op_param.h 92.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
77 78 79 80 81 82 83

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

84 85 86 87 88
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

89 90 91 92 93 94 95 96 97
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
98 99 100 101 102
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

130 131 132 133
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
134 135 136 137 138 139

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

140 141 142 143 144
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
145 146 147 148 149
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

150 151 152 153 154
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
155 156 157 158
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
159 160 161 162 163 164 165 166 167 168 169 170
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
191

E
eclipsess 已提交
192 193 194 195 196 197 198 199 200 201
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
202 203 204 205
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
206

207
  template <typename T>
W
wangliu 已提交
208 209
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
210 211 212
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
213 214 215 216 217
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
218 219 220 221 222 223
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
224 225 226 227 228
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
240 241 242 243 244 245
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
246 247 248 249 250 251 252 253 254 255 256 257
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

258 259 260 261 262
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
263 264 265 266 267
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

268 269 270 271 272
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
273 274 275 276 277 278
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

279 280 281 282 283
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
284 285 286 287 288 289
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
290 291 292 293 294 295
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
296 297 298 299 300
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
301 302 303 304 305
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
306 307 308 309 310 311
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

312 313 314 315 316 317 318 319 320 321 322
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
323
  static const T GetAttr(const string &key, const AttributeMap &map) {
324 325
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
326 327
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
328 329
    return ((Attribute)map.at(key)).GetString();
  }
330

331 332 333 334
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

335
  template <typename T>
W
wangliu 已提交
336
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
337
                        const Scope &scope) {
W
wangliu 已提交
338 339
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
340 341 342 343 344 345
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
346
    }
347
  }
朔-望's avatar
朔-望 已提交
348

E
eclipsess 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

382
  template <typename T>
W
wangliu 已提交
383 384 385
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
386 387
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
388
    vector<T *> var_res;
389 390 391
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
392
    }
393 394
    return var_res;
  }
E
eclipsess 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
408 409
};

N
nhzlx 已提交
410
template <typename Dtype>
411
class ConvParam : public OpParam {
N
nhzlx 已提交
412 413 414
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
415
 public:
416
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
417
            const AttributeMap &attrs, const Scope &scope) {
418 419 420 421 422 423 424 425 426
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
427
  }
朔-望's avatar
朔-望 已提交
428

N
nhzlx 已提交
429
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
430

431
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
432

433
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
434

W
wangliu 已提交
435
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
436

W
wangliu 已提交
437
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
438

W
wangliu 已提交
439
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
440

H
hjchen2 已提交
441 442 443 444
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
445 446
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
447 448 449
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
450
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
451
    EXEC_GEMM_INT8,
H
hjchen2 已提交
452
    EXEC_DEPTHWISE3x3_INT8,
453
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
454 455 456 457
  };

  ExecMode &ExecMode() const { return exec_mode_; }

458
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
459

460 461 462 463 464 465 466
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
467
 public:
N
nhzlx 已提交
468
  RType *input_;
469 470
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
471
  RType *transformed_filter_;
W
wangliu 已提交
472 473 474
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
475
  mutable enum ExecMode exec_mode_;
476
  int groups;
477 478 479 480

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
481 482 483

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
484
 public:
Z
zhangyang 已提交
485 486 487 488 489
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
490 491 492 493 494 495 496

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
497
#endif
朔-望's avatar
朔-望 已提交
498
};
N
nhzlx 已提交
499 500
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
501

N
nhzlx 已提交
502
template <typename Dtype>
朔-望's avatar
朔-望 已提交
503
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
504 505 506
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
507
 public:
508
  ElementwiseAddParam(const VariableNameMap &inputs,
509 510
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
511 512 513
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
514 515 516
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
517
  const GType *InputX() const { return input_x_; }
518

xiebaiyuan's avatar
xiebaiyuan 已提交
519
  const GType *InputY() const { return input_y_; }
520

xiebaiyuan's avatar
xiebaiyuan 已提交
521
  GType *Out() const { return out_; }
522 523 524

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
525
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
526 527 528
  GType *input_x_;
  GType *input_y_;
  GType *out_;
529
  int axis_;
Z
zhangyang 已提交
530 531 532
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
533
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
534 535

 public:
H
hanbuhe 已提交
536 537
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
538
#endif
朔-望's avatar
朔-望 已提交
539 540
};

E
eclipsess 已提交
541
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
571
#endif
E
eclipsess 已提交
572

573
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
574 575
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
576 577
#endif

