eclipsess 已提交
811

812
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
813

814
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
815

816
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
817

818
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
819

820
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
821

822
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
823

824
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
825

826
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
827

828
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
829

W
wangliu 已提交
830
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
831

832
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
833

834
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
835

836
  const GType *NewScale() const { return new_scale_; }
837

838
  const GType *NewBias() const { return new_bias_; }
839

朔-望's avatar
朔-望 已提交
840
 private:
841 842 843 844 845 846
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
847 848 849
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
850
  string data_format_;
851 852
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
853
};
L
liuruilong 已提交
854 855 856
#endif

#ifdef POOL_OP
N
nhzlx 已提交
857
template <typename Dtype>
858
class PoolParam : public OpParam {
N
nhzlx 已提交
859 860 861
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
862
 public:
863
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
864
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
865
    input_ = InputXFrom<GType>(inputs, scope);
866

N
nhzlx 已提交
867
    output_ = OutFrom<GType>(outputs, scope);
868
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
869 870 871
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
872
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
873
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
874
  }
875

876
  const GType *Input() const { return input_; }
877

878
  GType *Output() const { return output_; }
879

W
wangliu 已提交
880
  const string &PoolingType() const { return pooling_type_; }
881

W
wangliu 已提交
882
  const vector<int> &Ksize() const { return ksize_; }
883

W
wangliu 已提交
884
  const vector<int> &Strides() const { return strides_; }
885

W
wangliu 已提交
886
  const vector<int> &Paddings() const { return paddings_; }
887

888
  bool isCeilMode() const { return ceil_mode_; }
889

Z
zhangyang 已提交
890
  bool isGlobalPooling() const { return global_pooling_; }
891

朔-望's avatar
朔-望 已提交
892
 private:
893 894
  GType *input_;
  GType *output_;
W
wangliu 已提交
895 896 897 898
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
899
  bool ceil_mode_;
900
  bool global_pooling_ = false;
Z
zhangyang 已提交
901
#ifdef PADDLE_MOBILE_FPGA
902 903

 private:
H
hanbuhe 已提交
904
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
905 906

 public:
H
hanbuhe 已提交
907 908
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
909
#endif
910
};
L
liuruilong 已提交
911 912 913
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
914
template <typename Dtype>
E
eclipsess 已提交
915
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
916 917 918
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
919 920
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
921
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
922 923 924 925
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
926 927 928 929
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
930 931 932 933

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
934 935
    } else {
      min_max_aspect_ratios_order_ = false;
936
    }
E
eclipsess 已提交
937 938 939 940 941 942
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
943
  const GType *Input() const { return input_; }
E
eclipsess 已提交
944

945
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
946

947
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
948

949
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
950

W
wangliu 已提交
951
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
952

W
wangliu 已提交
953
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
954

W
wangliu 已提交
955
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
956

W
wangliu 已提交
957
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
958 959 960 961 962 963 964 965 966 967 968

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

969 970 971 972
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
973
 private:
974 975 976 977
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
978 979 980 981
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
982 983 984 985 986
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
987
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
988
};
L
liuruilong 已提交
989
#endif
E
eclipsess 已提交
990

L
liuruilong 已提交
991
#ifdef BOXCODER_OP
N
nhzlx 已提交
992
template <typename Dtype>
E
eclipsess 已提交
993
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
994 995 996
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
997 998
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
999
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1000 1001 1002 1003
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
1004
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1005
  }
1006
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1007

1008
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1009

1010
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1011

1012
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1013 1014 1015 1016

  const std::string &CodeType() const { return code_type_; }

 private:
1017 1018 1019 1020
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1021 1022
  std::string code_type_;
};
L
liuruilong 已提交
1023
#endif
W
wangliu 已提交
1024

L
liuruilong 已提交
1025
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1026
template <typename Dtype>
W
wangliu 已提交
1027
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1028 1029 1030
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1031 1032
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1033
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1034 1035
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1036
  }
H
hjchen2 已提交
1037 1038
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1039 1040

 private:
H
hjchen2 已提交
1041 1042
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1043 1044 1045 1046

