Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
79586ee3
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
79586ee3
编写于
10月 12, 2018
作者:
Z
zhaojiaying01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add opencl kernel of batchnorm, pool, fetch
上级
6b3a0ebe
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
275 addition
and
6 deletion
+275
-6
src/operators/kernel/cl/batchnorm_kernel.cpp
src/operators/kernel/cl/batchnorm_kernel.cpp
+56
-1
src/operators/kernel/cl/cl_kernel/batchnorm_kernel.cl
src/operators/kernel/cl/cl_kernel/batchnorm_kernel.cl
+24
-0
src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
+27
-0
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
+75
-0
src/operators/kernel/cl/fetch_kernel.cpp
src/operators/kernel/cl/fetch_kernel.cpp
+35
-1
src/operators/kernel/cl/pool_kernel.cpp
src/operators/kernel/cl/pool_kernel.cpp
+41
-1
src/operators/op_param.h
src/operators/op_param.h
+17
-3
未找到文件。
src/operators/kernel/cl/batchnorm_kernel.cpp
浏览文件 @
79586ee3
...
...
@@ -21,12 +21,67 @@ namespace operators {
template
<
>
bool
BatchNormKernel
<
GPU_CL
,
float
>::
Init
(
BatchNormParam
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"batchnorm"
,
"batchnorm_kernel.cl"
);
const
framework
::
CLImage
*
mean
=
param
->
InputMean
();
const
framework
::
CLImage
*
variance
=
param
->
InputVariance
();
const
framework
::
CLImage
*
scale
=
param
->
InputScale
();
const
framework
::
CLImage
*
bias
=
param
->
InputBias
();
const
float
epsilon
=
param
->
Epsilon
();
auto
mean_ptr
=
mean
->
data
<
float
>
();
auto
variance_ptr
=
variance
->
data
<
float
>
();
auto
scale_ptr
=
scale
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
const
int
C
=
mean
->
numel
();
float
inv_std_ptr
[
C
];
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
inv_std_ptr
[
i
]
=
1
/
static_cast
<
float
>
(
pow
((
variance_ptr
[
i
]
+
epsilon
),
0.5
));
}
float
*
new_scale_ptr
=
new
float
[
C
];
float
*
new_bias_ptr
=
new
float
[
C
];
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
-
mean_ptr
[
i
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
}
delete
[](
new_scale_ptr
);
delete
[](
new_bias_ptr
);
framework
::
CLImage
*
new_scale
=
new
framework
::
CLImage
();
framework
::
CLImage
*
new_bias
=
new
framework
::
CLImage
();
param
->
SetNewScale
(
new_scale
);
param
->
SetNewBias
(
new_bias
);
return
true
;
}
template
<
>
void
BatchNormKernel
<
GPU_CL
,
float
>::
Compute
(
const
BatchNormParam
<
GPU_CL
>
&
param
)
{}
const
BatchNormParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
OutputY
());
auto
input
=
param
.
InputX
()
->
GetCLImage
();
auto
out
=
param
.
OutputY
()
->
GetCLImage
();
auto
new_scale
=
param
.
NewScale
()
->
GetCLImage
();
auto
new_bias
=
param
.
NewBias
()
->
GetCLImage
();
const
int
out_height
=
param
.
OutputY
()
->
HeightOfOneBlock
();
const
int
out_width
=
param
.
