op_param.h 70.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
38
using framework::Variable;
W
wangliu 已提交
39 40
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
41

N
nhzlx 已提交
42 43 44 45 46 47 48 49 50
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
51
class OpParam {
朔-望's avatar
朔-望 已提交
52
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
53 54 55 56
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
57 58 59 60 61
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

62 63 64 65 66 67 68 69 70
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
71 72 73 74 75
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

103 104 105 106
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
107 108 109 110 111 112

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

113 114 115 116 117
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
118 119 120 121 122
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

123 124 125 126 127
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
132 133 134 135 136 137 138 139 140 141 142 143
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
144 145 146 147
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
164

E
eclipsess 已提交
165 166 167 168 169 170 171 172 173 174
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
175 176 177 178
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
179

180
  template <typename T>
W
wangliu 已提交
181 182
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
183 184 185
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
186 187 188 189 190
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

220 221 222 223 224
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
225 226 227 228 229
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
235 236 237 238 239 240
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

241 242 243 244 245
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
252 253 254 255 256
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
257 258 259 260 261 262
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

263 264 265 266 267 268 269 270 271 272 273
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
274
  static const T GetAttr(const string &key, const AttributeMap &map) {
275 276
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
277 278
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
279 280
    return ((Attribute)map.at(key)).GetString();
  }
281

282 283 284 285
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

286
  template <typename T>
W
wangliu 已提交
287
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
288
                        const Scope &scope) {
W
wangliu 已提交
289 290
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
291 292 293 294 295 296
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
297
    }
298
  }
朔-望's avatar
朔-望 已提交
299

E
eclipsess 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

333
  template <typename T>
W
wangliu 已提交
334 335 336
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
337 338
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
339
    vector<T *> var_res;
340 341 342
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
343
    }
344 345
    return var_res;
  }
E
eclipsess 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
359 360
};

N
nhzlx 已提交
361
template <typename Dtype>
362
class ConvParam : public OpParam {
N
nhzlx 已提交
363 364 365
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
366
 public:
367
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
368
            const AttributeMap &attrs, const Scope &scope) {
369 370 371 372 373 374 375 376 377
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
378
  }
朔-望's avatar
朔-望 已提交
379

N
nhzlx 已提交
380
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
381

N
nhzlx 已提交
382
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
383

N
nhzlx 已提交
384
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
385

W
wangliu 已提交
386
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
387

W
wangliu 已提交
388
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
389

W
wangliu 已提交
390
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
391

392
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
393

朔-望's avatar
朔-望 已提交
394
 private:
N
nhzlx 已提交
395 396 397
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
398 399 400
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
401
  int groups;
朔-望's avatar
朔-望 已提交
402
};
N
nhzlx 已提交
403 404
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
template <typename Dtype>
朔-望's avatar
朔-望 已提交
407
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
408 409 410
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
411
 public:
412
  ElementwiseAddParam(const VariableNameMap &inputs,
413 414
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
415 416 417
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
418 419 420
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
421
  const GType *InputX() const { return input_x_; }
422

xiebaiyuan's avatar
xiebaiyuan 已提交
423
  const GType *InputY() const { return input_y_; }
424

xiebaiyuan's avatar
xiebaiyuan 已提交
425
  GType *Out() const { return out_; }
426 427 428

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
429
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
430 431 432
  GType *input_x_;
  GType *input_y_;
  GType *out_;
433
  int axis_;
Z
zhangyang 已提交
434 435 436
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
437
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
438 439

 public:
H
hanbuhe 已提交
440 441
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
442
#endif
朔-望's avatar
朔-望 已提交
443 444
};

E
eclipsess 已提交
445
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
#ifdef PADDLE_MOBILE_FPGA

 private:
E
eclipsess 已提交
477
  fpga::EWMulArgs fpga_EW_mul_args;
E
eclipsess 已提交
478 479 480 481 482 483

 public:
  const fpga::EWMulArgs &FpgaArgs() const { return fpga_EW_mul_args; }
  void SetFpgaArgs(const fpga::EWMulArgs &args) { fpga_EW_mul_args = args; }
#endif
};
S
suiyang 已提交
484
#endif
E
eclipsess 已提交
485

486
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
487 488
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
489 490 491
#endif