#ifdef PADDLE_MOBILE_FPGA

 private:
1047
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1048 1049 1050
  fpga::BypassArgs fpga_bypass_args;

 public:
1051
  GType *FloatInput() const {
H
hanbuhe 已提交
1052 1053
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1054
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1055 1056 1057
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1058
};
L
liuruilong 已提交
1059
#endif
W
wangliu 已提交
1060

L
liuruilong 已提交
1061
#ifdef SIGMOID_OP
N
nhzlx 已提交
1062
template <typename Dtype>
W
wangliu 已提交
1063
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1064 1065 1066
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1067 1068
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1069
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1070 1071
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1072
  }
1073 1074
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1075 1076

 private:
1077 1078
  GType *input_x_;
  GType *out_;
1079 1080 1081 1082 1083 1084 1085 1086 1087
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1088
};
L
liuruilong 已提交
1089 1090 1091
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1092
template <typename Dtype>
E
eclipsess 已提交
1093
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1094 1095 1096
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1097 1098 1099 1100
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1101 1102 1103
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1104 1105 1106 1107 1108 1109 1110 1111
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1112
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1113

1114
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1115

1116
  GType *Out() const { return out_; }
E
eclipsess 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1131 1132 1133
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1134 1135 1136 1137 1138 1139 1140
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1141
#endif
W
wangliu 已提交
1142

L
lijiancheng0614 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
1156 1157
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1158 1159

 private:
1160 1161
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1162 1163 1164
};
#endif

N
nhzlx 已提交
1165
template <typename Dtype>
L
liuruilong 已提交
1166
class FeedParam : public OpParam {
N
nhzlx 已提交
1167 1168 1169
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1170 1171
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1172
            const AttributeMap &attrs, const Scope &scope) {
H
update  
hjchen2 已提交
1173
    input_x_ = InputXFrom<framework::LoDTensorArray>(inputs, scope);
Y
yangfei 已提交
1174
    out_ = OutFrom<GType>(outputs, scope);
H
update  
hjchen2 已提交
1175
    col_ = GetAttr<int>("col", attrs);
Y
yangfei 已提交
1176
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1177
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1178
  }
H
update  
hjchen2 已提交
1179
  const framework::LoDTensorArray *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1180
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1181
  const int Col() const { return col_; }
W
wangliu 已提交
1182
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1183

L
liuruilong 已提交
1184
 private:
H
update  
hjchen2 已提交
1185
  framework::LoDTensorArray *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1186
  GType *out_;
H
update  
hjchen2 已提交
1187
  int col_;
W
wangliu 已提交
1188
  int batch_size;
L
liuruilong 已提交
1189 1190
};

N
nhzlx 已提交
1191
template <typename Dtype>
L
liuruilong 已提交
1192
class FetchParam : public OpParam {
N
nhzlx 已提交
1193 1194 1195
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1196 1197
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1198
             const AttributeMap &attrs, const Scope &scope) {
1199 1200 1201
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensorArray>(outputs, scope);
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1202
  }
L
liuruilong 已提交
1203

1204 1205 1206
  const framework::LoDTensor *InputX() const { return input_x_; }
  framework::LoDTensorArray *Out() const { return out_; }
  const int Col() const { return col_; }
L
liuruilong 已提交
1207

L
liuruilong 已提交
1208
 private:
1209 1210 1211
  framework::LoDTensor *input_x_;
  framework::LoDTensorArray *out_;
  int col_;
qnqinan's avatar
qnqinan 已提交
1212 1213 1214 1215
#ifdef PADDLE_MOBILE_FPGA
 public:
  fpga::BypassArgs fpga_bypass_args;
#endif
L
liuruilong 已提交
1216 1217
};

L
lijiancheng0614 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1237
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1247
  GType *out_;
L
lijiancheng0614 已提交
1248 1249 1250 1251 1252 1253
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1254
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1255
template <typename Dtype>
E
eclipsess 已提交
1256
class TransposeParam : public OpParam {
N
nhzlx 已提交
1257 1258 1259
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1260 1261 1262
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1263 1264
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1265 1266 1267
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1268
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1269

1270
  GType *Out() const { return out_; }
E
eclipsess 已提交
1271 1272 1273 1274

  const vector<int> &Axis() const { return axis_; }

 private:
1275 1276
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1277 1278
  vector<int> axis_;
};
L
liuruilong 已提交
1279
#endif
E
eclipsess 已提交
1280