578
#ifdef ELEMENTWISESUB_OP
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
608
#endif
609

L
liuruilong 已提交
610
#ifdef MUL_OP
N
nhzlx 已提交
611
template <typename Dtype>
朔-望's avatar
朔-望 已提交
612
class MulParam : OpParam {
N
nhzlx 已提交
613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
616
 public:
617
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
618
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
619 620 621
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
622 623 624
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
625

xiebaiyuan's avatar
xiebaiyuan 已提交
626
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
627

xiebaiyuan's avatar
xiebaiyuan 已提交
628
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
629

xiebaiyuan's avatar
xiebaiyuan 已提交
630
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
631

632
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
633

634
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
635

朔-望's avatar
朔-望 已提交
636
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
637 638 639
  GType *input_x_;
  GType *input_y_;
  GType *out_;
640 641
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
642
};
L
liuruilong 已提交
643
#endif
朔-望's avatar
朔-望 已提交
644

L
liuruilong 已提交
645
#ifdef CONCAT_OP
N
nhzlx 已提交
646
template <typename Dtype>
朔-望's avatar
朔-望 已提交
647
class ConcatParam : public OpParam {
N
nhzlx 已提交
648 649 650
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
651
 public:
652
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
653
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
654 655
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
656 657
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
658

N
nhzlx 已提交
659
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
660

xiebaiyuan's avatar
xiebaiyuan 已提交
661
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
662

663
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
664

朔-望's avatar
朔-望 已提交
665
 private:
N
nhzlx 已提交
666
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
667
  GType *out_;
668
  int axis_;
Z
zhangyang 已提交
669 670 671 672 673 674 675 676 677
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
678
};
L
liuruilong 已提交
679
#endif
朔-望's avatar
朔-望 已提交
680

E
eclipsess 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
712
#ifdef LRN_OP
N
nhzlx 已提交
713
template <typename Dtype>
E
eclipsess 已提交
714
class LrnParam : public OpParam {
N
nhzlx 已提交
715 716 717
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
718
 public:
719
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
720
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
721 722 723
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
724 725 726 727
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
728
    data_format_ = GetStringAttr("data_format", attrs);
729
  }
E
eclipsess 已提交
730

N
nhzlx 已提交
731
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
732

N
nhzlx 已提交
733
  RType *Out() const { return out_; }
E
eclipsess 已提交
734

N
nhzlx 已提交
735
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
736

737
  const int &N() const { return n_; }
E
eclipsess 已提交
738

739
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
740

741
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
742

743
  const float &K() const { return k_; }
E
eclipsess 已提交
744

W
wangliu 已提交
745
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
746

朔-望's avatar
朔-望 已提交
747
 private:
N
nhzlx 已提交
748 749 750
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
751 752 753 754
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
755
  string data_format_;
E
eclipsess 已提交
756
};
L
liuruilong 已提交
757 758
#endif

Z
zhaojiaying01 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
#ifdef NORM_OP
template <typename Dtype>
class NormParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_norm_ = OutputNormFrom<GType>(outputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputNorm() const { return output_norm_; }

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_norm_;
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
794
#ifdef BATCHNORM_OP
N
nhzlx 已提交
795
template <typename Dtype>
E
eclipsess 已提交
796
class BatchNormParam : OpParam {
N
nhzlx 已提交
797 798 799
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
800
 public:
801
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
802
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
803 804 805 806 807 808
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
809 810
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
811
    //    is_test_ = GetAttr<bool>("is_test", attrs);
812
  }
E
eclipsess 已提交
813

N
nhzlx 已提交
814
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
815

N
nhzlx 已提交
816
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
817

N
nhzlx 已提交
818
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
819

N
nhzlx 已提交
820
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
821

N
nhzlx 已提交
822
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
823

N
nhzlx 已提交
824
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
825

826
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
827

828
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
829

830
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
831

W
wangliu 已提交
832
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
833

834 835 836 837 838 839 840 841
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
842
 private:
N
nhzlx 已提交
843 844 845 846 847 848
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
849 850 851
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
852
  string data_format_;
853 854
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
855
};
L
liuruilong 已提交
856 857 858
#endif

#ifdef POOL_OP
N
nhzlx 已提交
859
template <typename Dtype>
860
class PoolParam : public OpParam {
N
nhzlx 已提交
861 862 863
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
864
 public:
865
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
866
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
867
    input_ = InputXFrom<GType>(inputs, scope);
868