#ifdef MUL_OP
N
nhzlx 已提交
492
template <typename Dtype>
朔-望's avatar
朔-望 已提交
493
class MulParam : OpParam {
N
nhzlx 已提交
494 495 496
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
497
 public:
498
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
499
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
500 501 502
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
503 504 505
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
506

xiebaiyuan's avatar
xiebaiyuan 已提交
507
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
508

xiebaiyuan's avatar
xiebaiyuan 已提交
509
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
510

xiebaiyuan's avatar
xiebaiyuan 已提交
511
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
512

513
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
514

515
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
516

朔-望's avatar
朔-望 已提交
517
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
518 519 520
  GType *input_x_;
  GType *input_y_;
  GType *out_;
521 522
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
523 524 525 526 527 528 529 530 531
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::WrapperConvArgs fpga_conv_args;

 public:
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
532
};
L
liuruilong 已提交
533
#endif
朔-望's avatar
朔-望 已提交
534

L
liuruilong 已提交
535
#ifdef CONCAT_OP
N
nhzlx 已提交
536
template <typename Dtype>
朔-望's avatar
朔-望 已提交
537
class ConcatParam : public OpParam {
N
nhzlx 已提交
538 539 540
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
541
 public:
542
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
543
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
544 545
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
546 547
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
548

N
nhzlx 已提交
549
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
550

xiebaiyuan's avatar
xiebaiyuan 已提交
551
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
552

553
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
554

朔-望's avatar
朔-望 已提交
555
 private:
N
nhzlx 已提交
556
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
557
  GType *out_;
558
  int axis_;
Z
zhangyang 已提交
559 560 561 562 563 564 565 566 567
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
568
};
L
liuruilong 已提交
569
#endif
朔-望's avatar
朔-望 已提交
570

E
eclipsess 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SumArgs fpga_sum_args;

 public:
  const fpga::SumArgs &FpgaArgs() const { return fpga_sum_args; }
  void SetFpgaArgs(const fpga::SumArgs &args) { fpga_sum_args = args; }
#endif
};
#endif

L
liuruilong 已提交
611
#ifdef LRN_OP
N
nhzlx 已提交
612
template <typename Dtype>
E
eclipsess 已提交
613
class LrnParam : public OpParam {
N
nhzlx 已提交
614 615 616
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
617
 public:
618
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
619
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
620 621 622
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
623 624 625 626
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
627
    data_format_ = GetStringAttr("data_format", attrs);
628
  }
E
eclipsess 已提交
629

N
nhzlx 已提交
630
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
631

N
nhzlx 已提交
632
  RType *Out() const { return out_; }
E
eclipsess 已提交
633

N
nhzlx 已提交
634
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
635

636
  const int &N() const { return n_; }
E
eclipsess 已提交
637

638
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
639

640
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
641

642
  const float &K() const { return k_; }
E
eclipsess 已提交
643

W
wangliu 已提交
644
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
645

朔-望's avatar
朔-望 已提交
646
 private:
N
nhzlx 已提交
647 648 649
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
650 651 652 653
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
654
  string data_format_;
E
eclipsess 已提交
655
};
L
liuruilong 已提交
656 657 658
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
659
template <typename Dtype>
E
eclipsess 已提交
660
class BatchNormParam : OpParam {
N
nhzlx 已提交
661 662 663
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
664
 public:
665
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
666
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
667 668 669 670 671 672
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
673 674
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
675
    //    is_test_ = GetAttr<bool>("is_test", attrs);
676
  }
E
eclipsess 已提交
677

N
nhzlx 已提交
678
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
679

N
nhzlx 已提交
680
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
681

N
nhzlx 已提交
682
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
683

N
nhzlx 已提交
684
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
685

N
nhzlx 已提交
686
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
687

N
nhzlx 已提交
688
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
689

690
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
691

692
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
693

694
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
695

W
wangliu 已提交
696
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
697

朔-望's avatar
朔-望 已提交
698
 private:
N
nhzlx 已提交
699 700 701 702 703 704
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
705 706 707
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
708
  string data_format_;
E
eclipsess 已提交
709
};
L
liuruilong 已提交
710 711 712
#endif

#ifdef POOL_OP
N
nhzlx 已提交
713
template <typename Dtype>
714
class PoolParam : public OpParam {
N
nhzlx 已提交
715 716 717
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
718
 public:
719
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
720
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
721
    input_ = InputXFrom<GType>(inputs, scope);
722

N
nhzlx 已提交
723
    output_ = OutFrom<GType>(outputs, scope);
724
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
725 726 727
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
728
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
729
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
730
  }
731