L
lijiancheng0614 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1296
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1297

1298
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1299

1300
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1301 1302 1303 1304

  const vector<int> &Axis() const { return axis_; }

 private:
1305 1306 1307
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1308 1309 1310 1311
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1362 1363
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1364 1365 1366 1367 1368 1369 1370 1371
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1372 1373
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1374 1375 1376 1377
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1378
#ifdef RESHAPE_OP
N
nhzlx 已提交
1379
template <typename Dtype>
E
eclipsess 已提交
1380
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1381 1382 1383
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1384 1385 1386
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1387 1388 1389
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1390
    shape_ = GetAttr<vector<int>>("shape", attrs);
1391 1392 1393 1394 1395 1396 1397

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1398 1399
  }

1400
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1401

1402
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1403

1404
  GType *Out() const { return out_; }
E
eclipsess 已提交
1405 1406 1407 1408 1409 1410

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1411 1412 1413
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1414 1415 1416
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1417
#endif
E
eclipsess 已提交
1418

L
lijiancheng0614 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1440
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1441

E
eclipsess 已提交
1442
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1443

E
eclipsess 已提交
1444
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1445

E
eclipsess 已提交
1446
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1447 1448 1449 1450 1451 1452

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1453 1454 1455 1456
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1457 1458 1459 1460 1461
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1462
#ifdef SCALE_OP
N
nhzlx 已提交
1463
template <typename Dtype>
I
itminner 已提交
1464
class ScaleParam : public OpParam {
N
nhzlx 已提交
1465 1466 1467
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1468 1469 1470
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1471 1472 1473
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1474 1475 1476 1477 1478 1479
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

1480
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1481

1482
  const GType *InputBias() const { return input_bias_; }
I
itminner 已提交
1483

1484
  GType *Out() const { return out_; }
I
itminner 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
1495 1496 1497
  GType *input_x_;
  GType *input_bias_;
  GType *out_;
I
itminner 已提交
1498 1499 1500 1501 1502
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1503 1504 1505
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1506
template <typename Dtype>
I
itminner 已提交
1507
class SliceParam : public OpParam {
N
nhzlx 已提交
1508 1509 1510
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1511 1512 1513
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1514 1515
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1516

1517 1518 1519 1520
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1521

1522 1523 1524 1525 1526 1527
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1528
};
T
Tian 已提交
1529 1530 1531
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1532
template <typename Dtype>
T
Tian 已提交
1533
class ResizeParam : public OpParam {
N
nhzlx 已提交
1534 1535 1536
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1537 1538 1539
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1540 1541 1542
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1543 1544 1545 1546 1547 1548
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1549

1550
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1551

1552
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1553

1554
  GType *Out() const { return out_; }
T
Tian 已提交
1555

I
itminner 已提交
1556
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1557

I
itminner 已提交
1558
  const int &Height() const { return height_; }
T
Tian 已提交
1559

I
itminner 已提交
1560
  const int &Width() const { return width_; }
T
Tian 已提交
1561

I
itminner 已提交
1562
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1563

I
itminner 已提交
1564
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1565

I
itminner 已提交
1566
 private:
1567 1568 1569
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1570 1571 1572 1573 1574
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1575 1576 1577
};
#endif

L
liuruilong 已提交
1578
#ifdef RELU_OP
L
liuruilong 已提交
1579 1580 1581
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1582
template <typename Dtype>
D
relu  
dolphin8 已提交
1583
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1584 1585 1586
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1587
 public:
D
relu  
dolphin8 已提交
1588
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1589
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1590 1591
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1592 1593
  }

1594
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1595

1596
  GType *Out() const { return out_; }
E
eclipsess 已提交
1597 1598

 private:
1599 1600
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1601
};
D
relu  
dolphin8 已提交
1602 1603 1604

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1605
 public:
D
relu  
dolphin8 已提交
1606 1607 1608
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1609
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1610 1611
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1612
 public:
D
relu  
dolphin8 已提交
1613
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1614 1615 1616
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1617 1618
  framework::CLImage midImage;
};
Y
yangfei 已提交
1619
#endif
D
relu  
dolphin8 已提交
1620

