op_param.h 46.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28
#ifdef PADDLE_MOBILE_FPGA
#include "fpga/api/fpga_api.h"
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
91 92 93 94 95
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
113 114 115 116
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
133

E
eclipsess 已提交
134 135 136 137 138 139 140 141 142 143
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
144 145 146 147
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
148

149
  template <typename T>
W
wangliu 已提交
150 151
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    return GetMultiVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
170 171 172 173 174 175
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
176 177 178 179 180
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
181 182 183 184 185 186
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

187 188 189 190 191 192 193 194 195 196 197
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
198
  static const T GetAttr(const string &key, const AttributeMap &map) {
199 200 201 202
    return ((Attribute)map.at(key)).Get<T>();
  }

  template <typename T>
W
wangliu 已提交
203
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
204
                        const Scope &scope) {
W
wangliu 已提交
205 206
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
207 208 209 210 211 212
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
213
    }
214
  }
朔-望's avatar
朔-望 已提交
215

216
  template <typename T>
W
wangliu 已提交
217 218 219
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
220 221
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
222
    vector<T *> var_res;
223 224 225
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
226
    }
227 228
    return var_res;
  }
朔-望's avatar
朔-望 已提交
229 230
};

L
liuruilong 已提交
231
#ifdef CONV_OP
N
nhzlx 已提交
232
template <typename Dtype>
朔-望's avatar
朔-望 已提交
233
class ConvParam : OpParam {
N
nhzlx 已提交
234 235 236
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
237
 public:
238
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
239
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
240 241 242
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
W
wangliu 已提交
243 244 245
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
246 247
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
248

N
nhzlx 已提交
249
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
250

N
nhzlx 已提交
251
  const RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
252

N
nhzlx 已提交
253
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
254

W
wangliu 已提交
255
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
256

W
wangliu 已提交
257
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
258

W
wangliu 已提交
259
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
260

261
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
262

朔-望's avatar
朔-望 已提交
263
 private:
N
nhzlx 已提交
264 265 266
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
267 268 269
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
270
  int groups;
朔-望's avatar
朔-望 已提交
271
};
N
nhzlx 已提交
272 273
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
L
liuruilong 已提交
274
#endif
朔-望's avatar
朔-望 已提交
275

N
nhzlx 已提交
276
template <typename Dtype>
朔-望's avatar
朔-望 已提交
277
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
278 279 280
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
281
 public:
282
  ElementwiseAddParam(const VariableNameMap &inputs,
283 284
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
285 286 287
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
288 289 290
    axis_ = GetAttr<int>("axis", attrs);
  }

N
nhzlx 已提交
291
  const RType *InputX() const { return input_x_; }
292

N
nhzlx 已提交
293
  const RType *InputY() const { return input_y_; }
294

N
nhzlx 已提交
295
  RType *Out() const { return out_; }
296 297 298

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
299
 private:
N
nhzlx 已提交
300 301 302
  RType *input_x_;
  RType *input_y_;
  RType *out_;
303
  int axis_;
Z
zhangyang 已提交
304 305 306
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
307
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
308 309

 public:
H
hanbuhe 已提交
310 311
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
312
#endif
朔-望's avatar
朔-望 已提交
313 314
};

315
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
316 317
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
318 319 320
#endif

#ifdef MUL_OP
N
nhzlx 已提交
321
template <typename Dtype>
朔-望's avatar
朔-望 已提交
322
class MulParam : OpParam {
N
nhzlx 已提交
323 324 325
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
326
 public:
327
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
328
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
329 330 331
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
332 333 334
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
335

N
nhzlx 已提交
336
  const RType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
337

N
nhzlx 已提交
338
  const RType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
339

N
nhzlx 已提交
340
  RType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
341

342
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
343

344
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
345

朔-望's avatar
朔-望 已提交
346
 private:
N
nhzlx 已提交
347 348 349
  RType *input_x_;
  RType *input_y_;
  RType *out_;
350 351
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
352
};
L
liuruilong 已提交
353
#endif
朔-望's avatar
朔-望 已提交
354