OutputY
()
->
WidthOfOneBlock
();
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
out_height
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
out_width
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_mem
),
&
new_scale
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_mem
),
&
new_bias
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
out
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
}
template
class
BatchNormKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/cl_kernel/batchnorm_kernel.cl
0 → 100644
浏览文件 @
79586ee3
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
batchnorm
(
__private
const
int
out_height,
__private
const
int
out_width,
__read_only
image2d_t
input,
__read_only
image2d_t
new_scale,
__read_only
image2d_t
new_bias,
__write_only
image2d_t
output
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
half4
new_scale
=
read_imageh
(
bn_scale,
sampler,
(
int2
)(
out_c,
0
))
;
half4
new_bias
=
read_imageh
(
bn_bias,
sampler,
(
int2
)(
out_c,
0
))
;
int
pos_x
=
mad24
(
out_c,
out_width,
out_w
)
;
half4
in
=
read_imageh
(
input,
sampler,
(
int2
)(
pos_x,
out_nh
))
;
half4
out
=
mad
(
in,
new_scale,
new_bias
)
;
write_imageh
(
output,
(
int2
)(
pos_x,
nh
)
,
out
)
;
}
src/operators/kernel/cl/cl_kernel/fetch_kernel.cl
0 → 100644
浏览文件 @
79586ee3
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
__kernel
void
fetch
(
__private
const
int
in_height,
__private
const
int
in_width,
__private
const
int
size_ch,
__private
const
int
size_block,
__private
const
int
size_batch,
__read_only
image2d_t
input,
__global
float*
out
)
{
const
int
in_c
=
get_global_id
(
0
)
;
const
int
in_w
=
get_global_id
(
1
)
;
const
int
in_nh
=
get_global_id
(
2
)
;
const
int
in_n
=
in_nh
/
in_height
;
const
int
in_h
=
in_nh
%
in_height
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
const
int
pos_x
=
mad24
(
in_c,
in_width,
in_w
)
;
half4
in
=
read_imageh
(
input,
sampler,
(
int2
)(
pos_x,
in_nh
))
;
const
int
index
=
in_n
*
size_batch
+
in_c
*
size_block
+
in_h
*
in_width
+
in_w
;
out[index]
=
convert_float
(
in.x
)
;
out[index
+
size_ch]
=
convert_float
(
in.y
)
;
out[index
+
size_ch
*
2]
=
convert_float
(
in.z
)
;
out[index
+
size_ch
*
3]
=
convert_float
(
in.w
)
;
}
src/operators/kernel/cl/cl_kernel/pool_kernel.cl
0 → 100644
浏览文件 @
79586ee3
#
pragma
OPENCL
EXTENSION
cl_khr_fp16
:
enable
#
define
MIN_VALUE
-FLT_MAX
__kernel
void
pool_max
(
__private
const
int
in_height,
__private
const
int
in_width,
__private
const
int
out_height,
__private
const
int
out_width,
__private
const
int
pad_top,
__private
const
int
pad_left,
__private
const
int
stride_h,
__private
const
int
stride_w,
__private
const
int
ksize_h,
__private
const
int
ksize_w,
__read_only
image2d_t
input,
__write_only
image2d_t
output
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
out_n
=
out_nh
/
out_height
;
const
int
out_h
=
out_nh
%
out_height
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int
start_h
=
max
(
out_h
*
stride_h
-
pad_top,
0
)
;
int
end_h
=
min
(
start_h
+
ksize_h,
in_height
)
;
int
start_w
=
max
(
out_w
*
stride_w
-
pad_left,
0
)
;
int
end_w
=
min
(
start_w
+
ksize_w,
in_width
)
;
const
int
pos_in_x
=
out_c
*
in_width
;
const
int
pos_in_y
=
out_n
*
in_height
;
half4
max_value
=
(
half4
)(
MIN_VALUE
)
;
for
(
int
y
=
start_h
; y < end_h; ++y) {
for
(
int
x
=
start_w
; x < end_w; ++x) {
half4
tmp
=
read_imageh
(
input,
sampler,
(
int2
)(
pos_in_x
+
x,
pos_in_y
+
y
))
;
max_value
=
max
(
max_value,
tmp
)
;
}
}
const
int
pos_out_x
=
mad24
(
out_c,
out_width,
out_w
)
;
write_imageh
(
output,
(
int2
)(
pos_out_x,
out_nh
)
,
max_value