N
nhzlx 已提交
869
    output_ = OutFrom<GType>(outputs, scope);
870
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
871 872 873
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
874
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
875
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
876
  }
877

N
nhzlx 已提交
878
  const RType *Input() const { return input_; }
879

N
nhzlx 已提交
880
  RType *Output() const { return output_; }
881

W
wangliu 已提交
882
  const string &PoolingType() const { return pooling_type_; }
883

W
wangliu 已提交
884
  const vector<int> &Ksize() const { return ksize_; }
885

W
wangliu 已提交
886
  const vector<int> &Strides() const { return strides_; }
887

W
wangliu 已提交
888
  const vector<int> &Paddings() const { return paddings_; }
889

890
  bool isCeilMode() const { return ceil_mode_; }
891

Z
zhangyang 已提交
892
  bool isGlobalPooling() const { return global_pooling_; }
893

朔-望's avatar
朔-望 已提交
894
 private:
N
nhzlx 已提交
895 896
  RType *input_;
  RType *output_;
W
wangliu 已提交
897 898 899 900
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
901
  bool ceil_mode_;
902
  bool global_pooling_ = false;
Z
zhangyang 已提交
903
#ifdef PADDLE_MOBILE_FPGA
904 905

 private:
H
hanbuhe 已提交
906
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
907 908

 public:
H
hanbuhe 已提交
909 910
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
911
#endif
912
};
L
liuruilong 已提交
913 914 915
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
916
template <typename Dtype>
E
eclipsess 已提交
917
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
918 919 920
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
921 922
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
923
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
924 925 926 927
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
928 929 930 931
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
932 933 934 935

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
936 937
    } else {
      min_max_aspect_ratios_order_ = false;
938
    }
E
eclipsess 已提交
939 940 941 942 943 944
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
945
  const RType *Input() const { return input_; }
E
eclipsess 已提交
946

N
nhzlx 已提交
947
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
948

N
nhzlx 已提交
949
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
950

N
nhzlx 已提交
951
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
952

W
wangliu 已提交
953
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
954

W
wangliu 已提交
955
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
956

W
wangliu 已提交
957
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
958

W
wangliu 已提交
959
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
960 961 962 963 964 965 966 967 968 969 970

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

971 972 973 974
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
975
 private:
N
nhzlx 已提交
976 977 978 979
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
980 981 982 983
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
984 985 986 987 988
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
989
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
990
};
L
liuruilong 已提交
991
#endif
E
eclipsess 已提交
992

L
liuruilong 已提交
993
#ifdef BOXCODER_OP
N
nhzlx 已提交
994
template <typename Dtype>
E
eclipsess 已提交
995
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
996 997 998
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
999 1000
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1001
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1002 1003 1004 1005
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
1006
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1007
  }
N
nhzlx 已提交
1008
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1009

N
nhzlx 已提交
1010
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1011

N
nhzlx 已提交
1012
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1013

N
nhzlx 已提交
1014
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1015 1016 1017 1018

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
1019 1020 1021 1022
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
1023 1024
  std::string code_type_;
};
L
liuruilong 已提交
1025
#endif
W
wangliu 已提交
1026

L
liuruilong 已提交
1027
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1028
template <typename Dtype>
W
wangliu 已提交
1029
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1030 1031 1032
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1033 1034
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1035
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1036 1037
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1038
  }
H
hjchen2 已提交
1039 1040
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1041 1042

 private:
H
hjchen2 已提交
1043 1044
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1045 1046 1047 1048

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
1049
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
1050 1051 1052
  fpga::BypassArgs fpga_bypass_args;

 public:
1053
  RType *FloatInput() const {
H
hanbuhe 已提交
1054 1055 1056 1057 1058 1059
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1060
};
L
liuruilong 已提交
1061
#endif
W
wangliu 已提交
1062

L
liuruilong 已提交
1063
#ifdef SIGMOID_OP
N
nhzlx 已提交
1064
template <typename Dtype>
W
wangliu 已提交
1065
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1066 1067 1068
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1069 1070
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1071
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1072 1073
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1074
  }
N
nhzlx 已提交
1075 1076
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1077 1078

 private:
N
nhzlx 已提交
1079 1080
  RType *input_x_;
  RType *out_;
1081 1082 1083 1084 1085 1086 1087 1088 1089
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1090
};
L
liuruilong 已提交
1091 1092 1093
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1094
template <typename Dtype>
E
eclipsess 已提交
1095
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1096 1097 1098
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1099 1100 1101 1102
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1103 1104 1105
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1106 1107 1108 1109 1110 1111 1112 1113
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1114
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1115

