op_param.h 70.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
38
using framework::Variable;
W
wangliu 已提交
39 40
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
41

N
nhzlx 已提交
42 43 44 45 46 47 48 49 50
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
51
class OpParam {
朔-望's avatar
朔-望 已提交
52
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
53 54 55 56
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
57 58 59 60 61
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

62 63 64 65 66 67 68 69 70
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
71 72 73 74 75
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

103 104 105 106
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
107 108 109 110 111 112

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

113 114 115 116 117
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
118 119 120 121 122
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

123 124 125 126 127
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
132 133 134 135 136 137 138 139 140 141 142 143
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
144 145 146 147
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
164

E
eclipsess 已提交
165 166 167 168 169 170 171 172 173 174
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
175 176 177 178
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
179

180
  template <typename T>
W
wangliu 已提交
181 182
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
183 184 185
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
186 187 188 189 190
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

220 221 222 223 224
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
225 226 227 228 229
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
235 236 237 238 239 240
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

241 242 243 244 245
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
252 253 254 255 256
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
257 258 259 260 261 262
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

263 264 265 266 267 268 269 270 271 272 273
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
274
  static const T GetAttr(const string &key, const AttributeMap &map) {
275 276
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
277 278
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
279 280
    return ((Attribute)map.at(key)).GetString();
  }
281

282 283 284 285
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

286
  template <typename T>
W
wangliu 已提交
287
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
288
                        const Scope &scope) {
W
wangliu 已提交
289 290
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
291 292 293 294 295 296
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
297
    }
298
  }
朔-望's avatar
朔-望 已提交
299

E
eclipsess 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

333
  template <typename T>
W
wangliu 已提交
334 335 336
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
337 338
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
339
    vector<T *> var_res;
340 341 342
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
343
    }
344 345
    return var_res;
  }
E
eclipsess 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
359 360
};

N
nhzlx 已提交
361
template <typename Dtype>
362
class ConvParam : public OpParam {
N
nhzlx 已提交
363 364 365
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
366
 public:
367
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
368
            const AttributeMap &attrs, const Scope &scope) {
369 370 371 372 373 374 375 376 377
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
378
  }
朔-望's avatar
朔-望 已提交
379

N
nhzlx 已提交
380
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
381

N
nhzlx 已提交
382
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
383

N
nhzlx 已提交
384
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
385

W
wangliu 已提交
386
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
387

W
wangliu 已提交
388
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
389

W
wangliu 已提交
390
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
391

392
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
393

朔-望's avatar
朔-望 已提交
394
 private:
N
nhzlx 已提交
395 396 397
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
398 399 400
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
401
  int groups;
朔-望's avatar
朔-望 已提交
402
};
N
nhzlx 已提交
403 404
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
template <typename Dtype>
朔-望's avatar
朔-望 已提交
407
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
408 409 410
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
411
 public:
412
  ElementwiseAddParam(const VariableNameMap &inputs,
413 414
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
415 416 417
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
418 419 420
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
421
  const GType *InputX() const { return input_x_; }
422

xiebaiyuan's avatar
xiebaiyuan 已提交
423
  const GType *InputY() const { return input_y_; }
424

xiebaiyuan's avatar
xiebaiyuan 已提交
425
  GType *Out() const { return out_; }
426 427 428

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
429
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
430 431 432
  GType *input_x_;
  GType *input_y_;
  GType *out_;
433
  int axis_;
Z
zhangyang 已提交
434 435 436
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
437
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
438 439

 public:
H
hanbuhe 已提交
440 441
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
442
#endif
朔-望's avatar
朔-望 已提交
443 444
};