L
liuruilong 已提交
355
#ifdef CONCAT_OP
N
nhzlx 已提交
356
template <typename Dtype>
朔-望's avatar
朔-望 已提交
357
class ConcatParam : public OpParam {
N
nhzlx 已提交
358 359 360
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
361
 public:
362
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
363
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
364 365
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
366 367
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
368

N
nhzlx 已提交
369
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
370

N
nhzlx 已提交
371
  RType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
372

373
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
374

朔-望's avatar
朔-望 已提交
375
 private:
N
nhzlx 已提交
376 377
  vector<GType *> inputs_;
  RType *out_;
378
  int axis_;
朔-望's avatar
朔-望 已提交
379
};
L
liuruilong 已提交
380
#endif
朔-望's avatar
朔-望 已提交
381

L
liuruilong 已提交
382
#ifdef LRN_OP
N
nhzlx 已提交
383
template <typename Dtype>
E
eclipsess 已提交
384
class LrnParam : public OpParam {
N
nhzlx 已提交
385 386 387
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
388
 public:
389
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
390
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
391 392 393
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
394 395 396 397
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
398
    data_format_ = GetAttr<string>("data_format", attrs);
399
  }
E
eclipsess 已提交
400

N
nhzlx 已提交
401
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
402

N
nhzlx 已提交
403
  RType *Out() const { return out_; }
E
eclipsess 已提交
404

N
nhzlx 已提交
405
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
406

407
  const int &N() const { return n_; }
E
eclipsess 已提交
408

409
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
410

411
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
412

413
  const float &K() const { return k_; }
E
eclipsess 已提交
414

W
wangliu 已提交
415
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
416

朔-望's avatar
朔-望 已提交
417
 private:
N
nhzlx 已提交
418 419 420
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
421 422 423 424
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
425
  string data_format_;
E
eclipsess 已提交
426
};
L
liuruilong 已提交
427 428 429
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
430
template <typename Dtype>
E
eclipsess 已提交
431
class BatchNormParam : OpParam {
N
nhzlx 已提交
432 433 434
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
435
 public:
436
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
437
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
438 439 440 441 442 443
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
444 445
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
446
    //    is_test_ = GetAttr<bool>("is_test", attrs);
447
  }
E
eclipsess 已提交
448

N
nhzlx 已提交
449
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
450

N
nhzlx 已提交
451
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
452

N
nhzlx 已提交
453
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
454

N
nhzlx 已提交
455
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
456

N
nhzlx 已提交
457
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
458

N
nhzlx 已提交
459
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
460

461
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
462

463
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
464

465
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
466

W
wangliu 已提交
467
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
468

朔-望's avatar
朔-望 已提交
469
 private:
N
nhzlx 已提交
470 471 472 473 474 475
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
476 477 478
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
479
  string data_format_;
E
eclipsess 已提交
480
};
L
liuruilong 已提交
481 482 483
#endif

#ifdef POOL_OP
N
nhzlx 已提交
484
template <typename Dtype>
485
class PoolParam : public OpParam {
N
nhzlx 已提交
486 487 488
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
489
 public:
490
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
491
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
492
    input_ = InputXFrom<GType>(inputs, scope);
493

N
nhzlx 已提交
494
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
495 496 497 498
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
499
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
500
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
501
  }
502

N
nhzlx 已提交
503
  const RType *Input() const { return input_; }
504

N
nhzlx 已提交
505
  RType *Output() const { return output_; }
506

W
wangliu 已提交
507
  const string &PoolingType() const { return pooling_type_; }
508

W
wangliu 已提交
509
  const vector<int> &Ksize() const { return ksize_; }
510

W
wangliu 已提交
511
  const vector<int> &Strides() const { return strides_; }
512

W
wangliu 已提交
513
  const vector<int> &Paddings() const { return paddings_; }
514