)
;
}
__kernel
void
pool_avg
(
__private
const
int
in_height,
__private
const
int
in_width,
__private
const
int
out_height,
__private
const
int
out_width,
__private
const
int
pad_top,
__private
const
int
pad_left,
__private
const
int
stride_h,
__private
const
int
stride_w,
__private
const
int
ksize_h,
__private
const
int
ksize_w,
__read_only
image2d_t
input,
__write_only
image2d_t
output
)
{
const
int
out_c
=
get_global_id
(
0
)
;
const
int
out_w
=
get_global_id
(
1
)
;
const
int
out_nh
=
get_global_id
(
2
)
;
const
int
out_n
=
out_nh
/
out_height
;
const
int
out_h
=
out_nh
%
out_height
;
const
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_TRUE
| CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST
;
int
start_h
=
max
(
out_h
*
stride_h
-
pad_top,
0
)
;
int
end_h
=
min
(
start_h
+
ksize_h,
in_height
)
;
int
start_w
=
max
(
out_w
*
stride_w
-
pad_left,
0
)
;
int
end_w
=
min
(
start_w
+
ksize_w,
in_width
)
;
const
int
pos_in_x
=
out_c
*
in_width
;
const
int
pos_in_y
=
out_n
*
in_height
;
half4
sum
=
(
half4
)(
0.0f
)
;
int
num
=
0
;
for
(
int
y
=
start_h
; y < end_h; ++y) {
for
(
int
x
=
start_w
; x < end_w; ++x) {
sum
+=
read_imageh
(
input,
sampler,
(
int2
)(
pos_in_x
+
x,
pos_in_y
+
y
))
;
num++
;
}
}
half4
avg
=
sum
/
num
;
const
int
pos_out_x
=
mad24
(
out_c,
out_width,
out_w
)
;
write_imageh
(
output,
(
int2
)(
pos_out_x,
out_nh
)
,
avg
)
;
}
\ No newline at end of file
src/operators/kernel/cl/fetch_kernel.cpp
浏览文件 @
79586ee3
...
...
@@ -19,11 +19,45 @@ namespace operators {
template
<
>
bool
FetchKernel
<
GPU_CL
,
float
>::
Init
(
FetchParam
<
GPU_CL
>
*
param
)
{
this
->
cl_helper_
.
AddKernel
(
"fetch"
,
"fetch_kernel.cl"
);
return
true
;
}
template
<
>
void
FetchKernel
<
GPU_CL
,
float
>::
Compute
(
const
FetchParam
<
GPU_CL
>
&
param
)
{}
void
FetchKernel
<
GPU_CL
,
float
>::
Compute
(
const
FetchParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
InputX
());
auto
input
=
param
.
InputX
()
->
GetCLImage
();
auto
*
out
=
param
.
Out
();
const
auto
&
dims
=
param
.
InputX
()
->
dims
();
const
int
N
=
dims
[
0
];
const
int
C
=
dims
[
1
];
const
int
in_height
=
dims
[
2
];
const
int
in_width
=
dims
[
3
];
int
size_ch
=
in_height
*
in_width
;
int
size_block
=
size_ch
*
4
;
int
size_batch
=
size_ch
*
C
;
// need create outputBuffer
cl_image_format
imageFormat
;
imageFormat
.
image_channel_order
=
CL_RGBA
;
imageFormat
.
image_channel_data_type
=
CL_FLOAT
;
cl_mem
outputBuffer
;
clSetKernelArg
(
kernel
,
0
,
sizeof
(
int
),
&
in_height
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
int
),
&
in_width
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
int
),
&
size_ch
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
int
),
&
size_block
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
int
),
&
size_batch
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_mem
),
&
outputBuffer
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
}
template
class
FetchKernel
<
GPU_CL
,
float
>;
...
...
src/operators/kernel/cl/pool_kernel.cpp
浏览文件 @
79586ee3
...
...
@@ -21,11 +21,51 @@ namespace operators {
template
<
>
bool
PoolKernel
<
GPU_CL
,
float
>::
Init
(
PoolParam
<
GPU_CL
>
*
param
)
{
std
::
string
pooling_type
=
param
->
PoolingType
();
this
->
cl_helper_
.
AddKernel
(
"pool_"
+
pooling_type
,
"pool_kernel.cl"
);
return
true
;
}
template
<
>
void
PoolKernel
<
GPU_CL
,
float
>::
Compute
(
const
PoolParam
<
GPU_CL
>
&
param
)
{}
void
PoolKernel
<
GPU_CL
,
float
>::
Compute
(
const
PoolParam
<
GPU_CL
>
&
param
)
{
auto
kernel
=
this
->
cl_helper_
.
KernelAt
(
0
);
auto
default_work_size
=
this
->
cl_helper_
.
