Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
8a4b7663
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8a4b7663
编写于
5月 28, 2018
作者:
W
wangliu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
#305
上级
b1a7eddf
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
167 addition
and
116 deletion
+167
-116
src/framework/operator.h
src/framework/operator.h
+2
-1
src/framework/scope.cpp
src/framework/scope.cpp
+1
-10
src/framework/tensor.h
src/framework/tensor.h
+9
-12
src/framework/variable.h
src/framework/variable.h
+17
-17
src/io.cpp
src/io.cpp
+46
-10
src/io.h
src/io.h
+3
-0
src/operators/conv_op.cpp
src/operators/conv_op.cpp
+5
-0
src/operators/feed_op.cpp
src/operators/feed_op.cpp
+6
-0
src/operators/feed_op.h
src/operators/feed_op.h
+6
-5
src/operators/fetch_op.cpp
src/operators/fetch_op.cpp
+6
-4
src/operators/fetch_op.h
src/operators/fetch_op.h
+9
-4
src/operators/op_param.h
src/operators/op_param.h
+56
-51
src/operators/pool_op.cpp
src/operators/pool_op.cpp
+0
-1
test/net/test_googlenet.cpp
test/net/test_googlenet.cpp
+1
-1
未找到文件。
src/framework/operator.h
浏览文件 @
8a4b7663
...
...
@@ -58,6 +58,7 @@ class OperatorBase : PaddleMobileObject {
std
::
shared_ptr
<
Scope
>
scope
);
virtual
~
OperatorBase
()
{}
virtual
void
Run
()
const
=
0
;
virtual
void
InferShape
()
const
=
0
;
const
VariableNameMap
&
Inputs
()
const
{
return
inputs_
;
}
const
VariableNameMap
&
Outputs
()
const
{
return
outputs_
;
}
...
...
@@ -87,8 +88,8 @@ class OperatorWithKernel : public OperatorBase<Dtype> {
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
std
::
shared_ptr
<
Scope
>
scope
)
:
OperatorBase
<
Dtype
>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
virtual
void
InferShape
()
const
=
0
;
virtual
void
Run
()
const
=
0
;
virtual
void
InferShape
()
const
=
0
;
};
template
<
typename
Dtype
,
typename
P
>
...
...
src/framework/scope.cpp
浏览文件 @
8a4b7663
...
...
@@ -34,19 +34,10 @@ Variable *Scope::Var(const std::string &name) {
}
pvar
=
new
Variable
;
vars_
[
name
]
=
pvar
;
pvar
->
name_
=
&
(
vars_
.
find
(
name
)
->
first
)
;
pvar
->
name_
=
vars_
.
find
(
name
)
->
first
;
return
pvar
;
}
// Variable* Scope::Var(std::string* name) {
// auto var_name = string::Sprintf("%p.%d", this,
// vars_.size());
// if (name != nullptr) {
// *name = var_name;
// }
// return Var(var_name);
// }
Variable
*
Scope
::
FindVar
(
const
std
::
string
&
name
)
const
{
auto
*
pvar
=
FindVarLocally
(
name
);
if
(
pvar
!=
nullptr
)
{
...
...
src/framework/tensor.h
浏览文件 @
8a4b7663
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <common/enforce.h>
#include <cstdint>
#include <cstring>
#include <memory>
...
...
@@ -217,18 +218,14 @@ class Tensor {
}
inline
void
check_memory_size
()
const
{
// PADDLE_ENFORCE_NOT_NULL(
// holder_, "Tensor holds no memory. Call
// Tensor::mutable_data
// first.");
// PADDLE_ENFORCE_LE(
// numel() * SizeOfType(type()), memory_size(),
// "Tensor's dims_ is out of bound. Call
// Tensor::mutable_data "
// "first to re-allocate memory.\n"
// "or maybe the required data-type mismatches the data
// already
// stored.");
PADDLE_MOBILE_ENFORCE
(
holder_
,
"Tensor holds no memory. Call Tensor::mutable_data first."
);
PADDLE_MOBILE_ENFORCE
(
numel
()
*
SizeOfType
(
type
())
<=
memory_size
(),
"Tensor's dims_ is out of bound. CallTensor::mutable_data "
"first to re-allocate memory.
\n
"
"or maybe the required data-type mismatches the data\
already stored."
);
}
inline
DataLayout
layout
()
const
{
return
layout_
;
}
...
...
src/framework/variable.h
浏览文件 @
8a4b7663
...
...