Y
yangfei 已提交
1116
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1117

N
nhzlx 已提交
1118
  RType *Out() const { return out_; }
E
eclipsess 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1133 1134 1135
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1136 1137 1138 1139 1140 1141 1142
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1143
#endif
W
wangliu 已提交
1144

L
lijiancheng0614 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1167
template <typename Dtype>
L
liuruilong 已提交
1168
class FeedParam : public OpParam {
N
nhzlx 已提交
1169 1170 1171
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1172 1173
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1174
            const AttributeMap &attrs, const Scope &scope) {
H
update  
hjchen2 已提交
1175
    input_x_ = InputXFrom<framework::LoDTensorArray>(inputs, scope);
Y
yangfei 已提交
1176
    out_ = OutFrom<GType>(outputs, scope);
H
update  
hjchen2 已提交
1177
    col_ = GetAttr<int>("col", attrs);
Y
yangfei 已提交
1178
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1179
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1180
  }
H
update  
hjchen2 已提交
1181
  const framework::LoDTensorArray *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1182
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1183
  const int Col() const { return col_; }
W
wangliu 已提交
1184
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1185

L
liuruilong 已提交
1186
 private:
H
update  
hjchen2 已提交
1187
  framework::LoDTensorArray *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1188
  GType *out_;
H
update  
hjchen2 已提交
1189
  int col_;
W
wangliu 已提交
1190
  int batch_size;
L
liuruilong 已提交
1191 1192
};

N
nhzlx 已提交
1193
template <typename Dtype>
L
liuruilong 已提交
1194
class FetchParam : public OpParam {
N
nhzlx 已提交
1195 1196 1197
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1198 1199
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1200
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1201
    input_x_ = InputXFrom<GType>(inputs, scope);
1202
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1203
  }
L
liuruilong 已提交
1204

N
nhzlx 已提交
1205
  const RType *InputX() const { return input_x_; }
1206 1207 1208
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1209
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1210
  }
L
liuruilong 已提交
1211

L
liuruilong 已提交
1212
 private:
N
nhzlx 已提交
1213
  RType *input_x_;
Y
yangfei 已提交
1214
  Tensor *out_;
qnqinan's avatar
qnqinan 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
L
liuruilong 已提交
1229 1230
};

L
lijiancheng0614 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1267
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1268
template <typename Dtype>
E
eclipsess 已提交
1269
class TransposeParam : public OpParam {
N
nhzlx 已提交
1270 1271 1272
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1273 1274 1275
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1276 1277
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1278 1279 1280
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1281
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1282

N
nhzlx 已提交
1283
  RType *Out() const { return out_; }
E
eclipsess 已提交
1284 1285 1286 1287

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1288 1289
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1290 1291
  vector<int> axis_;
};
L
liuruilong 已提交
1292
#endif
E
eclipsess 已提交
1293

L
lijiancheng0614 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1391
#ifdef RESHAPE_OP
N
nhzlx 已提交
1392
template <typename Dtype>
E
eclipsess 已提交
1393
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1394 1395 1396
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1397 1398 1399
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1400 1401 1402
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1403
    shape_ = GetAttr<vector<int>>("shape", attrs);
1404 1405 1406 1407 1408 1409 1410

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1411 1412
  }

N
nhzlx 已提交
1413
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1414

N
nhzlx 已提交
1415
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1416

N
nhzlx 已提交
1417
  RType *Out() const { return out_; }
E
eclipsess 已提交
1418 1419 1420 1421 1422 1423

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1424 1425 1426
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1427 1428 1429
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1430
#endif
E
eclipsess 已提交
1431

L
lijiancheng0614 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1453
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1454

E
eclipsess 已提交
1455
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1456

E
eclipsess 已提交
1457
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1458

E
eclipsess 已提交
1459
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1460 1461 1462 1463 1464 1465

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1466 1467 1468 1469
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1470 1471 1472 1473 1474
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1475
#ifdef SCALE_OP
N
nhzlx 已提交
1476
template <typename Dtype>
I
itminner 已提交
1477
class ScaleParam : public OpParam {
N
nhzlx 已提交
1478 1479 1480
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1481 1482 1483
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1484 1485 1486
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1487 1488 1489 1490 1491 1492
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1493
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1494