N
nhzlx 已提交
732
  const RType *Input() const { return input_; }
733

N
nhzlx 已提交
734
  RType *Output() const { return output_; }
735

W
wangliu 已提交
736
  const string &PoolingType() const { return pooling_type_; }
737

W
wangliu 已提交
738
  const vector<int> &Ksize() const { return ksize_; }
739

W
wangliu 已提交
740
  const vector<int> &Strides() const { return strides_; }
741

W
wangliu 已提交
742
  const vector<int> &Paddings() const { return paddings_; }
743

744
  bool isCeilMode() const { return ceil_mode_; }
745

Z
zhangyang 已提交
746
  bool isGlobalPooling() const { return global_pooling_; }
747

朔-望's avatar
朔-望 已提交
748
 private:
N
nhzlx 已提交
749 750
  RType *input_;
  RType *output_;
W
wangliu 已提交
751 752 753 754
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
755
  bool ceil_mode_;
756
  bool global_pooling_ = false;
Z
zhangyang 已提交
757
#ifdef PADDLE_MOBILE_FPGA
758 759

 private:
H
hanbuhe 已提交
760
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
761 762

 public:
H
hanbuhe 已提交
763 764
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
765
#endif
766
};
L
liuruilong 已提交
767 768 769
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
770
template <typename Dtype>
E
eclipsess 已提交
771
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
772 773 774
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
775 776
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
777
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
778 779 780 781
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
782 783 784 785
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
786 787 788 789 790

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
791 792 793 794 795 796
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
797
  const RType *Input() const { return input_; }
E
eclipsess 已提交
798

N
nhzlx 已提交
799
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
800

N
nhzlx 已提交
801
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
802

N
nhzlx 已提交
803
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
804

W
wangliu 已提交
805
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
806

W
wangliu 已提交
807
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
808

W
wangliu 已提交
809
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
810

W
wangliu 已提交
811
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
812 813 814 815 816 817 818 819 820 821 822

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

823 824 825 826
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
827
 private:
N
nhzlx 已提交
828 829 830 831
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
832 833 834 835
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
836 837 838 839 840
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
841
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
842
};
L
liuruilong 已提交
843
#endif
E
eclipsess 已提交
844

L
liuruilong 已提交
845
#ifdef BOXCODER_OP
N
nhzlx 已提交
846
template <typename Dtype>
E
eclipsess 已提交
847
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
848 849 850
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
851 852
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
853
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
854 855 856 857
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
858
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
859
  }
N
nhzlx 已提交
860
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
861

N
nhzlx 已提交
862
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
863

N
nhzlx 已提交
864
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
865

N
nhzlx 已提交
866
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
867 868 869 870

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
871 872 873 874
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
875 876
  std::string code_type_;
};
L
liuruilong 已提交
877
#endif
W
wangliu 已提交
878

L
liuruilong 已提交
879
#ifdef SOFTMAX_OP
N
nhzlx 已提交
880
template <typename Dtype>
W
wangliu 已提交
881
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
882 883 884
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
885 886
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
887
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
888 889
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
890
  }
N
nhzlx 已提交
891 892
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
893 894

 private:
N
nhzlx 已提交
895 896
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
897 898 899 900

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
901
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
902 903 904
  fpga::BypassArgs fpga_bypass_args;

 public:
905
  RType *FloatInput() const {
H
hanbuhe 已提交
906 907 908 909 910 911
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
912
};
L
liuruilong 已提交
913
#endif
W
wangliu 已提交
914

L
liuruilong 已提交
915
#ifdef SIGMOID_OP
N
nhzlx 已提交
916
template <typename Dtype>
W
wangliu 已提交
917
class SigmoidParam : public OpParam {
N
nhzlx 已提交
918 919 920
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
921 922
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
923
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
924 925
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
926
  }
N
nhzlx 已提交
927 928
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
929 930

 private:
N
nhzlx 已提交
931 932
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
933
};
L
liuruilong 已提交
934 935 936
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
937
template <typename Dtype>
E
eclipsess 已提交
938
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
939 940 941
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
942 943 944 945
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
946 947 948
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
949 950 951 952 953 954 955 956
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
957
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
958

N
nhzlx 已提交
959
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
960

N
nhzlx 已提交
961
  RType *Out() const { return out_; }
E
eclipsess 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
976 977 978
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
979 980 981 982 983 984 985
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
986
#endif
W
wangliu 已提交
987