L
liuruilong 已提交
1621
#endif
E
eclipsess 已提交
1622

Z
zhangyang 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
1635 1636
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1637 1638

 private:
1639 1640
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1641 1642 1643
#ifdef PADDLE_MOBILE_FPGA

 private:
1644
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1645 1646 1647
  fpga::BypassArgs fpga_bypass_args;

 public:
1648
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1649 1650
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1651
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1652 1653 1654
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1655
};
L
liuruilong 已提交
1656
#endif
E
eclipsess 已提交
1657

T
Tian 已提交
1658
#ifdef PRELU_OP
N
nhzlx 已提交
1659
template <typename Dtype>
T
Tian 已提交
1660
class PReluParam : public OpParam {
N
nhzlx 已提交
1661 1662 1663
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1664 1665 1666
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1667
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1668
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1669
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1670
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1671
    out_ = OutFrom<GType>(outputs, scope);
1672
    mode_ = GetStringAttr("mode", attrs);
1673
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1674
  }
1675 1676 1677
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1678
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1679

I
itminner 已提交
1680
 private:
1681 1682 1683
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1684
  std::string mode_;
T
Tian 已提交
1685 1686 1687
};
#endif

N
nhzlx 已提交
1688
template <typename Dtype>
L
liuruilong 已提交
1689
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1690 1691 1692
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1693
 public:
L
liuruilong 已提交
1694
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1695
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1696 1697 1698 1699
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1700 1701 1702 1703
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1704
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1705

1706
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1707

1708
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1709

xiebaiyuan's avatar
xiebaiyuan 已提交
1710
  GType *Out() const { return out_; }
E
eclipsess 已提交
1711 1712 1713 1714 1715 1716 1717 1718

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1719
  GType *input_x_;
1720 1721
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1722
  GType *out_;
E
eclipsess 已提交
1723 1724 1725
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1726

Z
ZhenWang 已提交
1727
#ifdef PADDLE_MOBILE_FPGA
1728
 private:  // NOLINT
Z
zhangyang 已提交
1729
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1730 1731

 public:
Z
zhangyang 已提交
1732 1733
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1734
#endif
E
eclipsess 已提交
1735
};
1736 1737

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1738 1739
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1740
#endif
E
eclipsess 已提交
1741

N
nhzlx 已提交
1742
template <typename Dtype>
1743
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1744 1745 1746
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1747
 public:
L
liuruilong 已提交
1748
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1749
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1750 1751 1752 1753
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
backup  
hjchen2 已提交
1754
    this->output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1755
  }
1756
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1757 1758 1759

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1760
 protected:
1761
  GType *bias_;
W
wangliu 已提交
1762 1763 1764
  int axis_;
};

N
nhzlx 已提交
1765 1766
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1767

Z
zhangyang 已提交
1768
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1769 1770
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1771
 public:
L
liuruilong 已提交
1772
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1773 1774
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1775
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1776 1777 1778
};
#endif

1779
#ifdef FUSION_CONVADDPRELU_OP
1780 1781 1782 1783
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1784 1785 1786 1787

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1788 1789 1790
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1791
    mode_ = OpParam::GetStringAttr("mode", attrs);
1792
    framework::DDim dims = alpha_->dims();
1793 1794
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
backup  
hjchen2 已提交
1795
    this->output_ = OpParam::OutFrom<GType>(outputs, scope);
1796
  }
1797
  const GType *InputAlpha() const { return alpha_; }
1798
  const std::string &Mode() const { return mode_; }
1799
  GType *Bias() const { return bias_; }
1800 1801 1802
  const int &Axis() const { return axis_; }

 protected:
1803
  GType *bias_;
1804
  int axis_;
1805
  GType *alpha_;
1806 1807 1808 1809 1810
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1811 1812 1813 1814
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1815 1816 1817 1818

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1819 1820 1821 1822
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1823
    mode_ = OpParam::GetStringAttr("mode", attrs);
1824
    framework::DDim dims = alpha_->dims();
1825 1826 1827 1828 1829
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1830
    if (keyX1_ == keyOutput_) {
1831
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1832
    } else if (keyY1_ == keyOutput_) {
1833
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1834
    }
H
backup  
hjchen2 已提交
1835
    this->output_ = OpParam::OutFrom<GType>(outputs, scope);
1836
  }
1837
  const GType *InputAlpha() const { return alpha_; }
1838
  const std::string &Mode() const { return mode_; }
1839
  const GType *Bias1() const { return bias1_; }
1840