N
nhzlx 已提交
1495
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1496

N
nhzlx 已提交
1497
  RType *Out() const { return out_; }
I
itminner 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1508 1509 1510
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1511 1512 1513 1514 1515
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1516 1517 1518
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1519
template <typename Dtype>
I
itminner 已提交
1520
class SliceParam : public OpParam {
N
nhzlx 已提交
1521 1522 1523
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1524 1525 1526
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1527 1528
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1529

1530 1531 1532 1533
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1534

1535 1536 1537 1538 1539 1540
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1541
};
T
Tian 已提交
1542 1543 1544
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1545
template <typename Dtype>
T
Tian 已提交
1546
class ResizeParam : public OpParam {
N
nhzlx 已提交
1547 1548 1549
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1550 1551 1552
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1553 1554 1555
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1556 1557 1558 1559 1560 1561
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1562

N
nhzlx 已提交
1563
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1564

N
nhzlx 已提交
1565
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1566

N
nhzlx 已提交
1567
  RType *Out() const { return out_; }
T
Tian 已提交
1568

I
itminner 已提交
1569
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1570

I
itminner 已提交
1571
  const int &Height() const { return height_; }
T
Tian 已提交
1572

I
itminner 已提交
1573
  const int &Width() const { return width_; }
T
Tian 已提交
1574

I
itminner 已提交
1575
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1576

I
itminner 已提交
1577
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1578

I
itminner 已提交
1579
 private:
N
nhzlx 已提交
1580 1581 1582
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1583 1584 1585 1586 1587
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1588 1589 1590
};
#endif

L
liuruilong 已提交
1591
#ifdef RELU_OP
L
liuruilong 已提交
1592 1593 1594
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1595
template <typename Dtype>
D
relu  
dolphin8 已提交
1596
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1597 1598 1599
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1600
 public:
D
relu  
dolphin8 已提交
1601
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1602
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1603 1604
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1605 1606
  }

N
nhzlx 已提交
1607
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1608

N
nhzlx 已提交
1609
  RType *Out() const { return out_; }
E
eclipsess 已提交
1610 1611

 private:
N
nhzlx 已提交
1612 1613
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1614
};
D
relu  
dolphin8 已提交
1615 1616 1617

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1618
 public:
D
relu  
dolphin8 已提交
1619 1620 1621
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1622
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1623 1624
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1625
 public:
D
relu  
dolphin8 已提交
1626
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1627 1628 1629
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1630 1631
  framework::CLImage midImage;
};
Y
yangfei 已提交
1632
#endif
D
relu  
dolphin8 已提交
1633

L
liuruilong 已提交
1634
#endif
E
eclipsess 已提交
1635

Z
zhangyang 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1668
};
L
liuruilong 已提交
1669
#endif
E
eclipsess 已提交
1670

T
Tian 已提交
1671
#ifdef PRELU_OP
N
nhzlx 已提交
1672
template <typename Dtype>
T
Tian 已提交
1673
class PReluParam : public OpParam {
N
nhzlx 已提交
1674 1675 1676
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1677 1678 1679
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1680
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1681
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1682
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1683
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1684
    out_ = OutFrom<GType>(outputs, scope);
1685
    mode_ = GetStringAttr("mode", attrs);
1686
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1687
  }
N
nhzlx 已提交
1688
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1689
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1690
  RType *Out() const { return out_; }
1691
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1692

I
itminner 已提交
1693
 private:
N
nhzlx 已提交
1694 1695
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1696
  RType *alpha_;
1697
  std::string mode_;
T
Tian 已提交
1698 1699 1700
};
#endif

N
nhzlx 已提交
1701
template <typename Dtype>
L
liuruilong 已提交
1702
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1703 1704 1705
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1706
 public:
L
liuruilong 已提交
1707
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1708
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1709 1710 1711 1712
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1713 1714 1715 1716
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1717
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1718

Y
yangfei 已提交
1719
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1720

Y
yangfei 已提交
1721
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1722

xiebaiyuan's avatar
xiebaiyuan 已提交
1723
  GType *Out() const { return out_; }
E
eclipsess 已提交
1724 1725 1726 1727 1728 1729 1730 1731

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1732
  GType *input_x_;
N
nhzlx 已提交
1733 1734
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1735
  GType *out_;
E
eclipsess 已提交
1736 1737 1738
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1739

Z
ZhenWang 已提交
1740
#ifdef PADDLE_MOBILE_FPGA
1741
 private:  // NOLINT
Z
zhangyang 已提交
1742
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1743 1744

 public:
Z
zhangyang 已提交
1745 1746
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1747
#endif
E
eclipsess 已提交
1748
};
1749 1750