N
nhzlx 已提交
988
template <typename Dtype>
L
liuruilong 已提交
989
class FeedParam : public OpParam {
N
nhzlx 已提交
990 991 992
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
993 994
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
995
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
996 997
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
998
    auto var = scope->Var("batch_size");
W
wangliu 已提交
999
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1000
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1001 1002
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1003
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1004

L
liuruilong 已提交
1005
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1006 1007
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
1008
  int batch_size;
L
liuruilong 已提交
1009 1010
};

N
nhzlx 已提交
1011
template <typename Dtype>
L
liuruilong 已提交
1012
class FetchParam : public OpParam {
N
nhzlx 已提交
1013 1014 1015
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1016 1017
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1018
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1019 1020
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
1021
  }
N
nhzlx 已提交
1022 1023
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
1024

L
liuruilong 已提交
1025
 private:
N
nhzlx 已提交
1026 1027
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
1028 1029
};

L
liuruilong 已提交
1030
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1031
template <typename Dtype>
E
eclipsess 已提交
1032
class TransposeParam : public OpParam {
N
nhzlx 已提交
1033 1034 1035
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1036 1037 1038
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1039 1040
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1041 1042 1043
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1044
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1045

N
nhzlx 已提交
1046
  RType *Out() const { return out_; }
E
eclipsess 已提交
1047 1048 1049 1050

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1051 1052
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1053 1054
  vector<int> axis_;
};
L
liuruilong 已提交
1055
#endif
E
eclipsess 已提交
1056

xiebaiyuan's avatar
xiebaiyuan 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1123
#ifdef RESHAPE_OP
N
nhzlx 已提交
1124
template <typename Dtype>
E
eclipsess 已提交
1125
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1126 1127 1128
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1129 1130 1131
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1132 1133 1134
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1135
    shape_ = GetAttr<vector<int>>("shape", attrs);
1136 1137 1138 1139 1140 1141 1142

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1143 1144
  }

N
nhzlx 已提交
1145
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1146

N
nhzlx 已提交
1147
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1148

N
nhzlx 已提交
1149
  RType *Out() const { return out_; }
E
eclipsess 已提交
1150 1151 1152 1153 1154 1155

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1156 1157 1158
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1159 1160 1161
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1162
#endif
E
eclipsess 已提交
1163

T
Tian 已提交
1164
#ifdef SCALE_OP
N
nhzlx 已提交
1165
template <typename Dtype>
I
itminner 已提交
1166
class ScaleParam : public OpParam {
N
nhzlx 已提交
1167 1168 1169
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1170 1171 1172
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1173 1174 1175
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1176 1177 1178 1179 1180 1181
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1182
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1183

N
nhzlx 已提交
1184
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1185

N
nhzlx 已提交
1186
  RType *Out() const { return out_; }
I
itminner 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1197 1198 1199
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1200 1201 1202 1203 1204
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1205 1206 1207
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1208
template <typename Dtype>
I
itminner 已提交
1209
class SliceParam : public OpParam {
N
nhzlx 已提交
1210 1211 1212
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1213 1214 1215
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1216 1217 1218
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1219 1220 1221 1222 1223
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1224
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1225

N
nhzlx 已提交
1226
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1227

N
nhzlx 已提交
1228
  RType *Out() const { return out_; }
I
itminner 已提交
1229 1230 1231 1232 1233 1234 1235 1236

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1237 1238 1239
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1240 1241 1242 1243
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1244 1245 1246
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1247
template <typename Dtype>
T
Tian 已提交
1248
class ResizeParam : public OpParam {
N
nhzlx 已提交
1249 1250 1251
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1252 1253 1254
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1255 1256 1257
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1258 1259 1260 1261 1262 1263
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1264

N
nhzlx 已提交
1265
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1266

N
nhzlx 已提交
1267
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1268

N
nhzlx 已提交
1269
  RType *Out() const { return out_; }
T
Tian 已提交
1270

I
itminner 已提交
1271
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1272

I
itminner 已提交
1273
  const int &Height() const { return height_; }
T
Tian 已提交
1274

I
itminner 已提交
1275
  const int &Width() const { return width_; }
T
Tian 已提交
1276

I
itminner 已提交
1277
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1278

I
itminner 已提交
1279
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1280

I
itminner 已提交
1281
 private:
N
nhzlx 已提交
1282 1283 1284
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1285 1286 1287 1288 1289
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1290 1291 1292
};
#endif