DefaultWorkSize
(
*
param
.
Output
());
auto
input
=
param
.
Input
()
->
GetCLImage
();
auto
out
=
param
.
Output
()
->
GetCLImage
();
const
int
in_height
=
param
.
Input
()
->
HeightOfOneBlock
();
const
int
in_width
=
param
.
Input
()
->
WidthOfOneBlock
();
const
int
out_height
=
param
.
Output
()
->
HeightOfOneBlock
();
const
int
out_width
=
param
.
Output
()
->
WidthOfOneBlock
();
std
::
string
pooling_type
=
param
.
PoolingType
();
std
::
vector
<
int
>
ksize
=
param
.
Ksize
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
const
int
pad_top
=
paddings
[
0
];
const
int
pad_left
=
paddings
[
1
];
const
int
stride_h
=
strides
[
0
];
const
int
stride_w
=
strides
[
1
];
const
int
ksize_h
=
ksize
[
0
];
const
int
ksize_w
=
ksize
[
1
];
clSetKernelArg
(
kernel
,
0
,
sizeof
(
cl_int
),
&
in_height
);
clSetKernelArg
(
kernel
,
1
,
sizeof
(
cl_int
),
&
in_width
);
clSetKernelArg
(
kernel
,
2
,
sizeof
(
cl_int
),
&
out_height
);
clSetKernelArg
(
kernel
,
3
,
sizeof
(
cl_int
),
&
out_width
);
clSetKernelArg
(
kernel
,
4
,
sizeof
(
cl_int
),
&
pad_top
);
clSetKernelArg
(
kernel
,
5
,
sizeof
(
cl_int
),
&
pad_left
);
clSetKernelArg
(
kernel
,
6
,
sizeof
(
cl_int
),
&
stride_h
);
clSetKernelArg
(
kernel
,
7
,
sizeof
(
cl_int
),
&
stride_w
);
clSetKernelArg
(
kernel
,
8
,
sizeof
(
cl_int
),
&
ksize_h
);
clSetKernelArg
(
kernel
,
9
,
sizeof
(
cl_int
),
&
ksize_w
);
clSetKernelArg
(
kernel
,
10
,
sizeof
(
cl_mem
),
&
input
);
clSetKernelArg
(
kernel
,
11
,
sizeof
(
cl_mem
),
&
out
);
clEnqueueNDRangeKernel
(
this
->
cl_helper_
.
CLCommandQueue
(),
kernel
,
3
,
NULL
,
default_work_size
.
data
(),
NULL
,
0
,
NULL
,
NULL
);
}
template
class
PoolKernel
<
GPU_CL
,
float
>;
...
...
src/operators/op_param.h
浏览文件 @
79586ee3
...
...
@@ -614,6 +614,14 @@ class BatchNormParam : OpParam {
const
string
&
DataFormat
()
const
{
return
data_format_
;
}
void
SetNewScale
(
RType
*
new_scale
)
{
new_scale_
=
new_scale
;
}
void
SetNewBias
(
RType
*
new_bias
)
{
new_bias_
=
new_bias
;
}
const
RType
*
NewScale
()
const
{
return
new_scale_
;
}
const
RType
*
NewBias
()
const
{
return
new_bias_
;
}
private:
RType
*
input_x_
;
RType
*
output_y_
;
...
...
@@ -625,6 +633,8 @@ class BatchNormParam : OpParam {
float
momentum_
;
bool
is_test_
;
string
data_format_
;
RType
*
new_bias_
;
RType
*
new_scale_
;
};
#endif
...
...
@@ -936,14 +946,18 @@ class FetchParam : public OpParam {
FetchParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
GType
>
(
inputs
,
scope
);
out_
=
OutFrom
<
GType
>
(
outputs
,
scope
);
out_
=
OutFrom
(
outputs
,
scope
);
}
const
RType
*
InputX
()
const
{
return
input_x_
;
}
RType
*
Out
()
const
{
return
out_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
static
Tensor
*
OutFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
Tensor
>
(
"Out"
,
outputs
,
scope
);
}
private:
RType
*
input_x_
;
RType
*
out_
;
Tensor
*
out_
;
};
#ifdef TRANSPOSE_OP
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录