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1751 1752
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1753
#endif
E
eclipsess 已提交
1754

N
nhzlx 已提交
1755
template <typename Dtype>
1756
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1757 1758 1759
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1760
 public:
L
liuruilong 已提交
1761
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1762
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1763 1764 1765 1766 1767
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1768
  }
N
nhzlx 已提交
1769
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1770 1771 1772

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1773
  RType *Output() const { return output_; }
W
wangliu 已提交
1774

L
liuruilong 已提交
1775
 protected:
N
nhzlx 已提交
1776
  RType *bias_;
W
wangliu 已提交
1777
  int axis_;
N
nhzlx 已提交
1778
  RType *output_;
W
wangliu 已提交
1779 1780
};

N
nhzlx 已提交
1781 1782
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1783

Z
zhangyang 已提交
1784
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1785 1786
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1787
 public:
L
liuruilong 已提交
1788
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1789 1790
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1791
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1792 1793 1794
};
#endif

1795
#ifdef FUSION_CONVADDPRELU_OP
1796 1797 1798 1799
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1800 1801 1802 1803

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1804 1805 1806
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1807
    mode_ = OpParam::GetStringAttr("mode", attrs);
1808
    framework::DDim dims = alpha_->dims();
1809 1810 1811
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1829 1830 1831 1832
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1833 1834 1835 1836

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1837 1838 1839 1840
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1841
    mode_ = OpParam::GetStringAttr("mode", attrs);
1842
    framework::DDim dims = alpha_->dims();
1843 1844 1845 1846 1847 1848
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1849
    if (keyX1_ == keyOutput_) {
1850
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1851
    } else if (keyY1_ == keyOutput_) {
1852
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1877
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1878
template <typename Dtype>
1879
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1880 1881 1882
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1883 1884 1885
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1898
  }
N
nhzlx 已提交
1899
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1900 1901 1902

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1903
  RType *Output() const { return output_; }
E
eclipsess 已提交
1904

N
nhzlx 已提交
1905
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1906

N
nhzlx 已提交
1907
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1908

N
nhzlx 已提交
1909
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1910

N
nhzlx 已提交
1911
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1912 1913 1914 1915 1916 1917 1918

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1919
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1920

N
nhzlx 已提交
1921
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1922

N
nhzlx 已提交
1923
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1924

N
nhzlx 已提交
1925
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1926 1927

 protected:
N
nhzlx 已提交
1928
  RType *bias_;
E
eclipsess 已提交
1929
  int axis_;
N
nhzlx 已提交
1930 1931 1932 1933 1934
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1935 1936 1937
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1938 1939
  RType *new_bias_;
  RType *new_scale_;
1940 1941 1942 1943 1944
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1945
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1946 1947 1948 1949 1950 1951
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1966
    if (keyX_ == keyBNY_) {
1967
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1968
    } else if (keyY_ == keyBNY_) {
1969
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1970
    }
1971
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2017
};
2018
#endif
E
eclipsess 已提交
2019

Z
zhangyang 已提交
2020
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2021
template <typename Dtype>
2022
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2023 2024 2025
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2026 2027 2028
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
2039
  }
N
nhzlx 已提交
2040
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
2041

N
nhzlx 已提交
2042
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2043

N
nhzlx 已提交
2044
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2045

N
nhzlx 已提交
2046
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2047

N
nhzlx 已提交
2048
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2049 2050 2051 2052 2053 2054 2055

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2056
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2057

N
nhzlx 已提交
2058
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2059

N
nhzlx 已提交
2060
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2061

N
nhzlx 已提交
2062
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2063 2064

 protected:
N
nhzlx 已提交
2065 2066 2067 2068 2069
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
2070 2071 2072
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2073 2074
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2075 2076 2077
};
#endif

2078
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2079
template <typename Dtype>
2080
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2081 2082 2083
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2084 2085 2086
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2099
  }
N
nhzlx 已提交
2100
  RType *Bias() const { return bias_; }
2101 2102 2103

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2104
  RType *Output() const { return output_y_; }
2105

N
nhzlx 已提交
2106
  const RType *InputBias() const { return input_bias_; }
2107

N
nhzlx 已提交
2108
  const RType *InputMean() const { return input_mean_; }
2109

N
nhzlx 已提交
2110
  const RType *InputScale() const { return input_scale_; }
2111

N
nhzlx 已提交
2112
  const RType *InputVariance() const { return input_variance_; }
2113 2114 2115 2116 2117 2118 2119