@@ -19,10 +19,13 @@ limitations under the License. */
#include <string>
#include <typeindex>
#include <typeinfo>
#include "../common/variant.h"
#include "paddle_mobile_object.h"
namespace
paddle_mobile
{
namespace
framework
{
using
std
::
string
;
class
Variable
:
public
PaddleMobileObject
{
public:
template
<
typename
T
>
...
...
@@ -30,17 +33,23 @@ class Variable : public PaddleMobileObject {
return
static_cast
<
const
T
*>
(
holder_
->
Ptr
());
}
template
<
typename
T
>
const
T
GetValue
()
const
{
return
variant
.
Get
<
T
>
();
}
template
<
typename
T
>
void
SetValue
(
T
value
)
{
variant
.
Set
<
T
>
(
value
);
}
bool
IsInitialized
()
const
{
return
holder_
!=
nullptr
;
}
const
std
::
string
*
Name
()
{
return
name_
;
}
const
std
::
string
Name
()
{
return
name_
;
}
template
<
typename
T
>
T
*
GetMutable
()
{
if
(
!
IsType
<
T
>
())
{
if
(
*
Name
()
==
"pixel"
)
{
// std::cout << " reset " << *Name() <<
// std::endl;
}
holder_
.
reset
(
new
PlaceholderImp
<
T
>
(
new
T
()));
}
return
static_cast
<
T
*>
(
holder_
->
Ptr
());
...
...
@@ -48,15 +57,6 @@ class Variable : public PaddleMobileObject {
template
<
typename
T
>
bool
IsType
()
const
{
if
(
holder_
)
{
// printf("not null \n");
printf
(
" holder type : %s, this type %s
\n
"
,
holder_
->
Type
().
name
(),
typeid
(
T
).
name
());
}
// std::cout << " " << holder_->Type() << " " <<
// typeid(T) <<
// std::endl;
return
holder_
!=
nullptr
&&
holder_
->
Type
()
==
typeid
(
T
);
}
...
...
@@ -64,7 +64,7 @@ class Variable : public PaddleMobileObject {
std
::
type_index
Type
()
const
{
return
holder_
->
Type
();
}
void
SetName
(
const
st
d
::
string
*
name
)
{
name_
=
name
;
}
void
SetName
(
const
st
ring
name
)
{
name_
=
name
;
}
private:
struct
Placeholder
{
...
...
@@ -87,10 +87,10 @@ class Variable : public PaddleMobileObject {
std
::
unique_ptr
<
T
>
ptr_
;
const
std
::
type_info
&
type_
;
};
Variant
<
int
,
bool
,
string
,
float
,
double
>
variant
;
std
::
unique_ptr
<
Placeholder
>
holder_
;
friend
class
Scope
;
const
std
::
string
*
name_
;
string
name_
;
};
}
// namespace framework
}
// namespace paddle_mobile
src/io.cpp
浏览文件 @
8a4b7663
...
...
@@ -27,6 +27,7 @@ limitations under the License. */
#include "framework/tensor.h"
namespace
paddle_mobile
{
using
framework
::
Variable
;
void
ReadBinaryFile
(
const
std
::
string
&
filename
,
std
::
string
*
contents
)
{
std
::
ifstream
fin
(
filename
,
std
::
ios
::
in
|
std
::
ios
::
binary
);
...
...
@@ -204,10 +205,12 @@ const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
var_desc
->
Type
()
!=
framework
::
VARTYPE_TYPE_FEED_MINIBATCH
&&
var_desc
->
Type
()
!=
framework
::
VARTYPE_TYPE_FETCH_LIST
)
{
// DLOG << "to load var ";
LoadVar
(
var
,
*
var_desc
,
dirname
+
"/"
+
var_desc
->
Name
());
auto
dim
=
var_desc
->
Tensor_desc
().
Dims
();
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
(
dim
));
}
else
{
auto
dim
=
var_desc
->
Tensor_desc
().
Dims
();
PADDLE_MOBILE_ENFORCE
(
dim
.
size
()
>
0
,
"dim size is 0"
);
PADDLE_MOBILE_ENFORCE
(
dim
.
size
()
>
1
,
"dim size is 0"
);
dim
[
0
]
=
1
;
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
(
dim
));
...
...
