op_param.h 66.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29

L
liuruilong 已提交
30 31 32 33
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif

朔-望's avatar
朔-望 已提交
34
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
35 36
namespace operators {

W
wangliu 已提交
37 38 39 40 41 42 43
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
44

N
nhzlx 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
78
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
79 80 81 82 83 84 85 86
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
87
#endif
L
liuruilong 已提交
88

L
liuruilong 已提交
89
class OpParam {
朔-望's avatar
朔-望 已提交
90
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
91 92 93 94
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
95 96 97 98 99
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

100 101 102 103 104 105 106 107 108
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
109 110 111 112 113
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

141 142 143 144
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
145 146 147 148 149 150

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

151 152 153 154 155
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
156 157 158 159 160
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

161 162 163 164 165
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
166 167 168 169
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
170 171 172 173 174 175 176 177 178 179 180 181
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
182 183 184 185
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
202

E
eclipsess 已提交
203 204 205 206 207 208 209 210 211 212
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
213 214 215 216
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
217

218
  template <typename T>
W
wangliu 已提交
219 220
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
221 222 223
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

253 254 255 256 257 258 259 260 261 262
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
263 264 265 266 267 268
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

269 270 271 272 273
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
274 275 276 277 278 279
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
280 281 282 283 284
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
285 286 287 288 289 290
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

291 292 293 294 295 296 297 298 299 300 301
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
302
  static const T GetAttr(const string &key, const AttributeMap &map) {
303 304 305
    return ((Attribute)map.at(key)).Get<T>();
  }

306 307 308 309
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

310
  template <typename T>
W
wangliu 已提交
311
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
312
                        const Scope &scope) {
W
wangliu 已提交
313 314
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
315 316 317 318 319 320
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
321
    }
322
  }
朔-望's avatar
朔-望 已提交
323

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

344
  template <typename T>
W
wangliu 已提交
345 346 347
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
348 349
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
350
    vector<T *> var_res;
351 352 353
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
354
    }
355 356
    return var_res;
  }
朔-望's avatar
朔-望 已提交
357 358
};

N
nhzlx 已提交
359
template <typename Dtype>
360
class ConvParam : public OpParam {
N
nhzlx 已提交
361 362 363
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
364
 public:
365
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
366
            const AttributeMap &attrs, const Scope &scope) {
367 368 369 370 371 372 373 374 375
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
376
  }
朔-望's avatar
朔-望 已提交
377

N
nhzlx 已提交
378
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
379

N
nhzlx 已提交
380
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
381

N
nhzlx 已提交
382
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
383

W
wangliu 已提交
384
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
385

W
wangliu 已提交
386
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
387

W
wangliu 已提交
388
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
389

390
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
391

392 393 394 395 396 397 398
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

朔-望's avatar
朔-望 已提交
399
 private:
N
nhzlx 已提交
400 401 402
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
403 404 405
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
406
  int groups;
407 408 409 410

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
朔-望's avatar
朔-望 已提交
411
};
N
nhzlx 已提交
412 413
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
414

N
nhzlx 已提交
415
template <typename Dtype>
朔-望's avatar
朔-望 已提交
416
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
417 418 419
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
420
 public:
421
  ElementwiseAddParam(const VariableNameMap &inputs,
422 423
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
424 425 426
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
427 428 429
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
430
  const GType *InputX() const { return input_x_; }
431

xiebaiyuan's avatar
xiebaiyuan 已提交
432
  const GType *InputY() const { return input_y_; }
433

xiebaiyuan's avatar
xiebaiyuan 已提交
434
  GType *Out() const { return out_; }
435 436 437

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
438
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
439 440 441
  GType *input_x_;
  GType *input_y_;
  GType *out_;
442
  int axis_;
Z
zhangyang 已提交
443 444 445
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
446
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
447 448

 public:
H
hanbuhe 已提交
449 450
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
451
#endif
朔-望's avatar
朔-望 已提交
452 453
};

454
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
455 456
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
457 458 459
#endif

#ifdef MUL_OP
N
nhzlx 已提交
460
template <typename Dtype>
朔-望's avatar
朔-望 已提交
461
class MulParam : OpParam {
N
nhzlx 已提交
462 463 464
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
465
 public:
466
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
467
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
468 469 470
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
471 472 473
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
474

xiebaiyuan's avatar
xiebaiyuan 已提交
475
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
476

xiebaiyuan's avatar
xiebaiyuan 已提交
477
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
478

xiebaiyuan's avatar
xiebaiyuan 已提交
479
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
480

