op_param.h 92.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
77 78 79 80 81 82 83

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

84 85 86 87 88
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

89 90 91 92 93 94 95 96 97
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
98 99 100 101 102
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

130 131 132 133
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
134 135 136 137 138 139

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

140 141 142 143 144
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
145 146 147 148 149
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

150 151 152 153 154
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
155 156 157 158
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
159 160 161 162 163 164 165 166 167 168 169 170
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
191

E
eclipsess 已提交
192 193 194 195 196 197 198 199 200 201
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
202 203 204 205
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
206

207
  template <typename T>
W
wangliu 已提交
208 209
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
210 211 212
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
213 214 215 216 217
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
218 219 220 221 222 223
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
224 225 226 227 228
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
240 241 242 243 244 245
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
246 247 248 249 250 251 252 253 254 255 256 257
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

258 259 260 261 262
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
263 264 265 266 267
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

268 269 270 271 272
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
273 274 275 276 277 278
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

279 280 281 282 283
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
284 285 286 287 288 289
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
290 291 292 293 294 295
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
296 297 298 299 300
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
301 302 303 304 305
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
306 307 308 309 310 311
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

312 313 314 315 316 317 318 319 320 321 322
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
323
  static const T GetAttr(const string &key, const AttributeMap &map) {
324 325
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
326 327
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
328 329
    return ((Attribute)map.at(key)).GetString();
  }
330

331 332 333 334
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

335
  template <typename T>
W
wangliu 已提交
336
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
337
                        const Scope &scope) {
W
wangliu 已提交
338 339
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
340 341 342 343 344 345
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
346
    }
347
  }
朔-望's avatar
朔-望 已提交
348

E
eclipsess 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

382
  template <typename T>
W
wangliu 已提交
383 384 385
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
386 387
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
388
    vector<T *> var_res;
389 390 391
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
392
    }
393 394
    return var_res;
  }
E
eclipsess 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
408 409
};

N
nhzlx 已提交
410
template <typename Dtype>
411
class ConvParam : public OpParam {
N
nhzlx 已提交
412 413 414
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
415
 public:
416
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
417
            const AttributeMap &attrs, const Scope &scope) {
418 419 420 421 422 423 424 425 426
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
427
  }
朔-望's avatar
朔-望 已提交
428

429
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
430

431
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
432

433
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
434

W
wangliu 已提交
435
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
436

W
wangliu 已提交
437
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
438

W
wangliu 已提交
439
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
440

H
hjchen2 已提交
441 442 443 444
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
445 446
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
447 448 449
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
450
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
451
    EXEC_GEMM_INT8,
H
hjchen2 已提交
452
    EXEC_DEPTHWISE3x3_INT8,
453
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
454 455 456 457
  };

  ExecMode &ExecMode() const { return exec_mode_; }

458
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
459

460 461 462 463 464 465 466
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
467
 public:
468 469 470 471
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
472 473 474
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
475
  mutable enum ExecMode exec_mode_;
476
  int groups;
477 478 479 480

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
481 482 483

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
484
 public:
Z
zhangyang 已提交
485 486 487 488 489
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
490 491 492 493 494 495 496

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
497
#endif
朔-望's avatar
朔-望 已提交
498
};
N
nhzlx 已提交
499 500
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
501

N
nhzlx 已提交
502
template <typename Dtype>
朔-望's avatar
朔-望 已提交
503
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
504 505 506
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
507
 public:
508
  ElementwiseAddParam(const VariableNameMap &inputs,
509 510
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
511 512 513
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
514 515 516
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
517
  const GType *InputX() const { return input_x_; }
518

xiebaiyuan's avatar
xiebaiyuan 已提交
519
  const GType *InputY() const { return input_y_; }
520

xiebaiyuan's avatar
xiebaiyuan 已提交
521
  GType *Out() const { return out_; }
522 523 524

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
525
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
526 527 528
  GType *input_x_;
  GType *input_y_;
  GType *out_;
529
  int axis_;
Z
zhangyang 已提交
530 531 532
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
533
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
534 535

 public:
H
hanbuhe 已提交
536 537
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
538
#endif
朔-望's avatar
朔-望 已提交
539 540
};

E
eclipsess 已提交
541
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
571
#endif
E
eclipsess 已提交
572

573
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
574 575
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
576 577
#endif

578
#ifdef ELEMENTWISESUB_OP
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
608
#endif
609

L
liuruilong 已提交
610
#ifdef MUL_OP
N
nhzlx 已提交
611
template <typename Dtype>
朔-望's avatar
朔-望 已提交
612
class MulParam : OpParam {
N
nhzlx 已提交
613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
616
 public:
617
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
618
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
619 620 621
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
622 623 624
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
625

xiebaiyuan's avatar
xiebaiyuan 已提交
626
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
627

xiebaiyuan's avatar
xiebaiyuan 已提交
628
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
629

xiebaiyuan's avatar
xiebaiyuan 已提交
630
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
631