515
  bool isCeilMode() const { return ceil_mode_; }
516

Z
zhangyang 已提交
517
  bool isGlobalPooling() const { return global_pooling_; }
518

朔-望's avatar
朔-望 已提交
519
 private:
N
nhzlx 已提交
520 521
  RType *input_;
  RType *output_;
W
wangliu 已提交
522 523 524 525
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
526
  bool ceil_mode_;
527
  bool global_pooling_ = false;
Z
zhangyang 已提交
528
#ifdef PADDLE_MOBILE_FPGA
529 530

 private:
H
hanbuhe 已提交
531
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
532 533

 public:
H
hanbuhe 已提交
534 535
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
536
#endif
537
};
L
liuruilong 已提交
538 539 540
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
541
template <typename Dtype>
E
eclipsess 已提交
542
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
543 544 545
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
546 547
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
548
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
549 550 551 552
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
553 554 555 556
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
557 558 559 560 561 562
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
563
  const RType *Input() const { return input_; }
E
eclipsess 已提交
564

N
nhzlx 已提交
565
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
566

N
nhzlx 已提交
567
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
568

N
nhzlx 已提交
569
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
570

W
wangliu 已提交
571
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
572

W
wangliu 已提交
573
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
574

W
wangliu 已提交
575
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
576

W
wangliu 已提交
577
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
578 579 580 581 582 583 584 585 586 587 588 589

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
N
nhzlx 已提交
590 591 592 593
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
594 595 596 597
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
598 599 600 601 602 603
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
604
#endif
E
eclipsess 已提交
605

L
liuruilong 已提交
606
#ifdef BOXCODER_OP
N
nhzlx 已提交
607
template <typename Dtype>
E
eclipsess 已提交
608
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
609 610 611
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
612 613
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
614
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
615 616 617 618
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
619 620
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
621
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
622

N
nhzlx 已提交
623
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
624

N
nhzlx 已提交
625
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
626

N
nhzlx 已提交
627
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
628 629 630 631

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
632 633 634 635
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
636 637
  std::string code_type_;
};
L
liuruilong 已提交
638
#endif
W
wangliu 已提交
639

L
liuruilong 已提交
640
#ifdef SOFTMAX_OP
N
nhzlx 已提交
641
template <typename Dtype>
W
wangliu 已提交
642
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
643 644 645
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
646 647
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
648
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
649 650
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
651
  }
N
nhzlx 已提交
652 653
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
654 655

 private:
N
nhzlx 已提交
656 657
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
658
};
L
liuruilong 已提交
659
#endif
W
wangliu 已提交
660

L
liuruilong 已提交
661
#ifdef SIGMOID_OP
N
nhzlx 已提交
662
template <typename Dtype>
W
wangliu 已提交
663
class SigmoidParam : public OpParam {
N
nhzlx 已提交
664 665 666
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
667 668
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
669
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
670 671
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
672
  }
N
nhzlx 已提交
673 674
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
675 676

 private:
N
nhzlx 已提交
677 678
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
679
};
L
liuruilong 已提交
680 681 682
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
683
template <typename Dtype>
E
eclipsess 已提交
684
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
685 686 687
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
688 689 690 691
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
692 693 694
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
695 696 697 698 699 700 701 702
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
703
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
704

N
nhzlx 已提交
705
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
706

N
nhzlx 已提交
707
  RType *Out() const { return out_; }
E
eclipsess 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
722 723 724
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
725 726 727 728 729 730 731
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
732
#endif
W
wangliu 已提交
733

N
nhzlx 已提交
734
template <typename Dtype>
L
liuruilong 已提交
735
class FeedParam : public OpParam {
N
nhzlx 已提交
736 737 738
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
739 740
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
741
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
742 743
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
744
    auto var = scope->Var("batch_size");
W
wangliu 已提交
745
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
746
  }
N
nhzlx 已提交
747 748
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
749
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
750