1841
  GType *Bias() const { return bias_; }
1842 1843 1844 1845

  const int &Axis() const { return axis_; }

 protected:
1846
  GType *bias_;
1847
  int axis_;
1848
  GType *alpha_;
1849
  std::string mode_;
1850
  GType *bias1_;
1851 1852 1853 1854 1855 1856
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1857
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1858
template <typename Dtype>
1859
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1860 1861 1862
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1863 1864 1865
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
backup  
hjchen2 已提交
1876
    this->output_ = OpParam::OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1877
  }
1878
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1879 1880 1881

  const int &Axis() const { return axis_; }

1882
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1883

1884
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1885

1886
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1887

1888
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1889 1890 1891 1892 1893

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1894
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1895

1896
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1897

1898
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1899

1900
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1901 1902

 protected:
1903
  GType *bias_;
E
eclipsess 已提交
1904
  int axis_;
1905 1906 1907 1908
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1909 1910
  float epsilon_;
  float momentum_;
1911 1912
  GType *new_bias_;
  GType *new_scale_;
1913 1914 1915 1916 1917
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1918
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1919 1920 1921 1922 1923 1924
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1938
    if (keyX_ == keyBNY_) {
1939
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1940
    } else if (keyY_ == keyBNY_) {
1941
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1942
    }
H
backup  
hjchen2 已提交
1943
    this->output_ = OpParam::OutFrom<GType>(outputs, scope);
1944
  }
1945
  GType *Bias() const { return bias_; }
1946 1947 1948

  const int &Axis() const { return axis_; }

1949
  const GType *InputBias() const { return input_bias_; }
1950

1951
  const GType *InputMean() const { return input_mean_; }
1952

1953
  const GType *InputScale() const { return input_scale_; }
1954

1955
  const GType *InputVariance() const { return input_variance_; }
1956 1957 1958 1959 1960

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1961
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
1962

1963
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
1964

1965
  const GType *NewScale() const { return new_scale_; }
1966

1967
  const GType *NewBias() const { return new_bias_; }
1968 1969

 protected:
1970
  GType *bias_;
1971
  int axis_;
1972 1973 1974 1975
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
1976 1977
  float epsilon_;
  float momentum_;
1978 1979
  GType *new_bias_;
  GType *new_scale_;
1980 1981 1982
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1983
};
1984
#endif
E
eclipsess 已提交
1985

Z
zhangyang 已提交
1986
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1987
template <typename Dtype>
1988
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1989 1990 1991
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1992 1993 1994
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1995 1996 1997 1998 1999 2000 2001 2002
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
backup  
hjchen2 已提交
2003
    this->output_ = OpParam::OutputYFrom<GType>(outputs, scope);
Z
zhangyang 已提交
2004 2005
  }

2006
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2007

2008
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2009

2010
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2011

2012
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2013 2014 2015 2016 2017

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2018
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2019

2020
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2021

2022
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2023

2024
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2025 2026

 protected:
2027 2028 2029 2030
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2031 2032
  float epsilon_;
  float momentum_;
2033 2034
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2035 2036 2037
};
#endif

2038
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2039
template <typename Dtype>
2040
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2041 2042 2043
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2044 2045 2046
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
backup  
hjchen2 已提交
2057
    this->output_ = OpParam::OutputYFrom<GType>(outputs, scope);
2058
  }
2059
  GType *Bias() const { return bias_; }
2060 2061 2062

  const int &Axis() const { return axis_; }

2063
  const GType *InputBias() const { return input_bias_; }
2064

2065
  const GType *InputMean() const { return input_mean_; }
2066

2067
  const GType *InputScale() const { return input_scale_; }
2068

2069
  const GType *InputVariance() const { return input_variance_; }
2070 2071 2072 2073 2074

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2075
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2076

2077
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2078

2079
  const GType *NewScale() const { return new_scale_; }
2080

2081
  const GType *NewBias() const { return new_bias_; }
2082 2083

 protected:
2084
  GType *bias_;
2085
  int axis_;
2086 2087 2088 2089
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2090 2091
  float epsilon_;
  float momentum_;
2092 2093
  GType *new_bias_;
  GType *new_scale_;
2094
};
E
eclipsess 已提交
2095
#endif
Y
Yao,kun 已提交
2096