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2120
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2121

N
nhzlx 已提交
2122
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2123

N
nhzlx 已提交
2124
  const RType *NewScale() const { return new_scale_; }
2125

N
nhzlx 已提交
2126
  const RType *NewBias() const { return new_bias_; }
2127 2128

 protected:
N
nhzlx 已提交
2129
  RType *bias_;
2130
  int axis_;
N
nhzlx 已提交
2131 2132 2133 2134 2135
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2136 2137 2138
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2139 2140
  RType *new_bias_;
  RType *new_scale_;
2141
};
E
eclipsess 已提交
2142
#endif
Y
Yao,kun 已提交
2143

E
eclipsess 已提交
2144
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2145
template <typename Dtype>
2146
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2147 2148 2149
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2150 2151 2152
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2163
  }
N
nhzlx 已提交
2164
  RType *Output() const { return output_; }
E
eclipsess 已提交
2165

N
nhzlx 已提交
2166
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2167

N
nhzlx 已提交
2168
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2169

N
nhzlx 已提交
2170
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2171

N
nhzlx 已提交
2172
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2173 2174 2175 2176 2177 2178 2179

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2180
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2181

N
nhzlx 已提交
2182
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2183

N
nhzlx 已提交
2184
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2185

N
nhzlx 已提交
2186
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2187 2188

 protected:
N
nhzlx 已提交
2189 2190 2191 2192 2193
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2194 2195 2196
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2197 2198
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2199 2200 2201 2202
};

#endif

2203
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2204
template <typename Dtype>
2205
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2206 2207 2208
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2209 2210 2211
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2222
  }
N
nhzlx 已提交
2223
  RType *Output() const { return output_; }
2224

N
nhzlx 已提交
2225
  const RType *InputBias() const { return input_bias_; }
2226

N
nhzlx 已提交
2227
  const RType *InputMean() const { return input_mean_; }
2228

N
nhzlx 已提交
2229
  const RType *InputScale() const { return input_scale_; }
2230

N
nhzlx 已提交
2231
  const RType *InputVariance() const { return input_variance_; }
2232 2233 2234 2235 2236 2237 2238

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2239
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2240

N
nhzlx 已提交
2241
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2242

N
nhzlx 已提交
2243
  const RType *NewScale() const { return new_scale_; }
2244

N
nhzlx 已提交
2245
  const RType *NewBias() const { return new_bias_; }
2246 2247

 protected:
N
nhzlx 已提交
2248 2249 2250 2251 2252
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2253 2254 2255
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2256 2257
  RType *new_bias_;
  RType *new_scale_;
2258 2259 2260
};
#endif

Y
Yao,kun 已提交
2261
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2262
template <typename Dtype>
Y
Yao,kun 已提交
2263
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2264 2265 2266
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2267 2268 2269 2270
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2271 2272
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2273 2274 2275 2276 2277
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2278
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2279

E
eclipsess 已提交
2280
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2281 2282 2283 2284 2285 2286 2287 2288

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2289 2290
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2291 2292 2293 2294
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2295
#endif
Y
Yao,kun 已提交
2296

2297
#ifdef DROPOUT_OP
N
nhzlx 已提交
2298
template <typename Dtype>
Y
Yao,kun 已提交
2299
class DropoutParam : public OpParam {
N
nhzlx 已提交
2300 2301 2302
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2303 2304 2305
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2306 2307
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2308 2309

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2310 2311
  }

N
nhzlx 已提交
2312
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2313

N
nhzlx 已提交
2314
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2315

Y
yangfei 已提交
2316 2317
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2318
 private:
N
nhzlx 已提交
2319 2320
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2321
  float dropout_prob_;
Y
Yao,kun 已提交
2322
};
2323
#endif
Y
Yao,kun 已提交
2324

N
nhzlx 已提交
2325
template <typename Dtype>
L
liuruilong 已提交
2326
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2327 2328 2329
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2330 2331 2332 2333
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2334 2335
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2336
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2337
    if (outputs.count("Output")) {
2338
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2339
    }
L
liuruilong 已提交
2340 2341 2342 2343 2344 2345
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2346
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2347

N
nhzlx 已提交
2348
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2349

N
nhzlx 已提交
2350
  RType *Output() const { return output_; }
L
liuruilong 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2361 2362 2363
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2364 2365 2366 2367
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2368 2369 2370 2371 2372