632
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
633

634
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
635

朔-望's avatar
朔-望 已提交
636
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
637 638 639
  GType *input_x_;
  GType *input_y_;
  GType *out_;
640 641
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
642
};
L
liuruilong 已提交
643
#endif
朔-望's avatar
朔-望 已提交
644

L
liuruilong 已提交
645
#ifdef CONCAT_OP
N
nhzlx 已提交
646
template <typename Dtype>
朔-望's avatar
朔-望 已提交
647
class ConcatParam : public OpParam {
N
nhzlx 已提交
648 649 650
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
651
 public:
652
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
653
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
654 655
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
656 657
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
658

N
nhzlx 已提交
659
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
660

xiebaiyuan's avatar
xiebaiyuan 已提交
661
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
662

663
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
664

朔-望's avatar
朔-望 已提交
665
 private:
N
nhzlx 已提交
666
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
667
  GType *out_;
668
  int axis_;
Z
zhangyang 已提交
669 670 671 672 673 674 675 676 677
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
678
};
L
liuruilong 已提交
679
#endif
朔-望's avatar
朔-望 已提交
680

E
eclipsess 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
712
#ifdef LRN_OP
N
nhzlx 已提交
713
template <typename Dtype>
E
eclipsess 已提交
714
class LrnParam : public OpParam {
N
nhzlx 已提交
715 716 717
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
718
 public:
719
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
720
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
721 722 723
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
724 725 726 727
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
728
    data_format_ = GetStringAttr("data_format", attrs);
729
  }
E
eclipsess 已提交
730

731
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
732

733
  GType *Out() const { return out_; }
E
eclipsess 已提交
734

735
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
736

737
  const int &N() const { return n_; }
E
eclipsess 已提交
738

739
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
740

741
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
742

743
  const float &K() const { return k_; }
E
eclipsess 已提交
744

W
wangliu 已提交
745
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
746

朔-望's avatar
朔-望 已提交
747
 private:
748 749 750
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
751 752 753 754
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
755
  string data_format_;
E
eclipsess 已提交
756
};
L
liuruilong 已提交
757 758
#endif

Z
zhaojiaying01 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
#ifdef NORM_OP
template <typename Dtype>
class NormParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_norm_ = OutputNormFrom<GType>(outputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

775
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
776

777
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
778

779
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
780 781 782 783 784 785

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
786 787 788
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
789 790 791 792 793
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
794
#ifdef BATCHNORM_OP
N
nhzlx 已提交
795
template <typename Dtype>
E
eclipsess 已提交
796
class BatchNormParam : OpParam {
N
nhzlx 已提交
797 798 799
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
800
 public:
801
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
802
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
803 804 805 806 807 808
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
809 810
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
811
    //    is_test_ = GetAttr<bool>("is_test", attrs);
812
  }
E
eclipsess 已提交
813

814
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
815

816
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
817

818
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
819

820
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
821

822
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
823

824
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
825

826
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
827

828
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
829

830
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
831

W
wangliu 已提交
832
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
833

834
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
835

836
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
837

838
  const GType *NewScale() const { return new_scale_; }
839

840
  const GType *NewBias() const { return new_bias_; }
841

朔-望's avatar
朔-望 已提交
842
 private:
843 844 845 846 847 848
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
849 850 851
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
852
  string data_format_;
853 854
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
855
};
L
liuruilong 已提交
856 857 858
#endif

#ifdef POOL_OP
N
nhzlx 已提交
859
template <typename Dtype>
860
class PoolParam : public OpParam {
N
nhzlx 已提交
861 862 863
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
864
 public:
865
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
866
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
867
    input_ = InputXFrom<GType>(inputs, scope);
868

N
nhzlx 已提交
869
    output_ = OutFrom<GType>(outputs, scope);
870
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
871 872 873
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
874
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
875
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
876
  }
877

878
  const GType *Input() const { return input_; }
879

880
  GType *Output() const { return output_; }
881

W
wangliu 已提交
882
  const string &PoolingType() const { return pooling_type_; }
883

W
wangliu 已提交
884
  const vector<int> &Ksize() const { return ksize_; }
885

W
wangliu 已提交
886
  const vector<int> &Strides() const { return strides_; }
887

W
wangliu 已提交
888
  const vector<int> &Paddings() const { return paddings_; }
889

890
  bool isCeilMode() const { return ceil_mode_; }
891

Z
zhangyang 已提交
892
  bool isGlobalPooling() const { return global_pooling_; }
893