E
eclipsess 已提交
2097
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2098
template <typename Dtype>
2099
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2100 2101 2102
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2103 2104 2105
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2106 2107 2108 2109 2110 2111 2112 2113
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
backup  
hjchen2 已提交
2114
    this->output_ = OpParam::OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
2115 2116
  }

2117
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2118

2119
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2120

2121
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2122

2123
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2124 2125 2126 2127 2128

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2129
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2130

2131
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2132

2133
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2134

2135
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2136 2137

 protected:
2138 2139 2140 2141
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2142 2143
  float epsilon_;
  float momentum_;
2144 2145
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2146 2147 2148 2149
};

#endif

2150
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2151
template <typename Dtype>
2152
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2153 2154 2155
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2156 2157 2158
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2159 2160 2161 2162 2163 2164 2165 2166
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
backup  
hjchen2 已提交
2167
    this->output_ = OpParam::OutFrom<GType>(outputs, scope);
2168 2169
  }

2170
  const GType *InputBias() const { return input_bias_; }
2171

2172
  const GType *InputMean() const { return input_mean_; }
2173

2174
  const GType *InputScale() const { return input_scale_; }
2175

2176
  const GType *InputVariance() const { return input_variance_; }
2177 2178 2179 2180 2181

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2182
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2183

2184
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2185

2186
  const GType *NewScale() const { return new_scale_; }
2187

2188
  const GType *NewBias() const { return new_bias_; }
2189 2190

 protected:
2191 2192 2193 2194
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2195 2196
  float epsilon_;
  float momentum_;
2197 2198
  GType *new_bias_;
  GType *new_scale_;
2199 2200 2201
};
#endif

Y
Yao,kun 已提交
2202
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2203
template <typename Dtype>
Y
Yao,kun 已提交
2204
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2205 2206 2207
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2208 2209 2210 2211
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2212 2213
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2214 2215 2216 2217 2218
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2219
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2220

E
eclipsess 已提交
2221
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2222 2223 2224 2225 2226 2227 2228 2229

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2230 2231
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2232 2233 2234 2235
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2236
#endif
Y
Yao,kun 已提交
2237

2238
#ifdef DROPOUT_OP
N
nhzlx 已提交
2239
template <typename Dtype>
Y
Yao,kun 已提交
2240
class DropoutParam : public OpParam {
N
nhzlx 已提交
2241 2242 2243
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2244 2245 2246
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2247 2248
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2249 2250

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2251 2252
  }

2253
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2254

2255
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2256

Y
yangfei 已提交
2257 2258
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2259
 private:
2260 2261
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2262
  float dropout_prob_;
Y
Yao,kun 已提交
2263
};
2264
#endif
Y
Yao,kun 已提交
2265

N
nhzlx 已提交
2266
template <typename Dtype>
L
liuruilong 已提交
2267
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2268 2269 2270
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2271 2272 2273 2274
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2275 2276
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2277
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2278
    if (outputs.count("Output")) {
2279
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2280
    }
L
liuruilong 已提交
2281 2282 2283 2284 2285 2286
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2287
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2288

2289
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2290

2291
  GType *Output() const { return output_; }
L
liuruilong 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
2302 2303 2304
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2305 2306 2307 2308
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2309 2310 2311 2312 2313

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2314
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2315 2316 2317

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2318 2319 2320
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2321
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2322 2323 2324
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2325
#endif
L
liuruilong 已提交
2326
};
Z
zhangyang 已提交
2327

qnqinan's avatar
qnqinan 已提交
2328 2329 2330 2331 2332
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2333 2334

 public:
qnqinan's avatar
qnqinan 已提交
2335
  FusionDeconvAddParam(const VariableNameMap &inputs,
2336 2337 2338
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2339 2340 2341 2342
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
2343
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2344 2345 2346

  const int &Axis() const { return axis_; }

2347
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2348 2349

 protected:
2350
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2351
  int axis_;
2352
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2353 2354 2355 2356 2357 2358 2359
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2360