@@ -243,11 +246,39 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p) : program_(p) {
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
// auto op_base =
// framework::OpRegistry<Dtype>::CreateOp(op->Type(),
// op->GetInputs(), op->GetOutputs(),
// op->GetAttrMap(), program_.scope);
// op_base->InferShape();
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
op_base
->
InferShape
();
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
op_base
);
}
}
InitMemory
();
}
template
<
typename
Dtype
,
Precision
P
>
Executor
<
Dtype
,
P
>::
Executor
(
const
framework
::
Program
<
Dtype
>
p
,
int
batch_size
)
:
program_
(
p
),
batch_size_
(
batch_size
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
Variable
*
variable_ptr
=
program_
.
scope
->
Var
(
"batch_size"
);
variable_ptr
[
0
].
SetValue
<
int
>
(
batch_size
);
const
std
::
vector
<
std
::
shared_ptr
<
framework
::
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
framework
::
OpDesc
>
op
=
ops
[
j
];
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
op_base
->
InferShape
();
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
op_base
);
}
}
InitMemory
();
...
...
@@ -342,6 +373,9 @@ void Executor<Dtype, P>::InitMemory() {
auto
var
=
program_
.
scope
->
Var
(
var_desc
->
Name
());
if
(
var_desc
->
Persistable
())
{
auto
tensor
=
var
->
template
GetMutable
<
framework
::
LoDTensor
>();
if
(
var_desc
->
Name
()
==
"feed"
||
var_desc
->
Name
()
==
"fetch"
)
{
continue
;
}
LoadMemory
(
*
var_desc
,
tensor
,
program_
.
model_path
+
"/"
+
var_desc
->
Name
());
}
else
{
...
...
@@ -381,9 +415,11 @@ std::shared_ptr<framework::Tensor> Executor<Dtype, P>::predict(
template
<
typename
Dtype
,
Precision
P
>
void
Executor
<
Dtype
,
P
>::
predict
(
const
framework
::
Tensor
&
t
,
int
block_id
)
{
// framework::Variable *g_feed_value = program_.scope->Var("feed");
// auto feed_tensor = g_feed_value->GetMutable<framework::Tensor>();
// feed_tensor->ShareDataWith(t);
framework
::
Variable
*
g_feed_value
=
program_
.
scope
->
Var
(
"feed"
);
auto
feed_tensor
=
g_feed_value
->
GetMutable
<
framework
::
LoDTensor
>
();
feed_tensor
->
Resize
(
t
.
dims
());
feed_tensor
->
ShareDataWith
(
t
);
std
::
shared_ptr
<
framework
::
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
...
...
src/io.h
浏览文件 @
8a4b7663
...
...
@@ -47,6 +47,8 @@ class Executor {
Executor
(
const
framework
::
Program
<
Dtype
>
p
);
Executor
(
const
framework
::
Program
<
Dtype
>
p
,
int
batch_size
);
std
::
shared_ptr
<
framework
::
Tensor
>
predict
(
framework
::
Tensor
&
t
);
std
::
vector
<
Ptype
>
predict
(
const
std
::
vector
<
Ptype
>
&
input
,
...
...
@@ -57,6 +59,7 @@ class Executor {
void
LoadMemory
(
const
framework
::
VarDesc
var_desc
,
framework
::
LoDTensor
*
tensor
,
const
std
::
string
&
file_path
);
framework
::
Program
<
Dtype
>
program_
;
int
batch_size_
=
1
;
std
::
shared_ptr
<
framework
::
ProgramDesc
>
to_predict_program_
;
void
predict
(
const
framework
::
Tensor
&
t
,
int
block_id
);
std
::
map
<
framework
::
BlockDesc
,
...
...
src/operators/conv_op.cpp
浏览文件 @
8a4b7663
...
...
@@ -56,6 +56,11 @@ void ConvOp<Dtype, T>::InferShape() const {
std
::
vector
<
int
>
dilations
=
param_
.
Dilations
();
PADDLE_MOBILE_ENFORCE
((
in_dims
.
size
()
==
filter_dims
.
size
()
&&
dilations
.
size
()
==
paddings
.
size
()
&&
paddings
.
size
()
==
strides
.
size
()),
"ConvParam is not suitable"
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
...
...
src/operators/feed_op.cpp
浏览文件 @
8a4b7663
...
...
@@ -13,3 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "feed_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
class
FeedOp
<
CPU
,
float
>;
}
}
// namespace paddle_mobile
src/operators/feed_op.h
浏览文件 @
8a4b7663
...
...
@@ -21,7 +21,7 @@ namespace paddle_mobile {
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
FeedOp
:
framework
::
OperatorBase
<
DeviceType
>
{
class
FeedOp
:
public
framework
::
OperatorBase
<
DeviceType
>
{
public:
FeedOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
attrs
,
...