朔-望's avatar
朔-望 已提交
894
 private:
895 896
  GType *input_;
  GType *output_;
W
wangliu 已提交
897 898 899 900
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
901
  bool ceil_mode_;
902
  bool global_pooling_ = false;
Z
zhangyang 已提交
903
#ifdef PADDLE_MOBILE_FPGA
904 905

 private:
H
hanbuhe 已提交
906
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
907 908

 public:
H
hanbuhe 已提交
909 910
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
911
#endif
912
};
L
liuruilong 已提交
913 914 915
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
916
template <typename Dtype>
E
eclipsess 已提交
917
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
918 919 920
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
921 922
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
923
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
924 925 926 927
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
928 929 930 931
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
932 933 934 935

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
936 937
    } else {
      min_max_aspect_ratios_order_ = false;
938
    }
E
eclipsess 已提交
939 940 941 942 943 944
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
945
  const GType *Input() const { return input_; }
E
eclipsess 已提交
946

947
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
948

949
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
950

951
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
952

W
wangliu 已提交
953
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
954

W
wangliu 已提交
955
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
956

W
wangliu 已提交
957
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
958

W
wangliu 已提交
959
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
960 961 962 963 964 965 966 967 968 969 970

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

971 972 973 974
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
975
 private:
976 977 978 979
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
980 981 982 983
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
984 985 986 987 988
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
989
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
990
};
L
liuruilong 已提交
991
#endif
E
eclipsess 已提交
992

L
liuruilong 已提交
993
#ifdef BOXCODER_OP
N
nhzlx 已提交
994
template <typename Dtype>
E
eclipsess 已提交
995
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
996 997 998
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
999 1000
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1001
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1002 1003 1004 1005
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
1006
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1007
  }
1008
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1009

1010
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1011

1012
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1013

1014
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1015 1016 1017 1018

  const std::string &CodeType() const { return code_type_; }

 private:
1019 1020 1021 1022
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1023 1024
  std::string code_type_;
};
L
liuruilong 已提交
1025
#endif
W
wangliu 已提交
1026

L
liuruilong 已提交
1027
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1028
template <typename Dtype>
W
wangliu 已提交
1029
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1030 1031 1032
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1033 1034
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1035
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1036 1037
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1038
  }
H
hjchen2 已提交
1039 1040
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1041 1042

 private:
H
hjchen2 已提交
1043 1044
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1045 1046 1047 1048

#ifdef PADDLE_MOBILE_FPGA

 private:
1049
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1050 1051 1052
  fpga::BypassArgs fpga_bypass_args;

 public:
1053
  GType *FloatInput() const {
H
hanbuhe 已提交
1054 1055
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1056
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1057 1058 1059
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1060
};
L
liuruilong 已提交
1061
#endif
W
wangliu 已提交
1062

L
liuruilong 已提交
1063
#ifdef SIGMOID_OP
N
nhzlx 已提交
1064
template <typename Dtype>
W
wangliu 已提交
1065
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1066 1067 1068
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1069 1070
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1071
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1072 1073
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1074
  }
1075 1076
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1077 1078

 private:
1079 1080
  GType *input_x_;
  GType *out_;
1081 1082 1083 1084 1085 1086 1087 1088 1089
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1090
};
L
liuruilong 已提交
1091 1092 1093
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1094
template <typename Dtype>
E
eclipsess 已提交
1095
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1096 1097 1098
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1099 1100 1101 1102
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1103 1104 1105
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1106 1107 1108 1109 1110 1111 1112 1113
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1114
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1115

1116
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1117

1118
  GType *Out() const { return out_; }
E
eclipsess 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1133 1134 1135
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1136 1137 1138 1139 1140 1141 1142
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1143
#endif
W
wangliu 已提交
1144

L
lijiancheng0614 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
1158 1159
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1160 1161

 private:
1162 1163
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1164 1165 1166
};
#endif

N
nhzlx 已提交
1167
template <typename Dtype>
L
liuruilong 已提交
1168
class FeedParam : public OpParam {
N
nhzlx 已提交
1169 1170 1171
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1172 1173
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1174
            const AttributeMap &attrs, const Scope &scope) {
H
update  
hjchen2 已提交
1175
    input_x_ = InputXFrom<framework::LoDTensorArray>(inputs, scope);
Y
yangfei 已提交
1176
    out_ = OutFrom<GType>(outputs, scope);
H
update  
hjchen2 已提交
1177
    col_ = GetAttr<int>("col", attrs);
Y
yangfei 已提交
1178
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1179
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1180
  }
H
update  
hjchen2 已提交
1181
  const framework::LoDTensorArray *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1182
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1183
  const int Col() const { return col_; }
W
wangliu 已提交
1184
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1185

