op_param.h 71.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
38
using framework::Variable;
W
wangliu 已提交
39 40
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
41

N
nhzlx 已提交
42 43 44 45 46 47 48 49 50
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
51
class OpParam {
朔-望's avatar
朔-望 已提交
52
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
53 54 55 56
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
57 58 59 60 61
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

62 63 64 65 66 67 68 69 70
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
71 72 73 74 75
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

103 104 105 106
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
107 108 109 110 111 112

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

113 114 115 116 117
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
118 119 120 121 122
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

123 124 125 126 127
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
132 133 134 135 136 137 138 139 140 141 142 143
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
144 145 146 147
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
164

E
eclipsess 已提交
165 166 167 168 169 170 171 172 173 174
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
175 176 177 178
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
179

180
  template <typename T>
W
wangliu 已提交
181 182
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
183 184 185
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
186 187 188 189 190
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

220 221 222 223 224
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
225 226 227 228 229
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
235 236 237 238 239 240
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

241 242 243 244 245
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
252 253 254 255 256
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
257 258 259 260 261 262
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

263 264 265 266 267 268 269 270 271 272 273
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
274
  static const T GetAttr(const string &key, const AttributeMap &map) {
275 276
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
277 278
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
279 280
    return ((Attribute)map.at(key)).GetString();
  }
281

282 283 284 285
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

286
  template <typename T>
W
wangliu 已提交
287
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
288
                        const Scope &scope) {
W
wangliu 已提交
289 290
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
291 292 293 294 295 296
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
297
    }
298
  }
朔-望's avatar
朔-望 已提交
299

E
eclipsess 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

333
  template <typename T>
W
wangliu 已提交
334 335 336
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
337 338
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
339
    vector<T *> var_res;
340 341 342
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
343
    }
344 345
    return var_res;
  }
E
eclipsess 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
359 360
};

N
nhzlx 已提交
361
template <typename Dtype>
362
class ConvParam : public OpParam {
N
nhzlx 已提交
363 364 365
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
366
 public:
367
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
368
            const AttributeMap &attrs, const Scope &scope) {
369 370 371 372 373 374 375 376 377
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
378
  }
朔-望's avatar
朔-望 已提交
379

N
nhzlx 已提交
380
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
381

N
nhzlx 已提交
382
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
383

N
nhzlx 已提交
384
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
385

W
wangliu 已提交
386
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
387

W
wangliu 已提交
388
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
389

W
wangliu 已提交
390
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
391

392
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
393

朔-望's avatar
朔-望 已提交
394
 private:
N
nhzlx 已提交
395 396 397
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
398 399 400
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
401
  int groups;
朔-望's avatar
朔-望 已提交
402
};
N
nhzlx 已提交
403 404
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
template <typename Dtype>
朔-望's avatar
朔-望 已提交
407
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
408 409 410
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
411
 public:
412
  ElementwiseAddParam(const VariableNameMap &inputs,
413 414
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
415 416 417
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
418 419 420
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
421
  const GType *InputX() const { return input_x_; }
422

xiebaiyuan's avatar
xiebaiyuan 已提交
423
  const GType *InputY() const { return input_y_; }
424

xiebaiyuan's avatar
xiebaiyuan 已提交
425
  GType *Out() const { return out_; }
426 427 428

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
429
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
430 431 432
  GType *input_x_;
  GType *input_y_;
  GType *out_;
433
  int axis_;
Z
zhangyang 已提交
434 435 436
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
437
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
438 439

 public:
H
hanbuhe 已提交
440 441
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
442
#endif
朔-望's avatar
朔-望 已提交
443 444
};

E
eclipsess 已提交
445
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
475
#endif
E
eclipsess 已提交
476

477
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
478 479
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
480 481
#endif

482
#ifdef ELEMENTWISESUB_OP
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
512
#endif
513

L
liuruilong 已提交
514
#ifdef MUL_OP
N
nhzlx 已提交
515
template <typename Dtype>
朔-望's avatar
朔-望 已提交
516
class MulParam : OpParam {
N
nhzlx 已提交
517 518 519
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
520
 public:
521
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
522
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
523 524 525
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
526 527 528
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
529

xiebaiyuan's avatar
xiebaiyuan 已提交
530
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
531

xiebaiyuan's avatar
xiebaiyuan 已提交
532
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
533

xiebaiyuan's avatar
xiebaiyuan 已提交
534
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
535