481
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
482

483
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
484

朔-望's avatar
朔-望 已提交
485
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
486 487 488
  GType *input_x_;
  GType *input_y_;
  GType *out_;
489 490
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
491
};
L
liuruilong 已提交
492
#endif
朔-望's avatar
朔-望 已提交
493

L
liuruilong 已提交
494
#ifdef CONCAT_OP
N
nhzlx 已提交
495
template <typename Dtype>
朔-望's avatar
朔-望 已提交
496
class ConcatParam : public OpParam {
N
nhzlx 已提交
497 498 499
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
500
 public:
501
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
502
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
503 504
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
505 506
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
507

N
nhzlx 已提交
508
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
509

xiebaiyuan's avatar
xiebaiyuan 已提交
510
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
511

512
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
513

朔-望's avatar
朔-望 已提交
514
 private:
N
nhzlx 已提交
515
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
516
  GType *out_;
517
  int axis_;
Z
zhangyang 已提交
518 519 520 521 522 523 524 525 526
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
527
};
L
liuruilong 已提交
528
#endif
朔-望's avatar
朔-望 已提交
529

L
liuruilong 已提交
530
#ifdef LRN_OP
N
nhzlx 已提交
531
template <typename Dtype>
E
eclipsess 已提交
532
class LrnParam : public OpParam {
N
nhzlx 已提交
533 534 535
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
536
 public:
537
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
538
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
539 540 541
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
542 543 544 545
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
546
    data_format_ = GetAttr<string>("data_format", attrs);
547
  }
E
eclipsess 已提交
548

N
nhzlx 已提交
549
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
550

N
nhzlx 已提交
551
  RType *Out() const { return out_; }
E
eclipsess 已提交
552

N
nhzlx 已提交
553
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
554

555
  const int &N() const { return n_; }
E
eclipsess 已提交
556

557
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
558

559
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
560

561
  const float &K() const { return k_; }
E
eclipsess 已提交
562

W
wangliu 已提交
563
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
564

朔-望's avatar
朔-望 已提交
565
 private:
N
nhzlx 已提交
566 567 568
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
569 570 571 572
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
573
  string data_format_;
E
eclipsess 已提交
574
};
L
liuruilong 已提交
575 576 577
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
578
template <typename Dtype>
E
eclipsess 已提交
579
class BatchNormParam : OpParam {
N
nhzlx 已提交
580 581 582
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
583
 public:
584
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
585
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
586 587 588 589 590 591
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
592 593
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
594
    //    is_test_ = GetAttr<bool>("is_test", attrs);
595
  }
E
eclipsess 已提交
596

N
nhzlx 已提交
597
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
598

N
nhzlx 已提交
599
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
600

N
nhzlx 已提交
601
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
602

N
nhzlx 已提交
603
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
604

N
nhzlx 已提交
605
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
606

N
nhzlx 已提交
607
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
608

609
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
610

611
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
612

613
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
614

W
wangliu 已提交
615
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
616

617 618 619 620 621 622 623 624
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
625
 private:
N
nhzlx 已提交
626 627 628 629 630 631
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
632 633 634
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
635
  string data_format_;
636 637
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
638
};
L
liuruilong 已提交
639 640 641
#endif

#ifdef POOL_OP
N
nhzlx 已提交
642
template <typename Dtype>
643
class PoolParam : public OpParam {
N
nhzlx 已提交
644 645 646
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
647
 public:
648
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
649
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
650
    input_ = InputXFrom<GType>(inputs, scope);
651

N
nhzlx 已提交
652
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
653 654 655 656
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
657
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
658
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
659
  }
660

N
nhzlx 已提交
661
  const RType *Input() const { return input_; }
662

N
nhzlx 已提交
663
  RType *Output() const { return output_; }
664

W
wangliu 已提交
665
  const string &PoolingType() const { return pooling_type_; }
666

W
wangliu 已提交
667
  const vector<int> &Ksize() const { return ksize_; }
668

W
wangliu 已提交
669
  const vector<int> &Strides() const { return strides_; }
670

W
wangliu 已提交
671
  const vector<int> &Paddings() const { return paddings_; }
672

673
  bool isCeilMode() const { return ceil_mode_; }
674

Z
zhangyang 已提交
675
  bool isGlobalPooling() const { return global_pooling_; }
676