L
liuruilong 已提交
1186
 private:
H
update  
hjchen2 已提交
1187
  framework::LoDTensorArray *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1188
  GType *out_;
H
update  
hjchen2 已提交
1189
  int col_;
W
wangliu 已提交
1190
  int batch_size;
L
liuruilong 已提交
1191 1192
};

N
nhzlx 已提交
1193
template <typename Dtype>
L
liuruilong 已提交
1194
class FetchParam : public OpParam {
N
nhzlx 已提交
1195 1196 1197
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1198 1199
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1200
             const AttributeMap &attrs, const Scope &scope) {
1201 1202 1203
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensorArray>(outputs, scope);
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1204
  }
L
liuruilong 已提交
1205

1206 1207 1208
  const framework::LoDTensor *InputX() const { return input_x_; }
  framework::LoDTensorArray *Out() const { return out_; }
  const int Col() const { return col_; }
L
liuruilong 已提交
1209

L
liuruilong 已提交
1210
 private:
1211 1212 1213
  framework::LoDTensor *input_x_;
  framework::LoDTensorArray *out_;
  int col_;
qnqinan's avatar
qnqinan 已提交
1214 1215 1216 1217
#ifdef PADDLE_MOBILE_FPGA
 public:
  fpga::BypassArgs fpga_bypass_args;
#endif
L
liuruilong 已提交
1218 1219
};

L
lijiancheng0614 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1239
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1249
  GType *out_;
L
lijiancheng0614 已提交
1250 1251 1252 1253 1254 1255
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1256
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1257
template <typename Dtype>
E
eclipsess 已提交
1258
class TransposeParam : public OpParam {
N
nhzlx 已提交
1259 1260 1261
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1262 1263 1264
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1265 1266
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1267 1268 1269
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1270
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1271

1272
  GType *Out() const { return out_; }
E
eclipsess 已提交
1273 1274 1275 1276

  const vector<int> &Axis() const { return axis_; }

 private:
1277 1278
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1279 1280
  vector<int> axis_;
};
L
liuruilong 已提交
1281
#endif
E
eclipsess 已提交
1282

L
lijiancheng0614 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1298
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1299

1300
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1301

1302
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1303 1304 1305 1306

  const vector<int> &Axis() const { return axis_; }

 private:
1307 1308 1309
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1310 1311 1312 1313
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1364 1365
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1366 1367 1368 1369 1370 1371 1372 1373
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1374 1375
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1376 1377 1378 1379
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1380
#ifdef RESHAPE_OP
N
nhzlx 已提交
1381
template <typename Dtype>
E
eclipsess 已提交
1382
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1383 1384 1385
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1386 1387 1388
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1389 1390 1391
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1392
    shape_ = GetAttr<vector<int>>("shape", attrs);
1393 1394 1395 1396 1397 1398 1399

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1400 1401
  }

1402
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1403

1404
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1405

1406
  GType *Out() const { return out_; }
E
eclipsess 已提交
1407 1408 1409 1410 1411 1412

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1413 1414 1415
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1416 1417 1418
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1419
#endif
E
eclipsess 已提交
1420

L
lijiancheng0614 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1442
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1443

E
eclipsess 已提交
1444
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1445

E
eclipsess 已提交
1446
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1447

E
eclipsess 已提交
1448
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1449 1450 1451 1452 1453 1454

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1455 1456 1457 1458
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1459 1460 1461 1462 1463
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1464
#ifdef SCALE_OP
N
nhzlx 已提交
1465
template <typename Dtype>
I
itminner 已提交
1466
class ScaleParam : public OpParam {
N
nhzlx 已提交
1467 1468 1469
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1470 1471 1472
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1473 1474 1475
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1476 1477 1478 1479 1480 1481
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

1482
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1483

1484
  const GType *InputBias() const { return input_bias_; }
I
itminner 已提交
1485

1486
  GType *Out() const { return out_; }
I
itminner 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
1497 1498 1499
  GType *input_x_;
  GType *input_bias_;
  GType *out_;
I
itminner 已提交
1500 1501 1502 1503 1504
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1505 1506 1507
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1508
template <typename Dtype>
I
itminner 已提交
1509
class SliceParam : public OpParam {
N
nhzlx 已提交
1510 1511 1512
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1513 1514 1515
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1516 1517
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1518

1519 1520 1521 1522
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1523

1524 1525 1526 1527 1528 1529
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1530
};
T
Tian 已提交
1531 1532 1533
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1534
template <typename Dtype>
T
Tian 已提交
1535
class ResizeParam : public OpParam {
N
nhzlx 已提交
1536 1537 1538
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1539 1540 1541
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1542 1543 1544
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1545 1546 1547 1548 1549 1550
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1551