536
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
537

538
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
539

朔-望's avatar
朔-望 已提交
540
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
541 542 543
  GType *input_x_;
  GType *input_y_;
  GType *out_;
544 545
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
546 547 548
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
549
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
550 551

 public:
Z
zhangyang 已提交
552 553
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
554
#endif
朔-望's avatar
朔-望 已提交
555
};
L
liuruilong 已提交
556
#endif
朔-望's avatar
朔-望 已提交
557

L
liuruilong 已提交
558
#ifdef CONCAT_OP
N
nhzlx 已提交
559
template <typename Dtype>
朔-望's avatar
朔-望 已提交
560
class ConcatParam : public OpParam {
N
nhzlx 已提交
561 562 563
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
564
 public:
565
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
566
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
567 568
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
569 570
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
571

N
nhzlx 已提交
572
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
573

xiebaiyuan's avatar
xiebaiyuan 已提交
574
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
575

576
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
577

朔-望's avatar
朔-望 已提交
578
 private:
N
nhzlx 已提交
579
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
580
  GType *out_;
581
  int axis_;
Z
zhangyang 已提交
582 583 584 585 586 587 588 589 590
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
591
};
L
liuruilong 已提交
592
#endif
朔-望's avatar
朔-望 已提交
593

E
eclipsess 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
625
#ifdef LRN_OP
N
nhzlx 已提交
626
template <typename Dtype>
E
eclipsess 已提交
627
class LrnParam : public OpParam {
N
nhzlx 已提交
628 629 630
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
631
 public:
632
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
633
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
634 635 636
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
637 638 639 640
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
641
    data_format_ = GetStringAttr("data_format", attrs);
642
  }
E
eclipsess 已提交
643

N
nhzlx 已提交
644
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
645

N
nhzlx 已提交
646
  RType *Out() const { return out_; }
E
eclipsess 已提交
647

N
nhzlx 已提交
648
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
649

650
  const int &N() const { return n_; }
E
eclipsess 已提交
651

652
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
653

654
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
655

656
  const float &K() const { return k_; }
E
eclipsess 已提交
657

W
wangliu 已提交
658
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
659

朔-望's avatar
朔-望 已提交
660
 private:
N
nhzlx 已提交
661 662 663
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
664 665 666 667
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
668
  string data_format_;
E
eclipsess 已提交
669
};
L
liuruilong 已提交
670 671 672
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
673
template <typename Dtype>
E
eclipsess 已提交
674
class BatchNormParam : OpParam {
N
nhzlx 已提交
675 676 677
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
678
 public:
679
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
680
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
681 682 683 684 685 686
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
687 688
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
689
    //    is_test_ = GetAttr<bool>("is_test", attrs);
690
  }
E
eclipsess 已提交
691

N
nhzlx 已提交
692
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
693

N
nhzlx 已提交
694
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
695

N
nhzlx 已提交
696
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
697

N
nhzlx 已提交
698
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
699

N
nhzlx 已提交
700
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
701

N
nhzlx 已提交
702
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
703

704
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
705

706
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
707

708
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
709

W
wangliu 已提交
710
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
711

朔-望's avatar
朔-望 已提交
712
 private:
N
nhzlx 已提交
713 714 715 716 717 718
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
719 720 721
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
722
  string data_format_;
E
eclipsess 已提交
723
};
L
liuruilong 已提交
724 725 726
#endif

#ifdef POOL_OP
N
nhzlx 已提交
727
template <typename Dtype>
728
class PoolParam : public OpParam {
N
nhzlx 已提交
729 730 731
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
732
 public:
733
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
734
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
735
    input_ = InputXFrom<GType>(inputs, scope);
736

N
nhzlx 已提交
737
    output_ = OutFrom<GType>(outputs, scope);
738
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
739 740 741
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
742
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
743
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
744
  }
745

N
nhzlx 已提交
746
  const RType *Input() const { return input_; }
747

N
nhzlx 已提交
748
  RType *Output() const { return output_; }
749

W
wangliu 已提交
750
  const string &PoolingType() const { return pooling_type_; }
751

W
wangliu 已提交
752
  const vector<int> &Ksize() const { return ksize_; }
753

W
wangliu 已提交
754
  const vector<int> &Strides() const { return strides_; }
755

W
wangliu 已提交
756
  const vector<int> &Paddings() const { return paddings_; }
757