朔-望's avatar
朔-望 已提交
677
 private:
N
nhzlx 已提交
678 679
  RType *input_;
  RType *output_;
W
wangliu 已提交
680 681 682 683
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
684
  bool ceil_mode_;
685
  bool global_pooling_ = false;
Z
zhangyang 已提交
686
#ifdef PADDLE_MOBILE_FPGA
687 688

 private:
H
hanbuhe 已提交
689
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
690 691

 public:
H
hanbuhe 已提交
692 693
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
694
#endif
695
};
L
liuruilong 已提交
696 697 698
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
699
template <typename Dtype>
E
eclipsess 已提交
700
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
701 702 703
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
704 705
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
706
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
707 708 709 710
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
711 712 713 714
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
715

xiebaiyuan's avatar
xiebaiyuan 已提交
716 717 718
    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
719
    }
E
eclipsess 已提交
720 721 722 723 724 725
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
726
  const RType *Input() const { return input_; }
E
eclipsess 已提交
727

N
nhzlx 已提交
728
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
729

N
nhzlx 已提交
730
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
731

N
nhzlx 已提交
732
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
733

W
wangliu 已提交
734
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
735

W
wangliu 已提交
736
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
737

W
wangliu 已提交
738
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
739

W
wangliu 已提交
740
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
741 742 743 744 745 746 747 748 749 750 751

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

752 753 754 755
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
756
 private:
N
nhzlx 已提交
757 758 759 760
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
761 762 763 764
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
765 766 767 768 769
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
770
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
771
};
L
liuruilong 已提交
772
#endif
E
eclipsess 已提交
773

L
liuruilong 已提交
774
#ifdef BOXCODER_OP
N
nhzlx 已提交
775
template <typename Dtype>
E
eclipsess 已提交
776
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
777 778 779
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
780 781
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
782
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
783 784 785 786
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
787 788
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
789
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
790

N
nhzlx 已提交
791
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
792

N
nhzlx 已提交
793
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
794

N
nhzlx 已提交
795
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
796 797 798 799

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
800 801 802 803
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
804 805
  std::string code_type_;
};
L
liuruilong 已提交
806
#endif
W
wangliu 已提交
807

L
liuruilong 已提交
808
#ifdef SOFTMAX_OP
N
nhzlx 已提交
809
template <typename Dtype>
W
wangliu 已提交
810
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
811 812 813
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
814 815
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
816
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
817 818
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
819
  }
N
nhzlx 已提交
820 821
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
822 823

 private:
N
nhzlx 已提交
824 825
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
826 827 828 829

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
830
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
831 832 833
  fpga::BypassArgs fpga_bypass_args;

 public:
834
  RType *FloatInput() const {
H
hanbuhe 已提交
835 836 837 838 839 840
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
841
};
L
liuruilong 已提交
842
#endif
W
wangliu 已提交
843

L
liuruilong 已提交
844
#ifdef SIGMOID_OP
N
nhzlx 已提交
845
template <typename Dtype>
W
wangliu 已提交
846
class SigmoidParam : public OpParam {
N
nhzlx 已提交
847 848 849
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
850 851
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
852
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
853 854
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
855
  }
N
nhzlx 已提交
856 857
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
858 859

 private:
N
nhzlx 已提交
860 861
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
862
};
L
liuruilong 已提交
863 864 865
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
866
template <typename Dtype>
E
eclipsess 已提交
867
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
868 869 870
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
871 872 873 874
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
875 876 877
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
878 879 880 881 882 883 884 885
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
886
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
887

N
nhzlx 已提交
888
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
889

N
nhzlx 已提交
890
  RType *Out() const { return out_; }
E
eclipsess 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
905 906 907
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
908 909 910 911 912 913 914
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
915
#endif
W
wangliu 已提交
916

N
nhzlx 已提交
917
template <typename Dtype>
L
liuruilong 已提交
918
class FeedParam : public OpParam {
N
nhzlx 已提交
919 920 921
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
922 923
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
924 925 926 927
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
928
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
929
  }
Y
yangfei 已提交
930
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
931
  GType *Out() const { return out_; }
W
wangliu 已提交
932
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
933

L
liuruilong 已提交
934
 private:
Y
yangfei 已提交
935
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
936
  GType *out_;
W
wangliu 已提交
937
  int batch_size;
L
liuruilong 已提交
938 939
};