L
liuruilong 已提交
1293
#ifdef RELU_OP
L
liuruilong 已提交
1294 1295 1296
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1297
template <typename Dtype>
E
eclipsess 已提交
1298
class ReluParam : public OpParam {
N
nhzlx 已提交
1299 1300 1301
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1302 1303 1304
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1305 1306
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1307 1308
  }

N
nhzlx 已提交
1309
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1310

N
nhzlx 已提交
1311
  RType *Out() const { return out_; }
E
eclipsess 已提交
1312 1313

 private:
N
nhzlx 已提交
1314 1315
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1316
};
L
liuruilong 已提交
1317
#endif
E
eclipsess 已提交
1318

T
Tian 已提交
1319
#ifdef PRELU_OP
N
nhzlx 已提交
1320
template <typename Dtype>
T
Tian 已提交
1321
class PReluParam : public OpParam {
N
nhzlx 已提交
1322 1323 1324
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1325 1326 1327
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1328
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1329
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1330
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1331
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1332
    out_ = OutFrom<GType>(outputs, scope);
1333
    mode_ = GetStringAttr("mode", attrs);
1334
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1335
  }
N
nhzlx 已提交
1336
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1337
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1338
  RType *Out() const { return out_; }
1339
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1340

I
itminner 已提交
1341
 private:
N
nhzlx 已提交
1342 1343
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1344
  RType *alpha_;
1345
  std::string mode_;
T
Tian 已提交
1346 1347 1348
};
#endif

N
nhzlx 已提交
1349
template <typename Dtype>
L
liuruilong 已提交
1350
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1351 1352 1353
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1354
 public:
L
liuruilong 已提交
1355
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1356
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1357 1358 1359 1360
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1361 1362 1363 1364
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1365
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1366

N
nhzlx 已提交
1367
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1368

N
nhzlx 已提交
1369
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1370

xiebaiyuan's avatar
xiebaiyuan 已提交
1371
  GType *Out() const { return out_; }
E
eclipsess 已提交
1372 1373 1374 1375 1376 1377 1378 1379

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1380
  GType *input_x_;
N
nhzlx 已提交
1381 1382
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1383
  GType *out_;
E
eclipsess 已提交
1384 1385 1386
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1387 1388 1389
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1390
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1391 1392

 public:
Z
zhangyang 已提交
1393 1394
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1395
#endif
E
eclipsess 已提交
1396
};
1397 1398

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1399 1400
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1401
#endif
E
eclipsess 已提交
1402

N
nhzlx 已提交
1403
template <typename Dtype>
1404
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1405 1406 1407
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1408
 public:
L
liuruilong 已提交
1409
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1410
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1411 1412 1413 1414 1415
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1416
  }
N
nhzlx 已提交
1417
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1418 1419 1420

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1421
  RType *Output() const { return output_; }
W
wangliu 已提交
1422

L
liuruilong 已提交
1423
 protected:
N
nhzlx 已提交
1424
  RType *bias_;
W
wangliu 已提交
1425
  int axis_;
N
nhzlx 已提交
1426
  RType *output_;
Z
zhangyang 已提交
1427 1428 1429
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1430
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1431 1432

 public:
Z
zhangyang 已提交
1433 1434
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1435
#endif
W
wangliu 已提交
1436 1437
};

N
nhzlx 已提交
1438 1439
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1440

Z
zhangyang 已提交
1441
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1442 1443
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1444
 public:
L
liuruilong 已提交
1445
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1446 1447
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1448
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1449 1450 1451
};
#endif

1452
#ifdef FUSION_CONVADDPRELU_OP
1453 1454 1455 1456
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1457 1458 1459 1460

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1461 1462 1463
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1464
    mode_ = OpParam::GetStringAttr("mode", attrs);
1465
    framework::DDim dims = alpha_->dims();
1466 1467 1468
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1485
  fpga::WrapperConvArgs fpga_conv_args;
1486 1487

 public:
Z
zhangyang 已提交
1488 1489
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1490 1491 1492 1493 1494
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1495 1496 1497 1498
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1499 1500 1501 1502

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1503 1504 1505 1506
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1507
    mode_ = OpParam::GetStringAttr("mode", attrs);
1508
    framework::DDim dims = alpha_->dims();
1509 1510 1511 1512 1513 1514
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1515
    if (keyX1_ == keyOutput_) {
1516
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1517
    } else if (keyY1_ == keyOutput_) {
1518
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1543
  fpga::WrapperConvArgs fpga_conv_args;
1544 1545

 public:
Z
zhangyang 已提交
1546 1547
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1548 1549 1550 1551
#endif
};
#endif