758
  bool isCeilMode() const { return ceil_mode_; }
759

Z
zhangyang 已提交
760
  bool isGlobalPooling() const { return global_pooling_; }
761

朔-望's avatar
朔-望 已提交
762
 private:
N
nhzlx 已提交
763 764
  RType *input_;
  RType *output_;
W
wangliu 已提交
765 766 767 768
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
769
  bool ceil_mode_;
770
  bool global_pooling_ = false;
Z
zhangyang 已提交
771
#ifdef PADDLE_MOBILE_FPGA
772 773

 private:
H
hanbuhe 已提交
774
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
775 776

 public:
H
hanbuhe 已提交
777 778
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
779
#endif
780
};
L
liuruilong 已提交
781 782 783
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
784
template <typename Dtype>
E
eclipsess 已提交
785
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
786 787 788
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
789 790
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
791
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
792 793 794 795
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
796 797 798 799
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
800 801 802 803 804

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
805 806 807 808 809 810
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
811
  const RType *Input() const { return input_; }
E
eclipsess 已提交
812

N
nhzlx 已提交
813
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
814

N
nhzlx 已提交
815
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
816

N
nhzlx 已提交
817
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
818

W
wangliu 已提交
819
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
820

W
wangliu 已提交
821
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
822

W
wangliu 已提交
823
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
824

W
wangliu 已提交
825
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
826 827 828 829 830 831 832 833 834 835 836

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

837 838 839 840
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
841
 private:
N
nhzlx 已提交
842 843 844 845
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
846 847 848 849
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
850 851 852 853 854
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
855
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
856
};
L
liuruilong 已提交
857
#endif
E
eclipsess 已提交
858

L
liuruilong 已提交
859
#ifdef BOXCODER_OP
N
nhzlx 已提交
860
template <typename Dtype>
E
eclipsess 已提交
861
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
862 863 864
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
865 866
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
867
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
868 869 870 871
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
872
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
873
  }
N
nhzlx 已提交
874
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
875

N
nhzlx 已提交
876
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
877

N
nhzlx 已提交
878
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
879

N
nhzlx 已提交
880
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
881 882 883 884

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
885 886 887 888
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
889 890
  std::string code_type_;
};
L
liuruilong 已提交
891
#endif
W
wangliu 已提交
892

L
liuruilong 已提交
893
#ifdef SOFTMAX_OP
N
nhzlx 已提交
894
template <typename Dtype>
W
wangliu 已提交
895
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
896 897 898
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
899 900
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
901
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
902 903
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
904
  }
N
nhzlx 已提交
905 906
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
907 908

 private:
N
nhzlx 已提交
909 910
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
911 912 913 914

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
915
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
916 917 918
  fpga::BypassArgs fpga_bypass_args;

 public:
919
  RType *FloatInput() const {
H
hanbuhe 已提交
920 921 922 923 924 925
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
926
};
L
liuruilong 已提交
927
#endif
W
wangliu 已提交
928

L
liuruilong 已提交
929
#ifdef SIGMOID_OP
N
nhzlx 已提交
930
template <typename Dtype>
W
wangliu 已提交
931
class SigmoidParam : public OpParam {
N
nhzlx 已提交
932 933 934
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
935 936
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
937
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
938 939
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
940
  }
N
nhzlx 已提交
941 942
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
943 944

 private:
N
nhzlx 已提交
945 946
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
947
};
L
liuruilong 已提交
948 949 950
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
951
template <typename Dtype>
E
eclipsess 已提交
952
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
953 954 955
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
956 957 958 959
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
960 961 962
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
963 964 965 966 967 968 969 970
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
971
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
972

N
nhzlx 已提交
973
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
974

N
nhzlx 已提交
975
  RType *Out() const { return out_; }
E
eclipsess 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
990 991 992
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
993 994 995 996 997 998 999
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1000
#endif
W
wangliu 已提交
1001

L
lijiancheng0614 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1024
template <typename Dtype>
L
liuruilong 已提交
1025
class FeedParam : public OpParam {
N
nhzlx 已提交
1026 1027 1028
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1029 1030
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1031
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
1032 1033
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
1034
    auto var = scope->Var("batch_size");
W
wangliu 已提交
1035
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1036
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1037 1038
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1039
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1040