N
nhzlx 已提交
940
template <typename Dtype>
L
liuruilong 已提交
941
class FetchParam : public OpParam {
N
nhzlx 已提交
942 943 944
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
945 946
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
947
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
948
    input_x_ = InputXFrom<GType>(inputs, scope);
949
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
950
  }
L
liuruilong 已提交
951

N
nhzlx 已提交
952
  const RType *InputX() const { return input_x_; }
953 954 955 956 957
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<Tensor>("Out", outputs, scope);
  }
L
liuruilong 已提交
958

L
liuruilong 已提交
959
 private:
N
nhzlx 已提交
960
  RType *input_x_;
Y
yangfei 已提交
961
  Tensor *out_;
L
liuruilong 已提交
962 963
};

L
liuruilong 已提交
964
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
965
template <typename Dtype>
E
eclipsess 已提交
966
class TransposeParam : public OpParam {
N
nhzlx 已提交
967 968 969
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
970 971 972
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
973 974
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
975 976 977
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
978
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
979

N
nhzlx 已提交
980
  RType *Out() const { return out_; }
E
eclipsess 已提交
981 982 983 984

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
985 986
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
987 988
  vector<int> axis_;
};
L
liuruilong 已提交
989
#endif
E
eclipsess 已提交
990

xiebaiyuan's avatar
xiebaiyuan 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1057
#ifdef RESHAPE_OP
N
nhzlx 已提交
1058
template <typename Dtype>
E
eclipsess 已提交
1059
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1060 1061 1062
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1063 1064 1065
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1066 1067 1068
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1069
    shape_ = GetAttr<vector<int>>("shape", attrs);
1070 1071 1072 1073 1074 1075 1076

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1077 1078
  }

N
nhzlx 已提交
1079
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1080

N
nhzlx 已提交
1081
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1082

N
nhzlx 已提交
1083
  RType *Out() const { return out_; }
E
eclipsess 已提交
1084 1085 1086 1087 1088 1089

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1090 1091 1092
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1093 1094 1095
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1096
#endif
E
eclipsess 已提交
1097

T
Tian 已提交
1098
#ifdef SCALE_OP
N
nhzlx 已提交
1099
template <typename Dtype>
I
itminner 已提交
1100
class ScaleParam : public OpParam {
N
nhzlx 已提交
1101 1102 1103
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1104 1105 1106
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1107 1108 1109
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1110 1111 1112 1113 1114 1115
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1116
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1117

N
nhzlx 已提交
1118
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1119

N
nhzlx 已提交
1120
  RType *Out() const { return out_; }
I
itminner 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1131 1132 1133
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1134 1135 1136 1137 1138
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1139 1140 1141
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1142
template <typename Dtype>
I
itminner 已提交
1143
class SliceParam : public OpParam {
N
nhzlx 已提交
1144 1145 1146
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1147 1148 1149
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1150 1151 1152
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1153 1154 1155 1156 1157
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1158
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1159

N
nhzlx 已提交
1160
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1161

N
nhzlx 已提交
1162
  RType *Out() const { return out_; }
I
itminner 已提交
1163 1164 1165 1166 1167 1168 1169 1170

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1171 1172 1173
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1174 1175 1176 1177
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1178 1179 1180
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1181
template <typename Dtype>
T
Tian 已提交
1182
class ResizeParam : public OpParam {
N
nhzlx 已提交
1183 1184 1185
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1186 1187 1188
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1189 1190 1191
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1192 1193 1194 1195 1196 1197
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1198

N
nhzlx 已提交
1199
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1200

N
nhzlx 已提交
1201
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1202

N
nhzlx 已提交
1203
  RType *Out() const { return out_; }
T
Tian 已提交
1204

I
itminner 已提交
1205
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1206

I
itminner 已提交
1207
  const int &Height() const { return height_; }
T
Tian 已提交
1208

I
itminner 已提交
1209
  const int &Width() const { return width_; }
T
Tian 已提交
1210

I
itminner 已提交
1211
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1212

I
itminner 已提交
1213
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1214

I
itminner 已提交
1215
 private:
N
nhzlx 已提交
1216 1217 1218
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1219 1220 1221 1222 1223
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1224 1225 1226
};
#endif