...
@@ -32,8 +32,9 @@ class FeedOp : framework::OperatorBase<DeviceType> {
void
Run
()
const
{
param_
.
Out
()
->
ShareDataWith
(
*
param_
.
InputX
());
}
void
InferShape
()
const
{
auto
x_dims
=
param_
.
InputX
()
->
dims
();
param_
.
Out
()
->
Resize
(
x_dims
);
auto
out_dims
=
param_
.
Out
()
->
dims
();
out_dims
[
0
]
=
param_
.
BatchSize
();
param_
.
Out
()
->
Resize
(
out_dims
);
}
protected:
...
...
@@ -41,8 +42,8 @@ class FeedOp : framework::OperatorBase<DeviceType> {
};
namespace
ops
=
paddle_mobile
::
operators
;
// USE_OP(F
eed);
// REGISTER_OPERATOR(F
eed, ops::FeedOp);
USE_OP
(
f
eed
);
REGISTER_OPERATOR
(
f
eed
,
ops
::
FeedOp
);
}
// namespace operators
}
// namespace paddle_mobile
src/operators/fetch_op.cpp
浏览文件 @
8a4b7663
...
...
@@ -12,8 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
//
// Created by liuRuiLong on 2018/5/25.
//
#include "fetch_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
class
FetchOp
<
CPU
,
float
>;
}
}
// namespace paddle_mobile
src/operators/fetch_op.h
浏览文件 @
8a4b7663
...
...
@@ -21,7 +21,7 @@ namespace paddle_mobile {
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
FetchOp
:
framework
::
OperatorBase
<
DeviceType
>
{
class
FetchOp
:
public
framework
::
OperatorBase
<
DeviceType
>
{
public:
FetchOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
attrs
,
...
...
@@ -29,7 +29,12 @@ class FetchOp : framework::OperatorBase<DeviceType> {
:
framework
::
OperatorBase
<
DeviceType
>
(
type
,
inputs
,
outputs
,
attrs
,
scope
),
param_
(
inputs
,
outputs
,
attrs
,
*
scope
)
{}
void
Run
()
const
{
param_
.
Out
()
->
ShareDataWith
(
*
param_
.
InputX
());
}
void
Run
()
const
{
param_
.
Out
()
->
ShareDataWith
(
*
param_
.
InputX
());
for
(
int
i
=
0
;
i
<
param_
.
Out
()
->
numel
();
++
i
)
{
DLOG
<<
param_
.
Out
()
->
template
data
<
float
>()[
i
];
}
}
void
InferShape
()
const
{
auto
x_dims
=
param_
.
InputX
()
->
dims
();
...
...
@@ -41,8 +46,8 @@ class FetchOp : framework::OperatorBase<DeviceType> {
};
namespace
ops
=
paddle_mobile
::
operators
;
// USE_OP(F
etch);
// REGISTER_OPERATOR(F
etch, ops::FetchOp);
USE_OP
(
f
etch
);
REGISTER_OPERATOR
(
f
etch
,
ops
::
FetchOp
);
}
// namespace operators
}
// namespace paddle_mobile
src/operators/op_param.h
浏览文件 @
8a4b7663
...
...
@@ -197,8 +197,8 @@ class ConvParam : OpParam {
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
filter_
=
FilterFrom
<
LoDTensor
>
(
inputs
,
scope
);
input_
=
InputFrom
<
Tensor
>
(
inputs
,
scope
);
output_
=
OutputFrom
<
Tensor
>
(
outputs
,
scope
);
input_
=
InputFrom
<
LoD
Tensor
>
(
inputs
,
scope
);
output_
=
OutputFrom
<
LoD
Tensor
>
(
outputs
,
scope
);
strides_
=
GetAttr
<
vector
<
int
>>
(
"strides"
,
attrs
);
paddings_
=
GetAttr
<
vector
<
int
>>
(
"paddings"
,
attrs
);
dilations_
=
GetAttr
<
vector
<
int
>>
(
"dilations"
,
attrs
);
...
...
@@ -237,9 +237,9 @@ class ElementwiseAddParam : OpParam {
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_y_
=
InputYFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
input_y_
=
InputYFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
axis_
=
GetAttr
<
int
>
(
"axis"
,
attrs
);
}
...
...