E
eclipsess 已提交
445
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
#ifdef PADDLE_MOBILE_FPGA

 private:
E
eclipsess 已提交
477
  fpga::EWMulArgs fpga_EW_mul_args;
E
eclipsess 已提交
478 479 480 481 482 483

 public:
  const fpga::EWMulArgs &FpgaArgs() const { return fpga_EW_mul_args; }
  void SetFpgaArgs(const fpga::EWMulArgs &args) { fpga_EW_mul_args = args; }
#endif
};
S
suiyang 已提交
484
#endif
E
eclipsess 已提交
485

486
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
487 488
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
489 490
#endif

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};

L
liuruilong 已提交
521
#ifdef MUL_OP
N
nhzlx 已提交
522
template <typename Dtype>
朔-望's avatar
朔-望 已提交
523
class MulParam : OpParam {
N
nhzlx 已提交
524 525 526
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
527
 public:
528
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
529
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
530 531 532
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
533 534 535
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
536

xiebaiyuan's avatar
xiebaiyuan 已提交
537
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
538

xiebaiyuan's avatar
xiebaiyuan 已提交
539
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
540

xiebaiyuan's avatar
xiebaiyuan 已提交
541
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
542

543
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
544

545
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
546

朔-望's avatar
朔-望 已提交
547
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
548 549 550
  GType *input_x_;
  GType *input_y_;
  GType *out_;
551 552
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
553 554 555 556 557 558 559 560 561
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::WrapperConvArgs fpga_conv_args;

 public:
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
562
};
L
liuruilong 已提交
563
#endif
朔-望's avatar
朔-望 已提交
564

L
liuruilong 已提交
565
#ifdef CONCAT_OP
N
nhzlx 已提交
566
template <typename Dtype>
朔-望's avatar
朔-望 已提交
567
class ConcatParam : public OpParam {
N
nhzlx 已提交
568 569 570
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
571
 public:
572
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
573
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
574 575
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
576 577
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
578

N
nhzlx 已提交
579
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
580

xiebaiyuan's avatar
xiebaiyuan 已提交
581
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
582

583
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
584

朔-望's avatar
朔-望 已提交
585
 private:
N
nhzlx 已提交
586
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
587
  GType *out_;
588
  int axis_;
Z
zhangyang 已提交
589 590 591 592 593 594 595 596 597
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
598
};
L
liuruilong 已提交
599
#endif
朔-望's avatar
朔-望 已提交
600

E
eclipsess 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SumArgs fpga_sum_args;

 public:
  const fpga::SumArgs &FpgaArgs() const { return fpga_sum_args; }
  void SetFpgaArgs(const fpga::SumArgs &args) { fpga_sum_args = args; }
#endif
};
#endif

L
liuruilong 已提交
641
#ifdef LRN_OP
N
nhzlx 已提交
642
template <typename Dtype>
E
eclipsess 已提交
643
class LrnParam : public OpParam {
N
nhzlx 已提交
644 645 646
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
647
 public:
648
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
649
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
650 651 652
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
653 654 655 656
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
657
    data_format_ = GetStringAttr("data_format", attrs);
658
  }
E
eclipsess 已提交
659

N
nhzlx 已提交
660
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
661

N
nhzlx 已提交
662
  RType *Out() const { return out_; }
E
eclipsess 已提交
663

N
nhzlx 已提交
664
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
665

666
  const int &N() const { return n_; }
E
eclipsess 已提交
667

668
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
669

670
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
671

672
  const float &K() const { return k_; }
E
eclipsess 已提交
673

W
wangliu 已提交
674
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
675

朔-望's avatar
朔-望 已提交
676
 private:
N
nhzlx 已提交
677 678 679
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
680 681 682 683
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
684
  string data_format_;
E
eclipsess 已提交
685
};
L
liuruilong 已提交
686 687 688
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
689
template <typename Dtype>
E
eclipsess 已提交
690
class BatchNormParam : OpParam {
N
nhzlx 已提交
691 692 693
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
694
 public:
695
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
696
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
697 698 699 700 701 702
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
703 704
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
705
    //    is_test_ = GetAttr<bool>("is_test", attrs);
706
  }
E
eclipsess 已提交
707