L
liuruilong 已提交
1227
#ifdef RELU_OP
L
liuruilong 已提交
1228 1229 1230
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1231
template <typename Dtype>
D
relu  
dolphin8 已提交
1232
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1233 1234 1235
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1236
 public:
D
relu  
dolphin8 已提交
1237
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
E
eclipsess 已提交
1238
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1239 1240
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1241 1242
  }

N
nhzlx 已提交
1243
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1244

N
nhzlx 已提交
1245
  RType *Out() const { return out_; }
E
eclipsess 已提交
1246 1247

 private:
N
nhzlx 已提交
1248 1249
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1250
};
D
relu  
dolphin8 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
public:
  using ReluParamBase<Dtype>::ReluParamBase;
};

template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
public:
  using ReluParamBase<GPU_CL>::ReluParamBase;
  framework::CLImage& getMidImage() {
    return midImage;
  }
private:
  framework::CLImage midImage;
};

L
liuruilong 已提交
1269
#endif
E
eclipsess 已提交
1270

T
Tian 已提交
1271
#ifdef PRELU_OP
N
nhzlx 已提交
1272
template <typename Dtype>
T
Tian 已提交
1273
class PReluParam : public OpParam {
N
nhzlx 已提交
1274 1275 1276
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1277 1278 1279
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1280
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1281
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1282
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1283
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1284
    out_ = OutFrom<GType>(outputs, scope);
1285 1286
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1287
  }
N
nhzlx 已提交
1288
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1289
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1290
  RType *Out() const { return out_; }
1291
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1292

I
itminner 已提交
1293
 private:
N
nhzlx 已提交
1294 1295
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1296
  RType *alpha_;
1297
  std::string mode_;
T
Tian 已提交
1298 1299 1300
};
#endif

N
nhzlx 已提交
1301
template <typename Dtype>
L
liuruilong 已提交
1302
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1303 1304 1305
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1306
 public:
L
liuruilong 已提交
1307
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1308
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1309 1310 1311 1312
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1313 1314 1315 1316
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1317
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1318

N
nhzlx 已提交
1319
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1320

N
nhzlx 已提交
1321
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1322

xiebaiyuan's avatar
xiebaiyuan 已提交
1323
  GType *Out() const { return out_; }
E
eclipsess 已提交
1324 1325 1326 1327 1328 1329 1330 1331

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1332
  GType *input_x_;
N
nhzlx 已提交
1333 1334
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1335
  GType *out_;
E
eclipsess 已提交
1336 1337 1338
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1339 1340 1341
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1342
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1343 1344

 public:
Z
zhangyang 已提交
1345 1346
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1347
#endif
E
eclipsess 已提交
1348
};
1349 1350

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1351 1352
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1353
#endif
E
eclipsess 已提交
1354

N
nhzlx 已提交
1355
template <typename Dtype>
1356
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1357 1358 1359
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1360
 public:
L
liuruilong 已提交
1361
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1362
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1363 1364 1365 1366 1367
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1368
  }
N
nhzlx 已提交
1369
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1370 1371 1372

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1373
  RType *Output() const { return output_; }
W
wangliu 已提交
1374

L
liuruilong 已提交
1375
 protected:
N
nhzlx 已提交
1376
  RType *bias_;
W
wangliu 已提交
1377
  int axis_;
N
nhzlx 已提交
1378
  RType *output_;
Z
zhangyang 已提交
1379 1380 1381
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1382
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1383 1384

 public:
Z
zhangyang 已提交
1385 1386
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1387
#endif
W
wangliu 已提交
1388 1389
};

N
nhzlx 已提交
1390 1391
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1392

Z
zhangyang 已提交
1393
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1394 1395
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1396
 public:
L
liuruilong 已提交
1397
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1398 1399
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1400
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1401 1402 1403
};
#endif

1404
#ifdef FUSION_CONVADDPRELU_OP
1405 1406 1407 1408
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1409 1410 1411 1412

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1413 1414 1415 1416
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1417
    framework::DDim dims = alpha_->dims();
1418 1419 1420
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1437
  fpga::WrapperConvArgs fpga_conv_args;
1438 1439

 public:
Z
zhangyang 已提交
1440 1441
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1442 1443 1444 1445 1446
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1447 1448 1449 1450
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1451 1452 1453 1454