@@ -263,9 +263,9 @@ class MulParam : OpParam {
MulParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_y_
=
InputYFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
input_y_
=
InputYFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
x_num_col_dims_
=
GetAttr
<
int
>
(
"x_num_col_dims"
,
attrs
);
y_num_col_dims_
=
GetAttr
<
int
>
(
"y_num_col_dims"
,
attrs
);
}
...
...
@@ -293,19 +293,19 @@ class ConcatParam : public OpParam {
ConcatParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
inputs_
=
InputMultiFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
inputs_
=
InputMultiFrom
<
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
axis_
=
GetAttr
<
int
>
(
"axis"
,
attrs
);
}
vector
<
Tensor
*>
Inputs
()
const
{
return
inputs_
;
}
vector
<
LoD
Tensor
*>
Inputs
()
const
{
return
inputs_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
const
int
&
Axis
()
const
{
return
axis_
;
}
private:
vector
<
Tensor
*>
inputs_
;
vector
<
LoD
Tensor
*>
inputs_
;
Tensor
*
out_
;
int
axis_
;
};
...
...
@@ -315,9 +315,9 @@ class LrnParam : public OpParam {
LrnParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
mid_out_
=
MidOutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
mid_out_
=
MidOutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
n_
=
GetAttr
<
int
>
(
"n"
,
attrs
);
alpha_
=
GetAttr
<
float
>
(
"alpha"
,
attrs
);
beta_
=
GetAttr
<
float
>
(
"beta"
,
attrs
);
...
...
@@ -356,12 +356,12 @@ class BatchNormParam : OpParam {
BatchNormParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
output_y_
=
OutputYFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_bias_
=
InputBiasFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_mean_
=
InputMeanFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_scale_
=
InputScaleFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_variance_
=
InputVarianceFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_x_
=
InputXFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
output_y_
=
OutputYFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
input_bias_
=
InputBiasFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
input_mean_
=
InputMeanFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
input_scale_
=
InputScaleFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
input_variance_
=
InputVarianceFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
epsilon_
=
GetAttr
<
float
>
(
"epsilon"
,
attrs
);
momentum_
=
GetAttr
<
float
>
(
"momentum"
,
attrs
);
is_test_
=
GetAttr
<
bool
>
(
"is_test"
,
attrs
);
...
...
@@ -404,9 +404,9 @@ class PoolParam : public OpParam {
PoolParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_
=
InputXFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
output_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
output_
=
OutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
pooling_type_
=
GetAttr
<
string
>
(
"pooling_type"
,
attrs
);
ksize_
=
GetAttr
<
vector
<
int
>>
(
"ksize"
,
attrs
);
strides_
=
GetAttr
<
vector
<
int
>>
(
"strides"
,
attrs
);
...
...
@@ -447,10 +447,11 @@ class PriorBoxParam : public OpParam {
PriorBoxParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_
=
InputFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_image_
=
InputImageFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
output_boxes_
=
OutputBoxesFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
output_variances_
=
OutputVariancesFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_
=
InputFrom
<
framework
::
LoDTensor
>
(
inputs
,
scope
);
input_image_
=
InputImageFrom
<
framework
::
LoDTensor
>
(
inputs
,
scope
);
output_boxes_
=
OutputBoxesFrom
<
framework
::
LoDTensor
>
(
outputs
,
scope
);
output_variances_
=
OutputVariancesFrom
<
framework
::
LoDTensor
>
(
outputs
,
scope
);
min_sizes_
=
GetAttr
<
vector
<
float
>>
(
"min_sizes"
,
attrs
);
max_sizes_
=
GetAttr
<
vector
<
float
>>
(
"max_sizes"
,
attrs
);
aspect_ratios_
=
GetAttr
<
vector
<
float
>>
(
"aspect_ratios"
,
attrs
);
...
...
@@ -508,10 +509,11 @@ class BoxCoderParam : public OpParam {
BoxCoderParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_priorbox_
=
InputPriorBoxFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_priorboxvar_
=
InputPriorBoxVarFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_targetbox_
=
InputTargetBoxFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
output_box_
=
OutputBoxFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_priorbox_
=
InputPriorBoxFrom
<
framework
::
LoDTensor
>
(
inputs
,
scope
);
input_priorboxvar_
=
InputPriorBoxVarFrom
<
framework
::
LoDTensor
>
(
inputs
,
scope
);
input_targetbox_
=
InputTargetBoxFrom
<
framework
::
LoDTensor
>
(
inputs
,
scope
);
output_box_
=
OutputBoxFrom
<
framework
::
LoDTensor
>
(
outputs
,
scope
);
code_type_
=
GetAttr
<
std
::
string
>
(
"code_type"
,
attrs
);
}
const
Tensor
*
InputPriorBox
()
const
{
return
input_priorbox_
;
}
...