N
nhzlx 已提交
708
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
709

N
nhzlx 已提交
710
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
711

N
nhzlx 已提交
712
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
713

N
nhzlx 已提交
714
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
715

N
nhzlx 已提交
716
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
717

N
nhzlx 已提交
718
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
719

720
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
721

722
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
723

724
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
725

W
wangliu 已提交
726
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
727

朔-望's avatar
朔-望 已提交
728
 private:
N
nhzlx 已提交
729 730 731 732 733 734
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
735 736 737
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
738
  string data_format_;
E
eclipsess 已提交
739
};
L
liuruilong 已提交
740 741 742
#endif

#ifdef POOL_OP
N
nhzlx 已提交
743
template <typename Dtype>
744
class PoolParam : public OpParam {
N
nhzlx 已提交
745 746 747
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
748
 public:
749
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
750
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
751
    input_ = InputXFrom<GType>(inputs, scope);
752

N
nhzlx 已提交
753
    output_ = OutFrom<GType>(outputs, scope);
754
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
755 756 757
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
758
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
759
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
760
  }
761

N
nhzlx 已提交
762
  const RType *Input() const { return input_; }
763

N
nhzlx 已提交
764
  RType *Output() const { return output_; }
765

W
wangliu 已提交
766
  const string &PoolingType() const { return pooling_type_; }
767

W
wangliu 已提交
768
  const vector<int> &Ksize() const { return ksize_; }
769

W
wangliu 已提交
770
  const vector<int> &Strides() const { return strides_; }
771

W
wangliu 已提交
772
  const vector<int> &Paddings() const { return paddings_; }
773

774
  bool isCeilMode() const { return ceil_mode_; }
775

Z
zhangyang 已提交
776
  bool isGlobalPooling() const { return global_pooling_; }
777

朔-望's avatar
朔-望 已提交
778
 private:
N
nhzlx 已提交
779 780
  RType *input_;
  RType *output_;
W
wangliu 已提交
781 782 783 784
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
785
  bool ceil_mode_;
786
  bool global_pooling_ = false;
Z
zhangyang 已提交
787
#ifdef PADDLE_MOBILE_FPGA
788 789

 private:
H
hanbuhe 已提交
790
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
791 792

 public:
H
hanbuhe 已提交
793 794
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
795
#endif
796
};
L
liuruilong 已提交
797 798 799
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
800
template <typename Dtype>
E
eclipsess 已提交
801
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
802 803 804
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
805 806
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
807
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
808 809 810 811
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
812 813 814 815
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
816 817 818 819 820

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
821 822 823 824 825 826
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
827
  const RType *Input() const { return input_; }
E
eclipsess 已提交
828

N
nhzlx 已提交
829
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
830

N
nhzlx 已提交
831
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
832

N
nhzlx 已提交
833
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
834

W
wangliu 已提交
835
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
836

W
wangliu 已提交
837
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
838

W
wangliu 已提交
839
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
840

W
wangliu 已提交
841
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
842 843 844 845 846 847 848 849 850 851 852

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

853 854 855 856
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
857
 private:
N
nhzlx 已提交
858 859 860 861
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
862 863 864 865
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
866 867 868 869 870
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
871
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
872
};
L
liuruilong 已提交
873
#endif
E
eclipsess 已提交
874

L
liuruilong 已提交
875
#ifdef BOXCODER_OP
N
nhzlx 已提交
876
template <typename Dtype>
E
eclipsess 已提交
877
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
878 879 880
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
881 882
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
883
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
884 885 886 887
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
888
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
889
  }
N
nhzlx 已提交
890
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
891

N
nhzlx 已提交
892
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
893

N
nhzlx 已提交
894
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
895

N
nhzlx 已提交
896
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
897 898 899 900

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
901 902 903 904
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
905 906
  std::string code_type_;
};
L
liuruilong 已提交
907
#endif
W
wangliu 已提交
908