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2373
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2374 2375 2376

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2377 2378 2379
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2380
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2381 2382 2383
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2384
#endif
L
liuruilong 已提交
2385
};
Z
zhangyang 已提交
2386

qnqinan's avatar
qnqinan 已提交
2387 2388 2389 2390 2391
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2392 2393

 public:
qnqinan's avatar
qnqinan 已提交
2394
  FusionDeconvAddParam(const VariableNameMap &inputs,
2395 2396 2397
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2419

Z
zhangyang 已提交
2420 2421 2422 2423 2424
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2450 2451
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_gate_ = OutputGateFrom<GType>(outputs, scope);
    output_reset_hidden_prev_ =
        OutputResetHiddenPrevFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2541
    axis = GetAttr<int>("axis", attrs);
2542 2543 2544
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2545
  const int &Axis() const { return axis; }
2546 2547 2548 2549

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2550
  int axis;
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2564
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2565
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2566 2567 2568 2569 2570 2571
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2572 2573
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2574 2575 2576 2577 2578
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2579 2580 2581

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2582
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2583
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2584 2585 2586
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2587 2588 2589 2590 2591 2592 2593 2594 2595
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2612 2613
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2614 2615
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2616
  const RType *InputOutPutSize() const { return input_outsize_; }
2617
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2618 2619
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2620 2621 2622 2623 2624

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2625 2626
  int out_h_;
  int out_w_;
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2642
  const RType *Input() const { return input_; }
2643 2644 2645 2646 2647 2648 2649 2650
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2697
#ifdef QUANT_OP
2698
template <typename Dtype>
2699 2700 2701 2702 2703
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2704 2705
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2706
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2707
    output_ = OutFrom<GType>(outputs, scope);
2708 2709
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2710
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2711
    // offline
2712
    if (inputs.count("InScale")) {
2713 2714
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2715 2716
    }
    // x = round(scale * x)
2717 2718
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2719
    }
2720 2721 2722 2723
  }

 public:
  // op input
2724
  GType *input_;
2725
  // op output
2726
  GType *output_;
2727
  RType *online_scale_;
2728 2729 2730 2731
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2732
  // round method type
2733 2734
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2735
};
2736
#endif
2737

2738
#ifdef DEQUANT_OP
2739
template <typename Dtype>
2740 2741 2742 2743 2744
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2745 2746
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2747
    input_ = InputXFrom<GType>(inputs, scope);
2748
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2749
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2750
    // dequantization is performed as x = x / static_scale / online_scale
2751 2752
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2753
    } else {
2754
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2755 2756 2757 2758 2759
    }
  }

 public:
  // op input
2760
  GType *input_;
2761
  // op output
2762
  GType *output_;
2763 2764 2765
  RType *activation_scale_;
  float weight_scale_;
};
2766
#endif
2767

2768 2769 2770 2771
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2772
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2773
template <typename Dtype>
2774
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2775 2776 2777 2778
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2779 2780 2781
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
2798 2799 2800
};
#endif

2801 2802 2803 2804
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2841 2842 2843
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2844 2845 2846 2847 2848 2849 2850 2851 2852
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
2853 2854 2855 2856
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2857 2858 2859 2860 2861 2862
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
2904
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    input_y_ = nullptr;
    if (inputs.count("Y")) {
      input_y_ = InputYFrom<GType>(inputs, scope);
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
2965
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
2966
template <typename Dtype>
Z
zhaojiaying01 已提交
2967
class LogicalBinaryParam : public OpParam {
2968 2969 2970 2971
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2972 2973 2974
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
2989
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
2990 2991 2992

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
2993
class LogicalUnaryParam : public OpParam {
2994 2995 2996 2997
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2998 2999 3000
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, scope);
  }

 public:
  framework::LoDTensor *input_;
  framework::LoDTensor *index_;
  framework::LoDTensorArray *output_;
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
    input_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ = OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, scope);
  }

 public:
  framework::LoDTensorArray *input_;
  framework::LoDTensor *index_;
  framework::LoDTensor *output_;
};
#endif

Z
zhaojiaying01 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
H
update  
hjchen2 已提交
3087
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3088 3089 3090 3091
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3092
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3093 3094 3095 3096

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3097
  float step_;
Z
zhaojiaying01 已提交
3098 3099 3100
};
#endif  // INCREMENT_OP

朔-望's avatar
朔-望 已提交
3101 3102
}  // namespace operators
}  // namespace paddle_mobile