1552
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1553

1554
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1555

1556
  GType *Out() const { return out_; }
T
Tian 已提交
1557

I
itminner 已提交
1558
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1559

I
itminner 已提交
1560
  const int &Height() const { return height_; }
T
Tian 已提交
1561

I
itminner 已提交
1562
  const int &Width() const { return width_; }
T
Tian 已提交
1563

I
itminner 已提交
1564
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1565

I
itminner 已提交
1566
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1567

I
itminner 已提交
1568
 private:
1569 1570 1571
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1572 1573 1574 1575 1576
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1577 1578 1579
};
#endif

L
liuruilong 已提交
1580
#ifdef RELU_OP
L
liuruilong 已提交
1581 1582 1583
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1584
template <typename Dtype>
D
relu  
dolphin8 已提交
1585
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1586 1587 1588
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1589
 public:
D
relu  
dolphin8 已提交
1590
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1591
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1592 1593
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1594 1595
  }

1596
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1597

1598
  GType *Out() const { return out_; }
E
eclipsess 已提交
1599 1600

 private:
1601 1602
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1603
};
D
relu  
dolphin8 已提交
1604 1605 1606

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1607
 public:
D
relu  
dolphin8 已提交
1608 1609 1610
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1611
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1612 1613
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1614
 public:
D
relu  
dolphin8 已提交
1615
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1616 1617 1618
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1619 1620
  framework::CLImage midImage;
};
Y
yangfei 已提交
1621
#endif
D
relu  
dolphin8 已提交
1622

L
liuruilong 已提交
1623
#endif
E
eclipsess 已提交
1624

Z
zhangyang 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
1637 1638
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1639 1640

 private:
1641 1642
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1643 1644 1645
#ifdef PADDLE_MOBILE_FPGA

 private:
1646
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1647 1648 1649
  fpga::BypassArgs fpga_bypass_args;

 public:
1650
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1651 1652
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1653
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1654 1655 1656
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1657
};
L
liuruilong 已提交
1658
#endif
E
eclipsess 已提交
1659

T
Tian 已提交
1660
#ifdef PRELU_OP
N
nhzlx 已提交
1661
template <typename Dtype>
T
Tian 已提交
1662
class PReluParam : public OpParam {
N
nhzlx 已提交
1663 1664 1665
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1666 1667 1668
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1669
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1670
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1671
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1672
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1673
    out_ = OutFrom<GType>(outputs, scope);
1674
    mode_ = GetStringAttr("mode", attrs);
1675
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1676
  }
1677 1678 1679
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1680
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1681

I
itminner 已提交
1682
 private:
1683 1684 1685
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1686
  std::string mode_;
T
Tian 已提交
1687 1688 1689
};
#endif

N
nhzlx 已提交
1690
template <typename Dtype>
L
liuruilong 已提交
1691
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1692 1693 1694
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1695
 public:
L
liuruilong 已提交
1696
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1697
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1698 1699 1700 1701
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1702 1703 1704 1705
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1706
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1707

1708
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1709

1710
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1711

xiebaiyuan's avatar
xiebaiyuan 已提交
1712
  GType *Out() const { return out_; }
E
eclipsess 已提交
1713 1714 1715 1716 1717 1718 1719 1720

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1721
  GType *input_x_;
1722 1723
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1724
  GType *out_;
E
eclipsess 已提交
1725 1726 1727
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1728

Z
ZhenWang 已提交
1729
#ifdef PADDLE_MOBILE_FPGA
1730
 private:  // NOLINT
Z
zhangyang 已提交
1731
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1732 1733

 public:
Z
zhangyang 已提交
1734 1735
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1736
#endif
E
eclipsess 已提交
1737
};
1738 1739

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1740 1741
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1742
#endif
E
eclipsess 已提交
1743

N
nhzlx 已提交
1744
template <typename Dtype>
1745
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1746 1747 1748
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1749
 public:
L
liuruilong 已提交
1750
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1751
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1752 1753 1754 1755 1756
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1757
  }
1758
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1759 1760 1761

  const int &Axis() const { return axis_; }

1762
  GType *Output() const { return output_; }
W
wangliu 已提交
1763

L
liuruilong 已提交
1764
 protected:
1765
  GType *bias_;
W
wangliu 已提交
1766
  int axis_;
1767
  GType *output_;
W
wangliu 已提交
1768 1769
};

N
nhzlx 已提交
1770 1771
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1772

Z
zhangyang 已提交
1773
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1774 1775
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1776
 public:
L
liuruilong 已提交
1777
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1778 1779
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1780
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1781 1782 1783
};
#endif