L
liuruilong 已提交
751
 private:
N
nhzlx 已提交
752 753
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
754
  int batch_size;
Z
zhangyang 已提交
755 756 757 758 759 760 761 762 763 764

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
L
liuruilong 已提交
765 766
};

N
nhzlx 已提交
767
template <typename Dtype>
L
liuruilong 已提交
768
class FetchParam : public OpParam {
N
nhzlx 已提交
769 770 771
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
772 773
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
774
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
775 776
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
777
  }
N
nhzlx 已提交
778 779
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
780

L
liuruilong 已提交
781
 private:
N
nhzlx 已提交
782 783
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
784 785
};

L
liuruilong 已提交
786
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
787
template <typename Dtype>
E
eclipsess 已提交
788
class TransposeParam : public OpParam {
N
nhzlx 已提交
789 790 791
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
792 793 794
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
795 796
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
797 798 799
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
800
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
801

N
nhzlx 已提交
802
  RType *Out() const { return out_; }
E
eclipsess 已提交
803 804 805 806

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
807 808
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
809 810
  vector<int> axis_;
};
L
liuruilong 已提交
811
#endif
E
eclipsess 已提交
812

L
liuruilong 已提交
813
#ifdef RESHAPE_OP
N
nhzlx 已提交
814
template <typename Dtype>
E
eclipsess 已提交
815
class ReshapeParam : public OpParam {
N
nhzlx 已提交
816 817 818
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
819 820 821
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
822 823 824
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
825 826 827 828
    shape_ = GetAttr<vector<int>>("shape", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
829
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
830

N
nhzlx 已提交
831
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
832

N
nhzlx 已提交
833
  RType *Out() const { return out_; }
E
eclipsess 已提交
834 835 836 837 838 839

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
840 841 842
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
843 844 845
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
846
#endif
E
eclipsess 已提交
847

T
Tian 已提交
848
#ifdef SCALE_OP
N
nhzlx 已提交
849
template <typename Dtype>
I
itminner 已提交
850
class ScaleParam : public OpParam {
N
nhzlx 已提交
851 852 853
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
854 855 856
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
857 858 859
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
860 861 862 863 864 865
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
866
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
867

N
nhzlx 已提交
868
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
869

N
nhzlx 已提交
870
  RType *Out() const { return out_; }
I
itminner 已提交
871 872 873 874 875 876 877 878 879 880

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
881 882 883
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
884 885 886 887 888
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
889 890 891
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
892
template <typename Dtype>
I
itminner 已提交
893
class SliceParam : public OpParam {
N
nhzlx 已提交
894 895 896
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
897 898 899
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
900 901 902
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
903 904 905 906 907
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
908
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
909

N
nhzlx 已提交
910
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
911

N
nhzlx 已提交
912
  RType *Out() const { return out_; }
I
itminner 已提交
913 914 915 916 917 918 919 920

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
921 922 923
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
924 925 926 927
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
928 929 930
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
931
template <typename Dtype>
T
Tian 已提交
932
class ResizeParam : public OpParam {
N
nhzlx 已提交
933 934 935
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
936 937 938
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
939 940 941
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
942 943 944 945 946 947
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
948

N
nhzlx 已提交
949
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
950

N
nhzlx 已提交
951
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
952

N
nhzlx 已提交
953
  RType *Out() const { return out_; }
T
Tian 已提交
954

I
itminner 已提交
955
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
956

I
itminner 已提交
957
  const int &Height() const { return height_; }
T
Tian 已提交
958

I
itminner 已提交
959
  const int &Width() const { return width_; }
T
Tian 已提交
960

I
itminner 已提交
961
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
962

I
itminner 已提交
963
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
964

I
itminner 已提交
965
 private:
N
nhzlx 已提交
966 967 968
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
969 970 971 972 973
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
974 975 976
};
#endif

L
liuruilong 已提交
977
#ifdef RELU_OP
L
liuruilong 已提交
978 979 980
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
981
template <typename Dtype>
E
eclipsess 已提交
982
class ReluParam : public OpParam {
N
nhzlx 已提交
983 984 985
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
986 987 988
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
989 990
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
991 992
  }