Z
zhangyang 已提交
2361 2362 2363 2364 2365
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2391 2392
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_gate_ = OutputGateFrom<GType>(outputs, scope);
    output_reset_hidden_prev_ =
        OutputResetHiddenPrevFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2482
    axis = GetAttr<int>("axis", attrs);
2483
  }
2484 2485
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2486
  const int &Axis() const { return axis; }
2487 2488

 private:
2489 2490
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2491
  int axis;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2505
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2506
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2507 2508 2509 2510 2511 2512
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2513
  }
2514
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2515 2516 2517 2518 2519
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2520 2521

 private:
2522
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2523
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2524
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2525 2526 2527
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2528 2529 2530 2531 2532 2533 2534 2535 2536
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2553 2554
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2555
  }
2556 2557 2558
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2559 2560
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2561 2562

 private:
2563 2564 2565
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2566 2567
  int out_h_;
  int out_w_;
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
2583 2584
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2585 2586

 private:
2587 2588
  GType *input_;
  GType *out_;
2589 2590 2591
};
#endif

H
hjchen2 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2608 2609 2610
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2631 2632
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2633 2634 2635 2636 2637
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2638
#ifdef QUANT_OP
2639
template <typename Dtype>
2640 2641 2642 2643 2644
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2645 2646
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2647
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2648
    output_ = OutFrom<GType>(outputs, scope);
2649 2650
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2651
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2652
    // offline
2653
    if (inputs.count("InScale")) {
2654 2655
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2656 2657
    }
    // x = round(scale * x)
2658 2659
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2660
    }
2661 2662 2663 2664
  }

 public:
  // op input
2665
  GType *input_;
2666
  // op output
2667
  GType *output_;
2668
  GType *online_scale_;
2669
  // quantize offline scale
2670
  GType *offline_scale_;
2671 2672
  // if offine scale or not
  bool offline_ = false;
2673
  // round method type
2674 2675
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2676
};
2677
#endif
2678

2679
#ifdef DEQUANT_OP
2680
template <typename Dtype>
2681 2682 2683 2684 2685
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2686 2687
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2688
    input_ = InputXFrom<GType>(inputs, scope);
2689
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2690
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2691
    // dequantization is performed as x = x / static_scale / online_scale
2692 2693
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2694
    } else {
2695
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2696 2697 2698 2699 2700
    }
  }

 public:
  // op input
2701
  GType *input_;
2702
  // op output
2703
  GType *output_;
2704
  GType *activation_scale_;
2705 2706
  float weight_scale_;
};
2707
#endif
2708

2709 2710 2711 2712
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2713
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2714
template <typename Dtype>
2715
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2716 2717 2718 2719
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2720 2721 2722
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2734 2735 2736 2737
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
2738
  float epsilon_;
2739 2740 2741
};
#endif

2742 2743 2744 2745
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
2764
  GType *bias_;
2765 2766 2767
};
#endif

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2782 2783 2784
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2785 2786 2787 2788 2789 2790 2791 2792
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
2793
  GType *online_scale_;
2794
  // quantize offline scale
2795
  GType *offline_scale_;
2796 2797
  // if offine scale or not
  bool offline_ = false;
2798 2799 2800 2801 2802 2803
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
2845
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    input_y_ = nullptr;
    if (inputs.count("Y")) {
      input_y_ = InputYFrom<GType>(inputs, scope);
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
2906
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
2907
template <typename Dtype>
Z
zhaojiaying01 已提交
2908
class LogicalBinaryParam : public OpParam {
2909 2910 2911 2912
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2913 2914 2915
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
2930
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
2931 2932 2933

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
2934
class LogicalUnaryParam : public OpParam {
2935 2936 2937 2938
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2939 2940 2941
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, scope);
  }

 public:
  framework::LoDTensor *input_;
  framework::LoDTensor *index_;
  framework::LoDTensorArray *output_;
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
    input_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ = OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, scope);
  }

 public:
  framework::LoDTensorArray *input_;
  framework::LoDTensor *index_;
  framework::LoDTensor *output_;
};
#endif

Z
zhaojiaying01 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
H
update  
hjchen2 已提交
3028
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3029 3030 3031 3032
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3033
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3034 3035 3036 3037

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3038
  float step_;
Z
zhaojiaying01 已提交
3039 3040 3041
};
#endif  // INCREMENT_OP

朔-望's avatar
朔-望 已提交
3042 3043
}  // namespace operators
}  // namespace paddle_mobile