L
liuruilong 已提交
909
#ifdef SOFTMAX_OP
N
nhzlx 已提交
910
template <typename Dtype>
W
wangliu 已提交
911
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
912 913 914
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
915 916
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
917
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
918 919
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
920
  }
N
nhzlx 已提交
921 922
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
923 924

 private:
N
nhzlx 已提交
925 926
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
927 928 929 930

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
931
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
932 933 934
  fpga::BypassArgs fpga_bypass_args;

 public:
935
  RType *FloatInput() const {
H
hanbuhe 已提交
936 937 938 939 940 941
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
942
};
L
liuruilong 已提交
943
#endif
W
wangliu 已提交
944

L
liuruilong 已提交
945
#ifdef SIGMOID_OP
N
nhzlx 已提交
946
template <typename Dtype>
W
wangliu 已提交
947
class SigmoidParam : public OpParam {
N
nhzlx 已提交
948 949 950
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
951 952
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
953
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
954 955
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
956
  }
N
nhzlx 已提交
957 958
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
959 960

 private:
N
nhzlx 已提交
961 962
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
963
};
L
liuruilong 已提交
964 965 966
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
967
template <typename Dtype>
E
eclipsess 已提交
968
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
969 970 971
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
972 973 974 975
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
976 977 978
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
979 980 981 982 983 984 985 986
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
987
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
988

N
nhzlx 已提交
989
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
990

N
nhzlx 已提交
991
  RType *Out() const { return out_; }
E
eclipsess 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1006 1007 1008
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1009 1010 1011 1012 1013 1014 1015
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1016
#endif
W
wangliu 已提交
1017

N
nhzlx 已提交
1018
template <typename Dtype>
L
liuruilong 已提交
1019
class FeedParam : public OpParam {
N
nhzlx 已提交
1020 1021 1022
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1023 1024
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1025
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
1026 1027
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
1028
    auto var = scope->Var("batch_size");
W
wangliu 已提交
1029
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1030
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1031 1032
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1033
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1034

L
liuruilong 已提交
1035
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1036 1037
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
1038
  int batch_size;
L
liuruilong 已提交
1039 1040
};

N
nhzlx 已提交
1041
template <typename Dtype>
L
liuruilong 已提交
1042
class FetchParam : public OpParam {
N
nhzlx 已提交
1043 1044 1045
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1046 1047
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1048
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1049 1050
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
1051
  }
N
nhzlx 已提交
1052 1053
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
1054

L
liuruilong 已提交
1055
 private:
N
nhzlx 已提交
1056 1057
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
1058 1059
};

L
liuruilong 已提交
1060
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1061
template <typename Dtype>
E
eclipsess 已提交
1062
class TransposeParam : public OpParam {
N
nhzlx 已提交
1063 1064 1065
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1066 1067 1068
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1069 1070
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1071 1072 1073
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1074
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1075

N
nhzlx 已提交
1076
  RType *Out() const { return out_; }
E
eclipsess 已提交
1077 1078 1079 1080

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1081 1082
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1083 1084
  vector<int> axis_;
};
L
liuruilong 已提交
1085
#endif
E
eclipsess 已提交
1086

xiebaiyuan's avatar
xiebaiyuan 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1153
#ifdef RESHAPE_OP
N
nhzlx 已提交
1154
template <typename Dtype>
E
eclipsess 已提交
1155
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1156 1157 1158
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1159 1160 1161
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1162 1163 1164
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1165
    shape_ = GetAttr<vector<int>>("shape", attrs);
1166 1167 1168 1169 1170 1171 1172

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1173 1174
  }

N
nhzlx 已提交
1175
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1176

N
nhzlx 已提交
1177
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1178

N
nhzlx 已提交
1179
  RType *Out() const { return out_; }
E
eclipsess 已提交
1180 1181 1182 1183 1184 1185