L
liuruilong 已提交
1041
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1042 1043
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
1044
  int batch_size;
L
liuruilong 已提交
1045 1046
};

N
nhzlx 已提交
1047
template <typename Dtype>
L
liuruilong 已提交
1048
class FetchParam : public OpParam {
N
nhzlx 已提交
1049 1050 1051
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1052 1053
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1054
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1055 1056
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
1057
  }
N
nhzlx 已提交
1058 1059
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
1060

L
liuruilong 已提交
1061
 private:
N
nhzlx 已提交
1062 1063
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
1064 1065
};

L
liuruilong 已提交
1066
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1067
template <typename Dtype>
E
eclipsess 已提交
1068
class TransposeParam : public OpParam {
N
nhzlx 已提交
1069 1070 1071
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1072 1073 1074
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1075 1076
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1077 1078 1079
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1080
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1081

N
nhzlx 已提交
1082
  RType *Out() const { return out_; }
E
eclipsess 已提交
1083 1084 1085 1086

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1087 1088
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1089 1090
  vector<int> axis_;
};
L
liuruilong 已提交
1091
#endif
E
eclipsess 已提交
1092

xiebaiyuan's avatar
xiebaiyuan 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1159
#ifdef RESHAPE_OP
N
nhzlx 已提交
1160
template <typename Dtype>
E
eclipsess 已提交
1161
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1162 1163 1164
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1165 1166 1167
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1168 1169 1170
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1171
    shape_ = GetAttr<vector<int>>("shape", attrs);
1172 1173 1174 1175 1176 1177 1178

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1179 1180
  }

N
nhzlx 已提交
1181
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1182

N
nhzlx 已提交
1183
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1184

N
nhzlx 已提交
1185
  RType *Out() const { return out_; }
E
eclipsess 已提交
1186 1187 1188 1189 1190 1191

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1192 1193 1194
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1195 1196 1197
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1198
#endif
E
eclipsess 已提交
1199

T
Tian 已提交
1200
#ifdef SCALE_OP
N
nhzlx 已提交
1201
template <typename Dtype>
I
itminner 已提交
1202
class ScaleParam : public OpParam {
N
nhzlx 已提交
1203 1204 1205
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1206 1207 1208
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1209 1210 1211
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1212 1213 1214 1215 1216 1217
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1218
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1219

N
nhzlx 已提交
1220
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1221

N
nhzlx 已提交
1222
  RType *Out() const { return out_; }
I
itminner 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1233 1234 1235
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1236 1237 1238 1239 1240
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1241 1242 1243
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1244
template <typename Dtype>
I
itminner 已提交
1245
class SliceParam : public OpParam {
N
nhzlx 已提交
1246 1247 1248
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1249 1250 1251
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1252 1253 1254
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1255 1256 1257 1258 1259
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1260
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1261

N
nhzlx 已提交
1262
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1263

N
nhzlx 已提交
1264
  RType *Out() const { return out_; }
I
itminner 已提交
1265 1266 1267 1268 1269 1270 1271 1272

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1273 1274 1275
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1276 1277 1278 1279
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1280 1281 1282
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1283
template <typename Dtype>
T
Tian 已提交
1284
class ResizeParam : public OpParam {
N
nhzlx 已提交
1285 1286 1287
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1288 1289 1290
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1291 1292 1293
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1294 1295 1296 1297 1298 1299
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1300

N
nhzlx 已提交
1301
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1302

N
nhzlx 已提交
1303
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1304

N
nhzlx 已提交
1305
  RType *Out() const { return out_; }
T
Tian 已提交
1306

I
itminner 已提交
1307
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1308

I
itminner 已提交
1309
  const int &Height() const { return height_; }
T
Tian 已提交
1310

I
itminner 已提交
1311
  const int &Width() const { return width_; }
T
Tian 已提交
1312

I
itminner 已提交
1313
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1314

I
itminner 已提交
1315
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1316

I
itminner 已提交
1317
 private:
N
nhzlx 已提交
1318 1319 1320
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1321 1322 1323 1324 1325
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1326 1327 1328
};
#endif

L
liuruilong 已提交
1329
#ifdef RELU_OP
L
liuruilong 已提交
1330 1331 1332
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1333
template <typename Dtype>
E
eclipsess 已提交
1334
class ReluParam : public OpParam {
N
nhzlx 已提交
1335 1336 1337
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1338 1339 1340
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1341 1342
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1343 1344
  }