...
@@ -537,8 +539,8 @@ class SoftmaxParam : public OpParam {
SoftmaxParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
...
...
@@ -553,8 +555,8 @@ class SigmoidParam : public OpParam {
SigmoidParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
...
...
@@ -568,9 +570,9 @@ class MultiClassNMSParam : public OpParam {
MultiClassNMSParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_bboxes_
=
InputBBoxesFrom
<
Tensor
>
(
inputs
,
scope
);
input_scores_
=
InputScoresFrom
<
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
Tensor
>
(
outputs
,
scope
);
input_bboxes_
=
InputBBoxesFrom
<
LoD
Tensor
>
(
inputs
,
scope
);
input_scores_
=
InputScoresFrom
<
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
LoD
Tensor
>
(
outputs
,
scope
);
background_label_
=
GetAttr
<
int
>
(
"background_label"
,
attrs
);
nms_top_k_
=
GetAttr
<
int
>
(
"nms_top_k"
,
attrs
);
keep_top_k_
=
GetAttr
<
int
>
(
"keep_top_k"
,
attrs
);
...
...
@@ -612,17 +614,20 @@ class MultiClassNMSParam : public OpParam {
class
FeedParam
:
public
OpParam
{
public:
FeedParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
const
framework
::
AttributeMap
&
attrs
,
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
LoDTensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
LoDTensor
>
(
outputs
,
scope
);
auto
var
=
scope
.
Var
(
"batch_size"
);
batch_size
=
var
->
GetValue
<
int
>
();
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
const
int
BatchSize
()
const
{
return
batch_size
;
}
private:
Tensor
*
input_x_
;
Tensor
*
out_
;
int
batch_size
;
};
class
FetchParam
:
public
OpParam
{
...
...
@@ -630,8 +635,8 @@ class FetchParam : public OpParam {
FetchParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
framework
::
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
LoD
Tensor
>
(
outputs
,
scope
);
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
...
...
@@ -645,8 +650,8 @@ class TransposeParam : public OpParam {
public:
TransposeParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
LoD
Tensor
>
(
outputs
,
scope
);
axis_
=
GetAttr
<
vector
<
int
>>
(
"axis"
,
attrs
);
}
...
...
@@ -666,9 +671,9 @@ class ReshapeParam : public OpParam {
public:
ReshapeParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
Tensor
>
(
inputs
,
scope
);
input_shape_
=
InputShapeFrom
<
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
LoD
Tensor
>
(
inputs
,
scope
);
input_shape_
=
InputShapeFrom
<
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
LoD
Tensor
>
(
outputs
,
scope
);
shape_
=
GetAttr
<
vector
<
int
>>
(
"shape"
,
attrs
);
inplace_
=
GetAttr
<
bool
>
(
"inplace"
,
attrs
);
}
...
...
@@ -695,8 +700,8 @@ class ReluParam : public OpParam {
public:
ReluParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
Tensor
>
(
outputs
,
scope
);
input_x_
=
InputXFrom
<
LoD
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
LoD
Tensor
>
(
outputs
,
scope
);
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
...
...
src/operators/pool_op.cpp
浏览文件 @
8a4b7663
...
...
@@ -49,7 +49,6 @@ void PoolOp<DeviceType, T>::InferShape() const {
paddings
[
i
],
strides
[
i
],
ceil_mode
));
}
param_
.
Output
()
->
Resize
(
framework
::
make_ddim
(
output_shape
));
DLOG
<<
"infer shape out size ="
<<
param_
.
Output
()
->
numel
();
}
template
class
PoolOp
<
CPU
,
float
>;
}
// namespace operators
...
...
test/net/test_googlenet.cpp
浏览文件 @
8a4b7663
...
...
@@ -24,7 +24,7 @@ int main() {
// ../../../test/models/mobilenet
auto
program
=
loader
.
Load
(
std
::
string
(
"../models/googlenet"
));
paddle_mobile
::
Executor
<
paddle_mobile
::
CPU
>
executor
(
program
);
paddle_mobile
::
Executor
<
paddle_mobile
::
CPU
>
executor
(
program
,
1
);
std
::
vector
<
float
>
input
;
std
::
vector
<
int64_t
>
dims
{
1
,
3
,
224
,
224
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录