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1186 1187 1188
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1189 1190 1191
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1192
#endif
E
eclipsess 已提交
1193

T
Tian 已提交
1194
#ifdef SCALE_OP
N
nhzlx 已提交
1195
template <typename Dtype>
I
itminner 已提交
1196
class ScaleParam : public OpParam {
N
nhzlx 已提交
1197 1198 1199
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1200 1201 1202
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1203 1204 1205
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1206 1207 1208 1209 1210 1211
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1212
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1213

N
nhzlx 已提交
1214
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1215

N
nhzlx 已提交
1216
  RType *Out() const { return out_; }
I
itminner 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1227 1228 1229
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1230 1231 1232 1233 1234
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1235 1236 1237
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1238
template <typename Dtype>
I
itminner 已提交
1239
class SliceParam : public OpParam {
N
nhzlx 已提交
1240 1241 1242
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1243 1244 1245
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1246 1247 1248
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1249 1250 1251 1252 1253
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1254
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1255

N
nhzlx 已提交
1256
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1257

N
nhzlx 已提交
1258
  RType *Out() const { return out_; }
I
itminner 已提交
1259 1260 1261 1262 1263 1264 1265 1266

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1267 1268 1269
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1270 1271 1272 1273
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1274 1275 1276
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1277
template <typename Dtype>
T
Tian 已提交
1278
class ResizeParam : public OpParam {
N
nhzlx 已提交
1279 1280 1281
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1282 1283 1284
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1285 1286 1287
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1288 1289 1290 1291 1292 1293
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1294

N
nhzlx 已提交
1295
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1296

N
nhzlx 已提交
1297
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1298

N
nhzlx 已提交
1299
  RType *Out() const { return out_; }
T
Tian 已提交
1300

I
itminner 已提交
1301
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1302

I
itminner 已提交
1303
  const int &Height() const { return height_; }
T
Tian 已提交
1304

I
itminner 已提交
1305
  const int &Width() const { return width_; }
T
Tian 已提交
1306

I
itminner 已提交
1307
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1308

I
itminner 已提交
1309
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1310

I
itminner 已提交
1311
 private:
N
nhzlx 已提交
1312 1313 1314
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1315 1316 1317 1318 1319
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1320 1321 1322
};
#endif

L
liuruilong 已提交
1323
#ifdef RELU_OP
L
liuruilong 已提交
1324 1325 1326
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1327
template <typename Dtype>
E
eclipsess 已提交
1328
class ReluParam : public OpParam {
N
nhzlx 已提交
1329 1330 1331
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1332 1333 1334
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1335 1336
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1337 1338
  }

N
nhzlx 已提交
1339
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1340

N
nhzlx 已提交
1341
  RType *Out() const { return out_; }
E
eclipsess 已提交
1342 1343

 private:
N
nhzlx 已提交
1344 1345
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1346
};
L
liuruilong 已提交
1347
#endif
E
eclipsess 已提交
1348

T
Tian 已提交
1349
#ifdef PRELU_OP
N
nhzlx 已提交
1350
template <typename Dtype>
T
Tian 已提交
1351
class PReluParam : public OpParam {
N
nhzlx 已提交
1352 1353 1354
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1355 1356 1357
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1358
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1359
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1360
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1361
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1362
    out_ = OutFrom<GType>(outputs, scope);
1363
    mode_ = GetStringAttr("mode", attrs);
1364
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1365
  }
N
nhzlx 已提交
1366
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1367
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1368
  RType *Out() const { return out_; }
1369
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1370

I
itminner 已提交
1371
 private:
N
nhzlx 已提交
1372 1373
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1374
  RType *alpha_;
1375
  std::string mode_;
T
Tian 已提交
1376 1377 1378
};
#endif