1784
#ifdef FUSION_CONVADDPRELU_OP
1785 1786 1787 1788
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1789 1790 1791 1792

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1793 1794 1795
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1796
    mode_ = OpParam::GetStringAttr("mode", attrs);
1797
    framework::DDim dims = alpha_->dims();
1798 1799 1800
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1801
  }
1802
  const GType *InputAlpha() const { return alpha_; }
1803
  const std::string &Mode() const { return mode_; }
1804
  GType *Bias() const { return bias_; }
1805
  const int &Axis() const { return axis_; }
1806
  GType *Output() const { return output_; }
1807 1808

 protected:
1809
  GType *bias_;
1810
  int axis_;
1811 1812
  GType *output_;
  GType *alpha_;
1813 1814 1815 1816 1817
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1818 1819 1820 1821
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1822 1823 1824 1825

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1826 1827 1828 1829
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1830
    mode_ = OpParam::GetStringAttr("mode", attrs);
1831
    framework::DDim dims = alpha_->dims();
1832 1833 1834 1835 1836 1837
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1838
    if (keyX1_ == keyOutput_) {
1839
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1840
    } else if (keyY1_ == keyOutput_) {
1841
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1842 1843
    }
  }
1844
  const GType *InputAlpha() const { return alpha_; }
1845
  const std::string &Mode() const { return mode_; }
1846
  const GType *Bias1() const { return bias1_; }
1847

1848
  GType *Bias() const { return bias_; }
1849 1850

  const int &Axis() const { return axis_; }
1851
  GType *Output() const { return output_; }
1852 1853

 protected:
1854
  GType *bias_;
1855
  int axis_;
1856 1857
  GType *output_;
  GType *alpha_;
1858
  std::string mode_;
1859
  GType *bias1_;
1860 1861 1862 1863 1864 1865
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1866
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1867
template <typename Dtype>
1868
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1869 1870 1871
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1872 1873 1874
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1887
  }
1888
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1889 1890 1891

  const int &Axis() const { return axis_; }

1892
  GType *Output() const { return output_; }
E
eclipsess 已提交
1893

1894
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1895

1896
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1897

1898
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1899

1900
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1901 1902 1903 1904 1905 1906 1907

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

1908
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1909

1910
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1911

1912
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1913

1914
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1915 1916

 protected:
1917
  GType *bias_;
E
eclipsess 已提交
1918
  int axis_;
1919 1920 1921 1922 1923
  GType *output_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1924 1925 1926
  float epsilon_;
  float momentum_;
  bool is_test_;
1927 1928
  GType *new_bias_;
  GType *new_scale_;
1929 1930 1931 1932 1933
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1934
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1935 1936 1937 1938 1939 1940
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1955
    if (keyX_ == keyBNY_) {
1956
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1957
    } else if (keyY_ == keyBNY_) {
1958
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1959
    }
1960
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1961
  }
1962
  GType *Bias() const { return bias_; }
1963 1964 1965

  const int &Axis() const { return axis_; }

1966
  GType *Output() const { return output_; }
1967

1968
  const GType *InputBias() const { return input_bias_; }
1969

1970
  const GType *InputMean() const { return input_mean_; }
1971

1972
  const GType *InputScale() const { return input_scale_; }
1973

1974
  const GType *InputVariance() const { return input_variance_; }
1975 1976 1977 1978 1979 1980 1981

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

1982
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
1983

1984
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
1985

1986
  const GType *NewScale() const { return new_scale_; }
1987

1988
  const GType *NewBias() const { return new_bias_; }
1989 1990

 protected:
1991
  GType *bias_;
1992
  int axis_;
1993 1994 1995 1996 1997
  GType *output_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
1998 1999 2000
  float epsilon_;
  float momentum_;
  bool is_test_;
2001 2002
  GType *new_bias_;
  GType *new_scale_;
2003 2004 2005
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2006
};
2007
#endif
E
eclipsess 已提交
2008

Z
zhangyang 已提交
2009
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2010
template <typename Dtype>
2011
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2012 2013 2014
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2015 2016 2017
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
2028
  }
2029
  GType *Output() const { return output_y_; }
Z
zhangyang 已提交
2030

2031
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2032

2033
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2034

2035
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2036

2037
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2038 2039 2040 2041 2042 2043 2044

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2045
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2046

2047
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2048

2049
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2050

2051
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2052 2053

 protected:
2054 2055 2056 2057 2058
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2059 2060 2061
  float epsilon_;
  float momentum_;
  bool is_test_;
2062 2063
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2064 2065 2066
};
#endif