N
nhzlx 已提交
1345
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1346

N
nhzlx 已提交
1347
  RType *Out() const { return out_; }
E
eclipsess 已提交
1348 1349

 private:
N
nhzlx 已提交
1350 1351
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1352
};
L
liuruilong 已提交
1353
#endif
E
eclipsess 已提交
1354

T
Tian 已提交
1355
#ifdef PRELU_OP
N
nhzlx 已提交
1356
template <typename Dtype>
T
Tian 已提交
1357
class PReluParam : public OpParam {
N
nhzlx 已提交
1358 1359 1360
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1361 1362 1363
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1364
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1365
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1366
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1367
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1368
    out_ = OutFrom<GType>(outputs, scope);
1369
    mode_ = GetStringAttr("mode", attrs);
1370
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1371
  }
N
nhzlx 已提交
1372
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1373
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1374
  RType *Out() const { return out_; }
1375
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1376

I
itminner 已提交
1377
 private:
N
nhzlx 已提交
1378 1379
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1380
  RType *alpha_;
1381
  std::string mode_;
T
Tian 已提交
1382 1383 1384
};
#endif

N
nhzlx 已提交
1385
template <typename Dtype>
L
liuruilong 已提交
1386
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1387 1388 1389
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1390
 public:
L
liuruilong 已提交
1391
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1392
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1393 1394 1395 1396
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1397 1398 1399 1400
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1401
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1402

N
nhzlx 已提交
1403
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1404

N
nhzlx 已提交
1405
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1406

xiebaiyuan's avatar
xiebaiyuan 已提交
1407
  GType *Out() const { return out_; }
E
eclipsess 已提交
1408 1409 1410 1411 1412 1413 1414 1415

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1416
  GType *input_x_;
N
nhzlx 已提交
1417 1418
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1419
  GType *out_;
E
eclipsess 已提交
1420 1421 1422
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1423 1424 1425
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1426
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1427 1428

 public:
Z
zhangyang 已提交
1429 1430
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1431
#endif
E
eclipsess 已提交
1432
};
1433 1434

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1435 1436
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1437
#endif
E
eclipsess 已提交
1438

N
nhzlx 已提交
1439
template <typename Dtype>
1440
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1441 1442 1443
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1444
 public:
L
liuruilong 已提交
1445
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1446
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1447 1448 1449 1450 1451
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1452
  }
N
nhzlx 已提交
1453
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1454 1455 1456

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1457
  RType *Output() const { return output_; }
W
wangliu 已提交
1458

L
liuruilong 已提交
1459
 protected:
N
nhzlx 已提交
1460
  RType *bias_;
W
wangliu 已提交
1461
  int axis_;
N
nhzlx 已提交
1462
  RType *output_;
Z
zhangyang 已提交
1463 1464 1465
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1466
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1467 1468

 public:
Z
zhangyang 已提交
1469 1470
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1471
#endif
W
wangliu 已提交
1472 1473
};

N
nhzlx 已提交
1474 1475
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1476

Z
zhangyang 已提交
1477
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1478 1479
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1480
 public:
L
liuruilong 已提交
1481
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1482 1483
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1484
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1485 1486 1487
};
#endif

1488
#ifdef FUSION_CONVADDPRELU_OP
1489 1490 1491 1492
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1493 1494 1495 1496

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1497 1498 1499
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1500
    mode_ = OpParam::GetStringAttr("mode", attrs);
1501
    framework::DDim dims = alpha_->dims();
1502 1503 1504
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1521
  fpga::SplitConvArgs fpga_conv_args;
1522 1523

 public:
Z
zhangyang 已提交
1524 1525
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1526 1527 1528 1529 1530
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1531 1532 1533 1534
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1535 1536 1537 1538

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1539 1540 1541 1542
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1543
    mode_ = OpParam::GetStringAttr("mode", attrs);
1544
    framework::DDim dims = alpha_->dims();
1545 1546 1547 1548 1549 1550
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1551
    if (keyX1_ == keyOutput_) {
1552
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1553
    } else if (keyY1_ == keyOutput_) {
1554
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1579
  fpga::SplitConvArgs fpga_conv_args;
1580 1581

 public:
Z
zhangyang 已提交
1582 1583
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1584 1585 1586 1587
#endif
};
#endif