N
nhzlx 已提交
1379
template <typename Dtype>
L
liuruilong 已提交
1380
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1381 1382 1383
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1384
 public:
L
liuruilong 已提交
1385
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1386
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1387 1388 1389 1390
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1391 1392 1393 1394
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1395
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1396

N
nhzlx 已提交
1397
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1398

N
nhzlx 已提交
1399
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1400

xiebaiyuan's avatar
xiebaiyuan 已提交
1401
  GType *Out() const { return out_; }
E
eclipsess 已提交
1402 1403 1404 1405 1406 1407 1408 1409

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1410
  GType *input_x_;
N
nhzlx 已提交
1411 1412
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1413
  GType *out_;
E
eclipsess 已提交
1414 1415 1416
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1417 1418 1419
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1420
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1421 1422

 public:
Z
zhangyang 已提交
1423 1424
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1425
#endif
E
eclipsess 已提交
1426
};
1427 1428

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1429 1430
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1431
#endif
E
eclipsess 已提交
1432

N
nhzlx 已提交
1433
template <typename Dtype>
1434
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1435 1436 1437
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1438
 public:
L
liuruilong 已提交
1439
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1440
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1441 1442 1443 1444 1445
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1446
  }
N
nhzlx 已提交
1447
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1448 1449 1450

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1451
  RType *Output() const { return output_; }
W
wangliu 已提交
1452

L
liuruilong 已提交
1453
 protected:
N
nhzlx 已提交
1454
  RType *bias_;
W
wangliu 已提交
1455
  int axis_;
N
nhzlx 已提交
1456
  RType *output_;
Z
zhangyang 已提交
1457 1458 1459
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1460
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1461 1462

 public:
Z
zhangyang 已提交
1463 1464
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1465
#endif
W
wangliu 已提交
1466 1467
};

N
nhzlx 已提交
1468 1469
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1470

Z
zhangyang 已提交
1471
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1472 1473
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1474
 public:
L
liuruilong 已提交
1475
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1476 1477
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1478
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1479 1480 1481
};
#endif

1482
#ifdef FUSION_CONVADDPRELU_OP
1483 1484 1485 1486
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1487 1488 1489 1490

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1491 1492 1493
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1494
    mode_ = OpParam::GetStringAttr("mode", attrs);
1495
    framework::DDim dims = alpha_->dims();
1496 1497 1498
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1515
  fpga::WrapperConvArgs fpga_conv_args;
1516 1517

 public:
Z
zhangyang 已提交
1518 1519
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1520 1521 1522 1523 1524
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1525 1526 1527 1528
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1529 1530 1531 1532

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1533 1534 1535 1536
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1537
    mode_ = OpParam::GetStringAttr("mode", attrs);
1538
    framework::DDim dims = alpha_->dims();
1539 1540 1541 1542 1543 1544
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1545
    if (keyX1_ == keyOutput_) {
1546
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1547
    } else if (keyY1_ == keyOutput_) {
1548
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1573
  fpga::WrapperConvArgs fpga_conv_args;
1574 1575

 public:
Z
zhangyang 已提交
1576 1577
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1578 1579 1580 1581
#endif
};
#endif

E
eclipsess 已提交
1582
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1583
template <typename Dtype>
1584
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1585 1586 1587
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1588 1589 1590
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1603
  }
N
nhzlx 已提交
1604
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1605 1606 1607

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1608
  RType *Output() const { return output_; }
E
eclipsess 已提交
1609

N
nhzlx 已提交
1610
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1611

N
nhzlx 已提交
1612
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1613

N
nhzlx 已提交
1614
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1615

N
nhzlx 已提交
1616
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1617 1618 1619 1620 1621 1622 1623

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1624
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1625