E
eclipsess 已提交
1552
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1553
template <typename Dtype>
1554
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1555 1556 1557
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1558 1559 1560
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1573
  }
N
nhzlx 已提交
1574
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1575 1576 1577

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1578
  RType *Output() const { return output_; }
E
eclipsess 已提交
1579

N
nhzlx 已提交
1580
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1581

N
nhzlx 已提交
1582
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1583

N
nhzlx 已提交
1584
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1585

N
nhzlx 已提交
1586
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1587 1588 1589 1590 1591 1592 1593

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1594
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1595

N
nhzlx 已提交
1596
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1597

N
nhzlx 已提交
1598
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1599

N
nhzlx 已提交
1600
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1601 1602

 protected:
N
nhzlx 已提交
1603
  RType *bias_;
E
eclipsess 已提交
1604
  int axis_;
N
nhzlx 已提交
1605 1606 1607 1608 1609
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1610 1611 1612
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1613 1614
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1615 1616 1617
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1618
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1619 1620

 public:
Z
zhangyang 已提交
1621 1622
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1623 1624 1625 1626 1627 1628
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1629
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1630 1631 1632 1633 1634 1635
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1650
    if (keyX_ == keyBNY_) {
1651
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1652
    } else if (keyY_ == keyBNY_) {
1653
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1654
    }
1655
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1704
  fpga::WrapperConvArgs fpga_conv_args;
1705 1706

 public:
Z
zhangyang 已提交
1707 1708
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1709
#endif
E
eclipsess 已提交
1710
};
1711
#endif
E
eclipsess 已提交
1712

Z
zhangyang 已提交
1713
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1714
template <typename Dtype>
1715
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1716 1717 1718
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1719 1720 1721
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1732
  }
N
nhzlx 已提交
1733
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1734

N
nhzlx 已提交
1735
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1736

N
nhzlx 已提交
1737
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1738

N
nhzlx 已提交
1739
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1740

N
nhzlx 已提交
1741
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1742 1743 1744 1745 1746 1747 1748

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1749
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1750

N
nhzlx 已提交
1751
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1752

N
nhzlx 已提交
1753
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1754

N
nhzlx 已提交
1755
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1756 1757

 protected:
N
nhzlx 已提交
1758 1759 1760 1761 1762
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1763 1764 1765
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1766 1767
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1768 1769 1770
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1771
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1772 1773

 public:
Z
zhangyang 已提交
1774 1775
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1776 1777 1778 1779
#endif
};
#endif

1780
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1781
template <typename Dtype>
1782
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1783 1784 1785
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1786 1787 1788
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1801
  }
N
nhzlx 已提交
1802
  RType *Bias() const { return bias_; }
1803 1804 1805

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1806
  RType *Output() const { return output_y_; }
1807

N
nhzlx 已提交
1808
  const RType *InputBias() const { return input_bias_; }
1809

N
nhzlx 已提交
1810
  const RType *InputMean() const { return input_mean_; }
1811

N
nhzlx 已提交
1812
  const RType *InputScale() const { return input_scale_; }
1813

N
nhzlx 已提交
1814
  const RType *InputVariance() const { return input_variance_; }
1815 1816 1817 1818 1819 1820 1821

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1822
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1823

N
nhzlx 已提交
1824
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1825

N
nhzlx 已提交
1826
  const RType *NewScale() const { return new_scale_; }
1827

N
nhzlx 已提交
1828
  const RType *NewBias() const { return new_bias_; }
1829 1830

 protected:
N
nhzlx 已提交
1831
  RType *bias_;
1832
  int axis_;
N
nhzlx 已提交
1833 1834 1835 1836 1837
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1838 1839 1840
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1841 1842
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1843 1844 1845
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1846
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1847 1848

 public:
Z
zhangyang 已提交
1849 1850
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1851
#endif
1852
};
E
eclipsess 已提交
1853
#endif
Y
Yao,kun 已提交
1854

E
eclipsess 已提交
1855
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1856
template <typename Dtype>
1857
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1858 1859 1860
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1861 1862 1863
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1874
  }
N
nhzlx 已提交
1875
  RType *Output() const { return output_; }
E
eclipsess 已提交
1876