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1455 1456 1457 1458 1459
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1460
    framework::DDim dims = alpha_->dims();
1461 1462 1463 1464 1465 1466
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1467
    if (keyX1_ == keyOutput_) {
1468
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1469
    } else if (keyY1_ == keyOutput_) {
1470
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1495
  fpga::WrapperConvArgs fpga_conv_args;
1496 1497

 public:
Z
zhangyang 已提交
1498 1499
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1500 1501 1502 1503
#endif
};
#endif

E
eclipsess 已提交
1504
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1505
template <typename Dtype>
1506
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1507 1508 1509
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1510 1511 1512
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1525
  }
N
nhzlx 已提交
1526
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1527 1528 1529

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1530
  RType *Output() const { return output_; }
E
eclipsess 已提交
1531

N
nhzlx 已提交
1532
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1533

N
nhzlx 已提交
1534
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1535

N
nhzlx 已提交
1536
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1537

N
nhzlx 已提交
1538
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1539 1540 1541 1542 1543 1544 1545

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1546
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1547

N
nhzlx 已提交
1548
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1549

N
nhzlx 已提交
1550
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1551

N
nhzlx 已提交
1552
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1553 1554

 protected:
N
nhzlx 已提交
1555
  RType *bias_;
E
eclipsess 已提交
1556
  int axis_;
N
nhzlx 已提交
1557 1558 1559 1560 1561
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1562 1563 1564
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1565 1566
  RType *new_bias_;
  RType *new_scale_;
1567

Z
zhangyang 已提交
1568 1569 1570
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1571
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1572 1573

 public:
Z
zhangyang 已提交
1574 1575
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1576 1577 1578 1579 1580 1581
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1582
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1583 1584 1585 1586 1587 1588
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1603
    if (keyX_ == keyBNY_) {
1604
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1605
    } else if (keyY_ == keyBNY_) {
1606
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1607
    }
1608
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1657
  fpga::WrapperConvArgs fpga_conv_args;
1658 1659

 public:
Z
zhangyang 已提交
1660 1661
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1662
#endif
E
eclipsess 已提交
1663
};
1664
#endif
E
eclipsess 已提交
1665

Z
zhangyang 已提交
1666
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1667
template <typename Dtype>
1668
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1669 1670 1671
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1672 1673 1674
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1685
  }
N
nhzlx 已提交
1686
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1687

N
nhzlx 已提交
1688
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1689

N
nhzlx 已提交
1690
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1691

N
nhzlx 已提交
1692
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1693

N
nhzlx 已提交
1694
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1695 1696 1697 1698 1699 1700 1701

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1702
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1703

N
nhzlx 已提交
1704
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1705

N
nhzlx 已提交
1706
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1707

N
nhzlx 已提交
1708
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1709 1710

 protected:
N
nhzlx 已提交
1711 1712 1713 1714 1715
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1716 1717 1718
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1719 1720
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1721 1722 1723
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1724
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1725 1726

 public:
Z
zhangyang 已提交
1727 1728
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1729 1730 1731 1732
#endif
};
#endif

1733
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1734
template <typename Dtype>
1735
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1736 1737 1738
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1739 1740 1741
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1754
  }
N
nhzlx 已提交
1755
  RType *Bias() const { return bias_; }
1756 1757 1758

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1759
  RType *Output() const { return output_y_; }
1760

N
nhzlx 已提交
1761
  const RType *InputBias() const { return input_bias_; }
1762

N
nhzlx 已提交
1763
  const RType *InputMean() const { return input_mean_; }
1764

N
nhzlx 已提交
1765
  const RType *InputScale() const { return input_scale_; }
1766

N
nhzlx 已提交
1767
  const RType *InputVariance() const { return input_variance_; }
1768 1769 1770 1771 1772 1773 1774

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1775
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1776

N
nhzlx 已提交
1777
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1778

N
nhzlx 已提交
1779
  const RType *NewScale() const { return new_scale_; }
1780

N
nhzlx 已提交
1781
  const RType *NewBias() const { return new_bias_; }
1782 1783

 protected:
N
nhzlx 已提交
1784
  RType *bias_;
1785
  int axis_;
N
nhzlx 已提交
1786 1787 1788 1789 1790
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1791 1792 1793
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1794 1795
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1796 1797 1798
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1799
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1800 1801

 public:
Z
zhangyang 已提交
1802 1803
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1804
#endif
1805
};
E
eclipsess 已提交
1806
#endif
Y
Yao,kun 已提交
1807