N
nhzlx 已提交
1626
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1627

N
nhzlx 已提交
1628
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1629

N
nhzlx 已提交
1630
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1631 1632

 protected:
N
nhzlx 已提交
1633
  RType *bias_;
E
eclipsess 已提交
1634
  int axis_;
N
nhzlx 已提交
1635 1636 1637 1638 1639
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1640 1641 1642
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1643 1644
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1645 1646 1647
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1648
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1649 1650

 public:
Z
zhangyang 已提交
1651 1652
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1653 1654 1655 1656 1657 1658
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1659
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1660 1661 1662 1663 1664 1665
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1680
    if (keyX_ == keyBNY_) {
1681
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1682
    } else if (keyY_ == keyBNY_) {
1683
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1684
    }
1685
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1734
  fpga::WrapperConvArgs fpga_conv_args;
1735 1736

 public:
Z
zhangyang 已提交
1737 1738
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1739
#endif
E
eclipsess 已提交
1740
};
1741
#endif
E
eclipsess 已提交
1742

Z
zhangyang 已提交
1743
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1744
template <typename Dtype>
1745
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1746 1747 1748
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1749 1750 1751
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1762
  }
N
nhzlx 已提交
1763
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1764

N
nhzlx 已提交
1765
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1766

N
nhzlx 已提交
1767
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1768

N
nhzlx 已提交
1769
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1770

N
nhzlx 已提交
1771
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1772 1773 1774 1775 1776 1777 1778

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1779
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1780

N
nhzlx 已提交
1781
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1782

N
nhzlx 已提交
1783
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1784

N
nhzlx 已提交
1785
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1786 1787

 protected:
N
nhzlx 已提交
1788 1789 1790 1791 1792
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1793 1794 1795
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1796 1797
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1798 1799 1800
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1801
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1802 1803

 public:
Z
zhangyang 已提交
1804 1805
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1806 1807 1808 1809
#endif
};
#endif

1810
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1811
template <typename Dtype>
1812
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1813 1814 1815
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1816 1817 1818
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1831
  }
N
nhzlx 已提交
1832
  RType *Bias() const { return bias_; }
1833 1834 1835

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1836
  RType *Output() const { return output_y_; }
1837

N
nhzlx 已提交
1838
  const RType *InputBias() const { return input_bias_; }
1839

N
nhzlx 已提交
1840
  const RType *InputMean() const { return input_mean_; }
1841

N
nhzlx 已提交
1842
  const RType *InputScale() const { return input_scale_; }
1843

N
nhzlx 已提交
1844
  const RType *InputVariance() const { return input_variance_; }
1845 1846 1847 1848 1849 1850 1851

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1852
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1853

N
nhzlx 已提交
1854
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1855

N
nhzlx 已提交
1856
  const RType *NewScale() const { return new_scale_; }
1857

N
nhzlx 已提交
1858
  const RType *NewBias() const { return new_bias_; }
1859 1860

 protected:
N
nhzlx 已提交
1861
  RType *bias_;
1862
  int axis_;
N
nhzlx 已提交
1863 1864 1865 1866 1867
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1868 1869 1870
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1871 1872
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1873 1874 1875
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1876
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1877 1878

 public:
Z
zhangyang 已提交
1879 1880
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1881
#endif
1882
};
E
eclipsess 已提交
1883
#endif
Y
Yao,kun 已提交
1884

E
eclipsess 已提交
1885
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1886
template <typename Dtype>
1887
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1888 1889 1890
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1891 1892 1893
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1904
  }
N
nhzlx 已提交
1905
  RType *Output() const { return output_; }
E
eclipsess 已提交
1906

N
nhzlx 已提交
1907
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1908

N
nhzlx 已提交
1909
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1910

N
nhzlx 已提交
1911
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1912

N
nhzlx 已提交
1913
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1914 1915 1916 1917 1918 1919 1920

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1921
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1922

N
nhzlx 已提交
1923
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1924

N
nhzlx 已提交
1925
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1926

N
nhzlx 已提交
1927
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1928 1929

 protected:
N
nhzlx 已提交
1930 1931 1932 1933 1934
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1935 1936 1937
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1938 1939
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1940 1941 1942 1943
};