2067
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2068
template <typename Dtype>
2069
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2070 2071 2072
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2073 2074 2075
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2088
  }
2089
  GType *Bias() const { return bias_; }
2090 2091 2092

  const int &Axis() const { return axis_; }

2093
  GType *Output() const { return output_y_; }
2094

2095
  const GType *InputBias() const { return input_bias_; }
2096

2097
  const GType *InputMean() const { return input_mean_; }
2098

2099
  const GType *InputScale() const { return input_scale_; }
2100

2101
  const GType *InputVariance() const { return input_variance_; }
2102 2103 2104 2105 2106 2107 2108

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2109
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2110

2111
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2112

2113
  const GType *NewScale() const { return new_scale_; }
2114

2115
  const GType *NewBias() const { return new_bias_; }
2116 2117

 protected:
2118
  GType *bias_;
2119
  int axis_;
2120 2121 2122 2123 2124
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2125 2126 2127
  float epsilon_;
  float momentum_;
  bool is_test_;
2128 2129
  GType *new_bias_;
  GType *new_scale_;
2130
};
E
eclipsess 已提交
2131
#endif
Y
Yao,kun 已提交
2132

E
eclipsess 已提交
2133
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2134
template <typename Dtype>
2135
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2136 2137 2138
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2139 2140 2141
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2152
  }
2153
  GType *Output() const { return output_; }
E
eclipsess 已提交
2154

2155
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2156

2157
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2158

2159
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2160

2161
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2162 2163 2164 2165 2166 2167 2168

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2169
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2170

2171
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2172

2173
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2174

2175
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2176 2177

 protected:
2178 2179 2180 2181 2182
  GType *output_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2183 2184 2185
  float epsilon_;
  float momentum_;
  bool is_test_;
2186 2187
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2188 2189 2190 2191
};

#endif

2192
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2193
template <typename Dtype>
2194
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2195 2196 2197
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2198 2199 2200
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2211
  }
2212
  GType *Output() const { return output_; }
2213

2214
  const GType *InputBias() const { return input_bias_; }
2215

2216
  const GType *InputMean() const { return input_mean_; }
2217

2218
  const GType *InputScale() const { return input_scale_; }
2219

2220
  const GType *InputVariance() const { return input_variance_; }
2221 2222 2223 2224 2225 2226 2227

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

2228
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2229

2230
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2231

2232
  const GType *NewScale() const { return new_scale_; }
2233

2234
  const GType *NewBias() const { return new_bias_; }
2235 2236

 protected:
2237 2238 2239 2240 2241
  GType *output_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2242 2243 2244
  float epsilon_;
  float momentum_;
  bool is_test_;
2245 2246
  GType *new_bias_;
  GType *new_scale_;
2247 2248 2249
};
#endif

Y
Yao,kun 已提交
2250
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2251
template <typename Dtype>
Y
Yao,kun 已提交
2252
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2253 2254 2255
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2256 2257 2258 2259
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2260 2261
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2262 2263 2264 2265 2266
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2267
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2268

E
eclipsess 已提交
2269
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2270 2271 2272 2273 2274 2275 2276 2277

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2278 2279
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2280 2281 2282 2283
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2284
#endif
Y
Yao,kun 已提交
2285

2286
#ifdef DROPOUT_OP
N
nhzlx 已提交
2287
template <typename Dtype>
Y
Yao,kun 已提交
2288
class DropoutParam : public OpParam {
N
nhzlx 已提交
2289 2290 2291
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2292 2293 2294
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2295 2296
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2297 2298

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2299 2300
  }

2301
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2302

2303
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2304

Y
yangfei 已提交
2305 2306
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2307
 private:
2308 2309
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2310
  float dropout_prob_;
Y
Yao,kun 已提交
2311
};
2312
#endif
Y
Yao,kun 已提交
2313

N
nhzlx 已提交
2314
template <typename Dtype>
L
liuruilong 已提交
2315
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2316 2317 2318
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2319 2320 2321 2322
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2323 2324
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2325
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2326
    if (outputs.count("Output")) {
2327
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2328
    }
L
liuruilong 已提交
2329 2330 2331 2332 2333 2334
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2335
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2336

2337
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2338

2339
  GType *Output() const { return output_; }
L
liuruilong 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
2350 2351 2352
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2353 2354 2355 2356
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2357 2358 2359 2360 2361

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2362
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2363 2364 2365

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2366 2367 2368
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2369
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2370 2371 2372
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2373
#endif
L
liuruilong 已提交
2374
};
Z
zhangyang 已提交
2375

qnqinan's avatar
qnqinan 已提交
2376 2377 2378 2379 2380
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2381 2382

 public:
qnqinan's avatar
qnqinan 已提交
2383
  FusionDeconvAddParam(const VariableNameMap &inputs,
2384 2385 2386
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2387 2388 2389 2390
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
2391
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2392 2393 2394

  const int &Axis() const { return axis_; }

2395
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2396 2397

 protected:
2398
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2399
  int axis_;
2400
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2401 2402 2403 2404 2405 2406 2407
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2408