E
eclipsess 已提交
1588
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1589
template <typename Dtype>
1590
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1591 1592 1593
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1594 1595 1596
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1609
  }
N
nhzlx 已提交
1610
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1611 1612 1613

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1614
  RType *Output() const { return output_; }
E
eclipsess 已提交
1615

N
nhzlx 已提交
1616
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1617

N
nhzlx 已提交
1618
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1619

N
nhzlx 已提交
1620
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1621

N
nhzlx 已提交
1622
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1623 1624 1625 1626 1627 1628 1629

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1630
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1631

N
nhzlx 已提交
1632
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1633

N
nhzlx 已提交
1634
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1635

N
nhzlx 已提交
1636
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1637 1638

 protected:
N
nhzlx 已提交
1639
  RType *bias_;
E
eclipsess 已提交
1640
  int axis_;
N
nhzlx 已提交
1641 1642 1643 1644 1645
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1646 1647 1648
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1649 1650
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1651 1652 1653
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1654
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1655 1656

 public:
Z
zhangyang 已提交
1657 1658
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1659 1660 1661 1662 1663 1664
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1665
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1666 1667 1668 1669 1670 1671
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1686
    if (keyX_ == keyBNY_) {
1687
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1688
    } else if (keyY_ == keyBNY_) {
1689
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1690
    }
1691
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1740
  fpga::SplitConvArgs fpga_conv_args;
1741 1742

 public:
Z
zhangyang 已提交
1743 1744
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1745
#endif
E
eclipsess 已提交
1746
};
1747
#endif
E
eclipsess 已提交
1748

Z
zhangyang 已提交
1749
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1750
template <typename Dtype>
1751
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1752 1753 1754
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1755 1756 1757
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1768
  }
N
nhzlx 已提交
1769
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1770

N
nhzlx 已提交
1771
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1772

N
nhzlx 已提交
1773
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1774

N
nhzlx 已提交
1775
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1776

N
nhzlx 已提交
1777
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1778 1779 1780 1781 1782 1783 1784

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1785
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1786

N
nhzlx 已提交
1787
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1788

N
nhzlx 已提交
1789
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1790

N
nhzlx 已提交
1791
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1792 1793

 protected:
N
nhzlx 已提交
1794 1795 1796 1797 1798
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1799 1800 1801
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1802 1803
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1804 1805 1806
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1807
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1808 1809

 public:
Z
zhangyang 已提交
1810 1811
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1812 1813 1814 1815
#endif
};
#endif

1816
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1817
template <typename Dtype>
1818
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1819 1820 1821
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1822 1823 1824
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1837
  }
N
nhzlx 已提交
1838
  RType *Bias() const { return bias_; }
1839 1840 1841

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1842
  RType *Output() const { return output_y_; }
1843

N
nhzlx 已提交
1844
  const RType *InputBias() const { return input_bias_; }
1845

N
nhzlx 已提交
1846
  const RType *InputMean() const { return input_mean_; }
1847

N
nhzlx 已提交
1848
  const RType *InputScale() const { return input_scale_; }
1849

N
nhzlx 已提交
1850
  const RType *InputVariance() const { return input_variance_; }
1851 1852 1853 1854 1855 1856 1857

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1858
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1859

N
nhzlx 已提交
1860
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1861

N
nhzlx 已提交
1862
  const RType *NewScale() const { return new_scale_; }
1863

N
nhzlx 已提交
1864
  const RType *NewBias() const { return new_bias_; }
1865 1866

 protected:
N
nhzlx 已提交
1867
  RType *bias_;
1868
  int axis_;
N
nhzlx 已提交
1869 1870 1871 1872 1873
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1874 1875 1876
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1877 1878
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1879 1880 1881
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1882
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1883 1884

 public:
Z
zhangyang 已提交
1885 1886
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1887
#endif
1888
};
E
eclipsess 已提交
1889
#endif
Y
Yao,kun 已提交
1890

E
eclipsess 已提交
1891
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1892
template <typename Dtype>
1893
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1894 1895 1896
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1897 1898 1899
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1910
  }
N
nhzlx 已提交
1911
  RType *Output() const { return output_; }
E
eclipsess 已提交
1912