#endif

1944
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1945
template <typename Dtype>
1946
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1947 1948 1949
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1950 1951 1952
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1963
  }
N
nhzlx 已提交
1964
  RType *Output() const { return output_; }
1965

N
nhzlx 已提交
1966
  const RType *InputBias() const { return input_bias_; }
1967

N
nhzlx 已提交
1968
  const RType *InputMean() const { return input_mean_; }
1969

N
nhzlx 已提交
1970
  const RType *InputScale() const { return input_scale_; }
1971

N
nhzlx 已提交
1972
  const RType *InputVariance() const { return input_variance_; }
1973 1974 1975 1976 1977 1978 1979

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1980
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1981

N
nhzlx 已提交
1982
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1983

N
nhzlx 已提交
1984
  const RType *NewScale() const { return new_scale_; }
1985

N
nhzlx 已提交
1986
  const RType *NewBias() const { return new_bias_; }
1987 1988

 protected:
N
nhzlx 已提交
1989 1990 1991 1992 1993
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1994 1995 1996
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1997 1998
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1999 2000 2001
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2002
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
2003 2004

 public:
Z
zhangyang 已提交
2005 2006
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2007
#endif
2008 2009 2010
};
#endif

Y
Yao,kun 已提交
2011
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2012
template <typename Dtype>
Y
Yao,kun 已提交
2013
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2014 2015 2016
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2017 2018 2019 2020
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2021 2022
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2023 2024 2025 2026 2027
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2028
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2029

N
nhzlx 已提交
2030
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2031 2032 2033 2034 2035 2036 2037 2038

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2039 2040
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2041 2042 2043 2044
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2045
#endif
Y
Yao,kun 已提交
2046

2047
#ifdef DROPOUT_OP
N
nhzlx 已提交
2048
template <typename Dtype>
Y
Yao,kun 已提交
2049
class DropoutParam : public OpParam {
N
nhzlx 已提交
2050 2051 2052
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2053 2054 2055
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2056 2057
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2058 2059

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2060 2061
  }

N
nhzlx 已提交
2062
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2063

N
nhzlx 已提交
2064
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2065

Y
yangfei 已提交
2066 2067
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2068
 private:
N
nhzlx 已提交
2069 2070
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2071
  float dropout_prob_;
Y
Yao,kun 已提交
2072
};
2073
#endif
Y
Yao,kun 已提交
2074

H
hjchen2 已提交
2075
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2076
template <typename Dtype>
L
liuruilong 已提交
2077
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2078 2079 2080
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2081 2082 2083 2084
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2085 2086 2087
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2088 2089 2090 2091 2092 2093
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2094
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2095

N
nhzlx 已提交
2096
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2097

N
nhzlx 已提交
2098
  RType *Output() const { return output_; }
L
liuruilong 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2109 2110 2111
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2112 2113 2114 2115 2116 2117 2118
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2144 2145
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2190
    axis = GetAttr<int>("axis", attrs);
2191 2192 2193
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2194
  const int &Axis() const { return axis; }
2195 2196 2197 2198

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2199
  int axis;
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2213
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2214
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2215 2216 2217 2218 2219 2220
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2221 2222
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2223 2224 2225 2226 2227
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2228 2229 2230

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2231
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2232
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2233 2234 2235
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2252 2253
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2254 2255
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2256
  const RType *InputOutPutSize() const { return input_outsize_; }
2257
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2258 2259
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2260 2261 2262 2263 2264

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2265 2266
  int out_h_;
  int out_w_;
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2282
  const RType *Input() const { return input_; }
2283 2284 2285 2286 2287 2288 2289 2290
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2291
template <typename Dtype>
2292 2293 2294 2295 2296
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2297 2298
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

2333
template <typename Dtype>
2334 2335 2336 2337 2338
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2339 2340
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2361 2362
}  // namespace operators
}  // namespace paddle_mobile