N
nhzlx 已提交
1877
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1878

N
nhzlx 已提交
1879
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1880

N
nhzlx 已提交
1881
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1882

N
nhzlx 已提交
1883
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1884 1885 1886 1887 1888 1889 1890

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1891
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1892

N
nhzlx 已提交
1893
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1894

N
nhzlx 已提交
1895
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1896

N
nhzlx 已提交
1897
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1898 1899

 protected:
N
nhzlx 已提交
1900 1901 1902 1903 1904
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1905 1906 1907
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1908 1909
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1910 1911 1912 1913
};

#endif

1914
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1915
template <typename Dtype>
1916
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1917 1918 1919
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1920 1921 1922
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1933
  }
N
nhzlx 已提交
1934
  RType *Output() const { return output_; }
1935

N
nhzlx 已提交
1936
  const RType *InputBias() const { return input_bias_; }
1937

N
nhzlx 已提交
1938
  const RType *InputMean() const { return input_mean_; }
1939

N
nhzlx 已提交
1940
  const RType *InputScale() const { return input_scale_; }
1941

N
nhzlx 已提交
1942
  const RType *InputVariance() const { return input_variance_; }
1943 1944 1945 1946 1947 1948 1949

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1950
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1951

N
nhzlx 已提交
1952
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1953

N
nhzlx 已提交
1954
  const RType *NewScale() const { return new_scale_; }
1955

N
nhzlx 已提交
1956
  const RType *NewBias() const { return new_bias_; }
1957 1958

 protected:
N
nhzlx 已提交
1959 1960 1961 1962 1963
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1964 1965 1966
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1967 1968
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1969 1970 1971
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1972
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1973 1974

 public:
Z
zhangyang 已提交
1975 1976
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1977
#endif
1978 1979 1980
};
#endif

Y
Yao,kun 已提交
1981
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1982
template <typename Dtype>
Y
Yao,kun 已提交
1983
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1984 1985 1986
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1987 1988 1989 1990
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1991 1992
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1993 1994 1995 1996 1997
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1998
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1999

N
nhzlx 已提交
2000
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2001 2002 2003 2004 2005 2006 2007 2008

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2009 2010
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2011 2012 2013 2014
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2015
#endif
Y
Yao,kun 已提交
2016

2017
#ifdef DROPOUT_OP
N
nhzlx 已提交
2018
template <typename Dtype>
Y
Yao,kun 已提交
2019
class DropoutParam : public OpParam {
N
nhzlx 已提交
2020 2021 2022
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2023 2024 2025
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2026 2027
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2028 2029

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2030 2031
  }

N
nhzlx 已提交
2032
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2033

N
nhzlx 已提交
2034
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2035

Y
yangfei 已提交
2036 2037
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2038
 private:
N
nhzlx 已提交
2039 2040
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2041
  float dropout_prob_;
Y
Yao,kun 已提交
2042
};
2043
#endif
Y
Yao,kun 已提交
2044

H
hjchen2 已提交
2045
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2046
template <typename Dtype>
L
liuruilong 已提交
2047
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2048 2049 2050
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2051 2052 2053 2054
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2055 2056 2057
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2058 2059 2060 2061 2062 2063
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2064
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2065

N
nhzlx 已提交
2066
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2067

N
nhzlx 已提交
2068
  RType *Output() const { return output_; }
L
liuruilong 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2079 2080 2081
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2082 2083 2084 2085 2086 2087 2088
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2114 2115
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2160
    axis = GetAttr<int>("axis", attrs);
2161 2162 2163
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2164
  const int &Axis() const { return axis; }
2165 2166 2167 2168

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2169
  int axis;
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2183
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2184
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2185 2186 2187 2188 2189 2190
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2191 2192
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2193 2194 2195 2196 2197
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2198 2199 2200

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2201
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2202
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2203 2204 2205
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2222 2223
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2224 2225
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2226
  const RType *InputOutPutSize() const { return input_outsize_; }
2227
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2228 2229
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2230 2231 2232 2233 2234

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2235 2236
  int out_h_;
  int out_w_;
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2252
  const RType *Input() const { return input_; }
2253 2254 2255 2256 2257 2258 2259 2260
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2261
template <typename Dtype>
2262 2263 2264 2265 2266
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2267 2268
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

2303
template <typename Dtype>
2304 2305 2306 2307 2308
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2309 2310
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2331 2332
}  // namespace operators
}  // namespace paddle_mobile