N
nhzlx 已提交
993
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
994

N
nhzlx 已提交
995
  RType *Out() const { return out_; }
E
eclipsess 已提交
996 997

 private:
N
nhzlx 已提交
998 999
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1000
};
L
liuruilong 已提交
1001
#endif
E
eclipsess 已提交
1002

T
Tian 已提交
1003
#ifdef PRELU_OP
N
nhzlx 已提交
1004
template <typename Dtype>
T
Tian 已提交
1005
class PReluParam : public OpParam {
N
nhzlx 已提交
1006 1007 1008
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1009 1010 1011
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1012 1013
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1014 1015
    slopes_ = GetAttr<vector<float>>("slopes", attrs);
  }
T
Tian 已提交
1016

N
nhzlx 已提交
1017 1018
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
I
itminner 已提交
1019
  const vector<float> &Slopes() const { return slopes_; }
T
Tian 已提交
1020

I
itminner 已提交
1021
 private:
N
nhzlx 已提交
1022 1023
  RType *input_x_;
  RType *out_;
I
itminner 已提交
1024
  vector<float> slopes_;
T
Tian 已提交
1025 1026 1027
};
#endif

N
nhzlx 已提交
1028
template <typename Dtype>
L
liuruilong 已提交
1029
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1030 1031 1032
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1033
 public:
L
liuruilong 已提交
1034
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1035
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1036 1037 1038 1039
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1040 1041 1042 1043
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
N
nhzlx 已提交
1044
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1045

N
nhzlx 已提交
1046
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1047

N
nhzlx 已提交
1048
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1049

N
nhzlx 已提交
1050
  RType *Out() const { return out_; }
E
eclipsess 已提交
1051 1052 1053 1054 1055 1056 1057 1058

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1059 1060 1061 1062
  RType *input_x_;
  RType *input_y_;
  RType *input_z_;
  RType *out_;
E
eclipsess 已提交
1063 1064 1065
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1066 1067 1068
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1069
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1070 1071

 public:
H
hanbuhe 已提交
1072 1073
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1074
#endif
E
eclipsess 已提交
1075
};
1076 1077

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1078 1079
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1080
#endif
E
eclipsess 已提交
1081

N
nhzlx 已提交
1082
template <typename Dtype>
L
liuruilong 已提交
1083
class FusionConvAddParam : public OpParam {
N
nhzlx 已提交
1084 1085 1086
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1087
 public:
L
liuruilong 已提交
1088
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1089 1090
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1091
    bias_ = InputYFrom<GType>(inputs, scope);
W
wangliu 已提交
1092
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1093 1094 1095
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1096 1097 1098 1099 1100
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
N
nhzlx 已提交
1101
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1102 1103 1104

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1105
  const RType *Input() const { return input_; }
W
wangliu 已提交
1106

N
nhzlx 已提交
1107
  const RType *Filter() const { return filter_; }
W
wangliu 已提交
1108

N
nhzlx 已提交
1109
  RType *Output() const { return output_; }
W
wangliu 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1119
 protected:
N
nhzlx 已提交
1120
  RType *bias_;
W
wangliu 已提交
1121
  int axis_;
N
nhzlx 已提交
1122 1123 1124
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
1125 1126 1127 1128
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1129 1130 1131
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1132
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1133 1134

 public:
H
hanbuhe 已提交
1135 1136
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1137
#endif
W
wangliu 已提交
1138 1139
};

N
nhzlx 已提交
1140 1141
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1142

Z
zhangyang 已提交
1143
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1144 1145
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1146
 public:
L
liuruilong 已提交
1147
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1148 1149
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1150
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1151 1152 1153
};
#endif