N
nhzlx 已提交
1913
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1914

N
nhzlx 已提交
1915
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1916

N
nhzlx 已提交
1917
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1918

N
nhzlx 已提交
1919
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1920 1921 1922 1923 1924 1925 1926

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1927
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1928

N
nhzlx 已提交
1929
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1930

N
nhzlx 已提交
1931
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1932

N
nhzlx 已提交
1933
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1934 1935

 protected:
N
nhzlx 已提交
1936 1937 1938 1939 1940
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1941 1942 1943
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1944 1945
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1946 1947 1948 1949
};

#endif

1950
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1951
template <typename Dtype>
1952
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1953 1954 1955
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1956 1957 1958
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1969
  }
N
nhzlx 已提交
1970
  RType *Output() const { return output_; }
1971

N
nhzlx 已提交
1972
  const RType *InputBias() const { return input_bias_; }
1973

N
nhzlx 已提交
1974
  const RType *InputMean() const { return input_mean_; }
1975

N
nhzlx 已提交
1976
  const RType *InputScale() const { return input_scale_; }
1977

N
nhzlx 已提交
1978
  const RType *InputVariance() const { return input_variance_; }
1979 1980 1981 1982 1983 1984 1985

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1986
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1987

N
nhzlx 已提交
1988
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1989

N
nhzlx 已提交
1990
  const RType *NewScale() const { return new_scale_; }
1991

N
nhzlx 已提交
1992
  const RType *NewBias() const { return new_bias_; }
1993 1994

 protected:
N
nhzlx 已提交
1995 1996 1997 1998 1999
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2000 2001 2002
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2003 2004
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2005 2006 2007
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2008
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
2009 2010

 public:
Z
zhangyang 已提交
2011 2012
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2013
#endif
2014 2015 2016
};
#endif

Y
Yao,kun 已提交
2017
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2018
template <typename Dtype>
Y
Yao,kun 已提交
2019
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2020 2021 2022
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2023 2024 2025 2026
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2027 2028
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2029 2030 2031 2032 2033
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2034
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2035

N
nhzlx 已提交
2036
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2037 2038 2039 2040 2041 2042 2043 2044

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2045 2046
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2047 2048 2049 2050
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2051
#endif
Y
Yao,kun 已提交
2052

2053
#ifdef DROPOUT_OP
N
nhzlx 已提交
2054
template <typename Dtype>
Y
Yao,kun 已提交
2055
class DropoutParam : public OpParam {
N
nhzlx 已提交
2056 2057 2058
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2059 2060 2061
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2062 2063
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2064 2065

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2066 2067
  }

N
nhzlx 已提交
2068
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2069

N
nhzlx 已提交
2070
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2071

Y
yangfei 已提交
2072 2073
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2074
 private:
N
nhzlx 已提交
2075 2076
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2077
  float dropout_prob_;
Y
Yao,kun 已提交
2078
};
2079
#endif
Y
Yao,kun 已提交
2080

H
hjchen2 已提交
2081
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2082
template <typename Dtype>
L
liuruilong 已提交
2083
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2084 2085 2086
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2087 2088 2089 2090
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2091 2092 2093
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2094 2095 2096 2097 2098 2099
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2100
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2101

N
nhzlx 已提交
2102
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2103

N
nhzlx 已提交
2104
  RType *Output() const { return output_; }
L
liuruilong 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2115 2116 2117
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2118 2119 2120 2121 2122 2123 2124
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2150 2151
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2196
    axis = GetAttr<int>("axis", attrs);
2197 2198 2199
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2200
  const int &Axis() const { return axis; }
2201 2202 2203 2204

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2205
  int axis;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2219
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2220
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2221 2222 2223 2224 2225 2226
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2227 2228
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2229 2230 2231 2232 2233
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2234 2235 2236

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2237
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2238
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2239 2240 2241
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2258 2259
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2260 2261
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2262
  const RType *InputOutPutSize() const { return input_outsize_; }
2263
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2264 2265
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2266 2267 2268 2269 2270

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2271 2272
  int out_h_;
  int out_w_;
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2288
  const RType *Input() const { return input_; }
2289 2290 2291 2292 2293 2294 2295 2296
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2297
template <typename Dtype>
2298 2299 2300 2301 2302
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2303 2304
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

2339
template <typename Dtype>
2340 2341 2342 2343 2344
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2345 2346
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2367 2368
}  // namespace operators
}  // namespace paddle_mobile