E
eclipsess 已提交
1808
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1809
template <typename Dtype>
1810
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1811 1812 1813
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1814 1815 1816
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1827
  }
N
nhzlx 已提交
1828
  RType *Output() const { return output_; }
E
eclipsess 已提交
1829

N
nhzlx 已提交
1830
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1831

N
nhzlx 已提交
1832
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1833

N
nhzlx 已提交
1834
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1835

N
nhzlx 已提交
1836
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1837 1838 1839 1840 1841 1842 1843

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1844
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1845

N
nhzlx 已提交
1846
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1847

N
nhzlx 已提交
1848
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1849

N
nhzlx 已提交
1850
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1851 1852

 protected:
N
nhzlx 已提交
1853 1854 1855 1856 1857
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1858 1859 1860
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1861 1862
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1863 1864 1865 1866
};

#endif

1867
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1868
template <typename Dtype>
1869
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1870 1871 1872
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1873 1874 1875
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1886
  }
N
nhzlx 已提交
1887
  RType *Output() const { return output_; }
1888

N
nhzlx 已提交
1889
  const RType *InputBias() const { return input_bias_; }
1890

N
nhzlx 已提交
1891
  const RType *InputMean() const { return input_mean_; }
1892

N
nhzlx 已提交
1893
  const RType *InputScale() const { return input_scale_; }
1894

N
nhzlx 已提交
1895
  const RType *InputVariance() const { return input_variance_; }
1896 1897 1898 1899 1900 1901 1902

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1903
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1904

N
nhzlx 已提交
1905
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1906

N
nhzlx 已提交
1907
  const RType *NewScale() const { return new_scale_; }
1908

N
nhzlx 已提交
1909
  const RType *NewBias() const { return new_bias_; }
1910 1911

 protected:
N
nhzlx 已提交
1912 1913 1914 1915 1916
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1917 1918 1919
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1920 1921
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1922 1923 1924
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1925
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1926 1927

 public:
Z
zhangyang 已提交
1928 1929
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1930
#endif
1931 1932 1933
};
#endif

Y
Yao,kun 已提交
1934
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1935
template <typename Dtype>
Y
Yao,kun 已提交
1936
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1937 1938 1939
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1940 1941 1942 1943
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1944 1945
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1946 1947 1948 1949 1950
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1951
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1952

N
nhzlx 已提交
1953
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1954 1955 1956 1957 1958 1959 1960 1961

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1962 1963
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1964 1965 1966 1967
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1968
#endif
Y
Yao,kun 已提交
1969

1970
#ifdef DROPOUT_OP
N
nhzlx 已提交
1971
template <typename Dtype>
Y
Yao,kun 已提交
1972
class DropoutParam : public OpParam {
N
nhzlx 已提交
1973 1974 1975
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1976 1977 1978
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1979 1980
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1981 1982

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1983 1984
  }

N
nhzlx 已提交
1985
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1986

N
nhzlx 已提交
1987
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1988

Y
yangfei 已提交
1989 1990
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1991
 private:
N
nhzlx 已提交
1992 1993
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1994
  float dropout_prob_;
Y
Yao,kun 已提交
1995
};
1996
#endif
Y
Yao,kun 已提交
1997

L
liuruilong 已提交
1998
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1999
template <typename Dtype>
L
liuruilong 已提交
2000
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2001 2002 2003
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2004 2005 2006 2007
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2008 2009 2010
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2011 2012 2013 2014 2015 2016
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2017
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2018

N
nhzlx 已提交
2019
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2020

N
nhzlx 已提交
2021
  RType *Output() const { return output_; }
L
liuruilong 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2032 2033 2034
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2035 2036 2037 2038 2039 2040 2041
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2113
    axis = GetAttr<int>("axis", attrs);
2114 2115 2116
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2117
  const int &Axis() const { return axis; }
2118 2119 2120 2121

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2122
  int axis;
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2136
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2137
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2138 2139 2140 2141 2142 2143
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2144 2145
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2146 2147 2148 2149 2150
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2151 2152 2153

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2154
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2155
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2156 2157 2158
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2175 2176
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2177 2178
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2179
  const RType *InputOutPutSize() const { return input_outsize_; }
2180
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2181 2182
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2183 2184 2185 2186 2187

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2188 2189
  int out_h_;
  int out_w_;
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2205
  const RType *Input() const { return input_; }
2206 2207 2208 2209 2210 2211 2212 2213
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2214 2215
}  // namespace operators
}  // namespace paddle_mobile