Z
zhangyang 已提交
2409 2410 2411 2412 2413
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2439 2440
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_gate_ = OutputGateFrom<GType>(outputs, scope);
    output_reset_hidden_prev_ =
        OutputResetHiddenPrevFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2530
    axis = GetAttr<int>("axis", attrs);
2531
  }
2532 2533
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2534
  const int &Axis() const { return axis; }
2535 2536

 private:
2537 2538
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2539
  int axis;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2553
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2554
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2555 2556 2557 2558 2559 2560
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2561
  }
2562
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2563 2564 2565 2566 2567
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2568 2569

 private:
2570
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2571
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2572
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2573 2574 2575
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2576 2577 2578 2579 2580 2581 2582 2583 2584
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2601 2602
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2603
  }
2604 2605 2606
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2607 2608
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2609 2610

 private:
2611 2612 2613
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2614 2615
  int out_h_;
  int out_w_;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
2631 2632
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2633 2634

 private:
2635 2636
  GType *input_;
  GType *out_;
2637 2638 2639
};
#endif

H
hjchen2 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2656 2657 2658
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2679 2680
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2681 2682 2683 2684 2685
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2686
#ifdef QUANT_OP
2687
template <typename Dtype>
2688 2689 2690 2691 2692
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2693 2694
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2695
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2696
    output_ = OutFrom<GType>(outputs, scope);
2697 2698
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2699
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2700
    // offline
2701
    if (inputs.count("InScale")) {
2702 2703
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2704 2705
    }
    // x = round(scale * x)
2706 2707
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2708
    }
2709 2710 2711 2712
  }

 public:
  // op input
2713
  GType *input_;
2714
  // op output
2715
  GType *output_;
2716
  GType *online_scale_;
2717
  // quantize offline scale
2718
  GType *offline_scale_;
2719 2720
  // if offine scale or not
  bool offline_ = false;
2721
  // round method type
2722 2723
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2724
};
2725
#endif
2726

2727
#ifdef DEQUANT_OP
2728
template <typename Dtype>
2729 2730 2731 2732 2733
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2734 2735
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2736
    input_ = InputXFrom<GType>(inputs, scope);
2737
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2738
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2739
    // dequantization is performed as x = x / static_scale / online_scale
2740 2741
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2742
    } else {
2743
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2744 2745 2746 2747 2748
    }
  }

 public:
  // op input
2749
  GType *input_;
2750
  // op output
2751
  GType *output_;
2752
  GType *activation_scale_;
2753 2754
  float weight_scale_;
};
2755
#endif
2756

2757 2758 2759 2760
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2761
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2762
template <typename Dtype>
2763
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2764 2765 2766 2767
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2768 2769 2770
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2782 2783 2784 2785
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
2786
  float epsilon_;
2787 2788 2789
};
#endif

2790 2791 2792 2793
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
2812
  GType *bias_;
2813 2814 2815
};
#endif

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2830 2831 2832
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2833 2834 2835 2836 2837 2838 2839 2840
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
2841
  GType *online_scale_;
2842
  // quantize offline scale
2843
  GType *offline_scale_;
2844 2845
  // if offine scale or not
  bool offline_ = false;
2846 2847 2848 2849 2850 2851
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
2893
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    input_y_ = nullptr;
    if (inputs.count("Y")) {
      input_y_ = InputYFrom<GType>(inputs, scope);
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
2954
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
2955
template <typename Dtype>
Z
zhaojiaying01 已提交
2956
class LogicalBinaryParam : public OpParam {
2957 2958 2959 2960
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2961 2962 2963
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
2978
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
2979 2980 2981

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
2982
class LogicalUnaryParam : public OpParam {
2983 2984 2985 2986
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2987 2988 2989
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, scope);
  }

 public:
  framework::LoDTensor *input_;
  framework::LoDTensor *index_;
  framework::LoDTensorArray *output_;
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
    input_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ = OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, scope);
  }

 public:
  framework::LoDTensorArray *input_;
  framework::LoDTensor *index_;
  framework::LoDTensor *output_;
};
#endif

Z
zhaojiaying01 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
H
update  
hjchen2 已提交
3076
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3077 3078 3079 3080
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3081
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3082 3083 3084 3085

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3086
  float step_;
Z
zhaojiaying01 已提交
3087 3088 3089
};
#endif  // INCREMENT_OP

朔-望's avatar
朔-望 已提交
3090 3091
}  // namespace operators
}  // namespace paddle_mobile