E
eclipsess 已提交
1154
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1155
template <typename Dtype>
E
eclipsess 已提交
1156
class FusionConvAddBNReluParam : public OpParam {
N
nhzlx 已提交
1157 1158 1159
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1160 1161 1162 1163
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1164
    bias_ = InputYFrom<GType>(inputs, scope);
E
eclipsess 已提交
1165
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1166 1167 1168
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1169 1170 1171 1172
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1173 1174 1175 1176
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1177 1178
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1179
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1180
  }
N
nhzlx 已提交
1181
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1182 1183 1184

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1185
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1186

N
nhzlx 已提交
1187
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1188

N
nhzlx 已提交
1189
  RType *Output() const { return output_; }
E
eclipsess 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1199
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1200

N
nhzlx 已提交
1201
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1202

N
nhzlx 已提交
1203
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1204

N
nhzlx 已提交
1205
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1206 1207 1208 1209 1210 1211 1212

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1213
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1214

N
nhzlx 已提交
1215
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1216

N
nhzlx 已提交
1217
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1218

N
nhzlx 已提交
1219
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1220 1221

 protected:
N
nhzlx 已提交
1222
  RType *bias_;
E
eclipsess 已提交
1223
  int axis_;
N
nhzlx 已提交
1224 1225 1226
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1227 1228 1229 1230
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1231 1232 1233 1234
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1235 1236 1237
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1238 1239
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1240 1241 1242
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1243
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1244 1245

 public:
H
hanbuhe 已提交
1246 1247
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1248
#endif
E
eclipsess 已提交
1249
};
1250
#endif
E
eclipsess 已提交
1251

1252
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1253
template <typename Dtype>
1254
class FusionConvAddBNParam : public OpParam {
N
nhzlx 已提交
1255 1256 1257
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1258 1259 1260 1261
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1262
    bias_ = InputYFrom<GType>(inputs, scope);
1263
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1264 1265 1266
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
1267 1268 1269 1270
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1271 1272 1273 1274
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1275 1276 1277 1278
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
N
nhzlx 已提交
1279
  RType *Bias() const { return bias_; }
1280 1281 1282

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1283
  const RType *Input() const { return input_; }
1284

N
nhzlx 已提交
1285
  const RType *Filter() const { return filter_; }
1286

N
nhzlx 已提交
1287
  RType *Output() const { return output_y_; }
1288 1289 1290 1291 1292 1293 1294 1295 1296

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1297
  const RType *InputBias() const { return input_bias_; }
1298

N
nhzlx 已提交
1299
  const RType *InputMean() const { return input_mean_; }
1300

N
nhzlx 已提交
1301
  const RType *InputScale() const { return input_scale_; }
1302

N
nhzlx 已提交
1303
  const RType *InputVariance() const { return input_variance_; }
1304 1305 1306 1307 1308 1309 1310

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1311
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1312

N
nhzlx 已提交
1313
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1314

N
nhzlx 已提交
1315
  const RType *NewScale() const { return new_scale_; }
1316

N
nhzlx 已提交
1317
  const RType *NewBias() const { return new_bias_; }
1318 1319

 protected:
N
nhzlx 已提交
1320
  RType *bias_;
1321
  int axis_;
N
nhzlx 已提交
1322 1323 1324
  RType *input_;
  RType *output_y_;
  RType *filter_;
1325 1326 1327 1328
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1329 1330 1331 1332
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1333 1334 1335
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1336 1337
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1338 1339 1340
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1341
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1342 1343

 public:
H
hanbuhe 已提交
1344 1345
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1346
#endif
1347
};
E
eclipsess 已提交
1348
#endif
Y
Yao,kun 已提交
1349

E
eclipsess 已提交
1350
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1351
template <typename Dtype>
E
eclipsess 已提交
1352
class FusionDWConvBNReluParam : public OpParam {
N
nhzlx 已提交
1353 1354 1355
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1356 1357 1358 1359
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1360 1361 1362
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1363 1364 1365 1366
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1367 1368 1369 1370
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1371 1372
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1373
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1374 1375
  }

N
nhzlx 已提交
1376
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1377

N
nhzlx 已提交
1378
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1379

N
nhzlx 已提交
1380
  RType *Output() const { return output_; }
E
eclipsess 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1390
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1391

N
nhzlx 已提交
1392
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1393

N
nhzlx 已提交
1394
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1395

N
nhzlx 已提交
1396
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1397 1398 1399 1400 1401 1402 1403

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1404
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1405

N
nhzlx 已提交
1406
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1407

N
nhzlx 已提交
1408
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1409

N
nhzlx 已提交
1410
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1411 1412

 protected:
N
nhzlx 已提交
1413 1414 1415
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1416 1417 1418 1419
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1420 1421 1422 1423
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1424 1425 1426
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1427 1428
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1429 1430 1431 1432
};

#endif

1433
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1434
template <typename Dtype>
1435
class FusionConvBNReluParam : public OpParam {
N
nhzlx 已提交
1436 1437 1438
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1439 1440 1441 1442
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1443 1444 1445
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
1446 1447 1448 1449 1450

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1451 1452 1453 1454
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1455 1456 1457 1458 1459
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1460
  const RType *Input() const { return input_; }
1461

N
nhzlx 已提交
1462
  const RType *Filter() const { return filter_; }
1463

N
nhzlx 已提交
1464
  RType *Output() const { return output_; }
1465 1466 1467 1468 1469 1470 1471 1472 1473

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1474
  const RType *InputBias() const { return input_bias_; }
1475

N
nhzlx 已提交
1476
  const RType *InputMean() const { return input_mean_; }
1477

N
nhzlx 已提交
1478
  const RType *InputScale() const { return input_scale_; }
1479

N
nhzlx 已提交
1480
  const RType *InputVariance() const { return input_variance_; }
1481 1482 1483 1484 1485 1486 1487

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1488
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1489

N
nhzlx 已提交
1490
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1491

N
nhzlx 已提交
1492
  const RType *NewScale() const { return new_scale_; }
1493

N
nhzlx 已提交
1494
  const RType *NewBias() const { return new_bias_; }
1495 1496

 protected:
N
nhzlx 已提交
1497 1498 1499
  RType *input_;
  RType *output_;
  RType *filter_;
1500 1501 1502 1503
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1504 1505 1506 1507
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1508 1509 1510
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1511 1512
  RType *new_bias_;
  RType *new_scale_;
1513 1514 1515
};
#endif

Y
Yao,kun 已提交
1516
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1517
template <typename Dtype>
Y
Yao,kun 已提交
1518
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1519 1520 1521
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1522 1523 1524 1525
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1526 1527
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1528 1529 1530 1531 1532
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1533
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1534

N
nhzlx 已提交
1535
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1536 1537 1538 1539 1540 1541 1542 1543

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1544 1545
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1546 1547 1548 1549
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1550
#endif
Y
Yao,kun 已提交
1551

1552
#ifdef DROPOUT_OP
N
nhzlx 已提交
1553
template <typename Dtype>
Y
Yao,kun 已提交
1554
class DropoutParam : public OpParam {
N
nhzlx 已提交
1555 1556 1557
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1558 1559 1560
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1561 1562
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1563 1564
  }

N
nhzlx 已提交
1565
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1566

N
nhzlx 已提交
1567
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1568 1569

 private:
N
nhzlx 已提交
1570 1571
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1572
};
1573
#endif
Y
Yao,kun 已提交
1574

L
liuruilong 已提交
1575
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1576
template <typename Dtype>
L
liuruilong 已提交
1577
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1578 1579 1580
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1581 1582 1583 1584
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1585 1586 1587
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1588 1589 1590 1591 1592 1593
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1594
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1595

N
nhzlx 已提交
1596
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1597

N
nhzlx 已提交
1598
  RType *Output() const { return output_; }
L
liuruilong 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1609 1610 1611
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1612 1613 1614 1615 1616 1617 1618
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

朔-望's avatar
朔-望 已提交
1619 1620
}  // namespace operators
}  // namespace paddle_mobile