op_param.h 32.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20 21 22 23 24 25 26
#include "common/type_define.h"
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
27 28
namespace operators {

W
wangliu 已提交
29 30 31 32 33 34 35
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
36

L
liuruilong 已提交
37
class OpParam {
朔-望's avatar
朔-望 已提交
38
 protected:
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
54 55 56 57 58
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
76 77 78 79
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
96

E
eclipsess 已提交
97 98 99 100 101 102 103 104 105 106
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
107 108 109 110
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
111

112
  template <typename T>
W
wangliu 已提交
113 114
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    return GetMultiVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
133 134 135 136 137 138
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
139 140 141 142 143
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
144 145 146 147 148 149
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

150 151 152 153 154 155 156 157 158 159 160
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
161
  static const T GetAttr(const string &key, const AttributeMap &map) {
162 163 164 165
    return ((Attribute)map.at(key)).Get<T>();
  }

  template <typename T>
W
wangliu 已提交
166
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
167
                        const Scope &scope) {
W
wangliu 已提交
168 169
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
170 171 172 173 174 175
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
176
    }
177
  }
朔-望's avatar
朔-望 已提交
178

179
  template <typename T>
W
wangliu 已提交
180 181 182
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
183 184
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
185
    vector<T *> var_res;
186 187 188
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
189
    }
190 191
    return var_res;
  }
朔-望's avatar
朔-望 已提交
192 193
};

L
liuruilong 已提交
194
#ifdef CONV_OP
朔-望's avatar
朔-望 已提交
195
class ConvParam : OpParam {
朔-望's avatar
朔-望 已提交
196
 public:
197 198 199
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const framework::AttributeMap &attrs,
            const framework::Scope &scope) {
W
wangliu 已提交
200
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
W
wangliu 已提交
201 202
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutputFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
203 204 205
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
206 207
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
208

209
  const Tensor *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
210

E
eclipsess 已提交
211
  const Tensor *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
212

213
  Tensor *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
214

W
wangliu 已提交
215
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
216

W
wangliu 已提交
217
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
218

W
wangliu 已提交
219
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
220

221
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
222

朔-望's avatar
朔-望 已提交
223
 private:
224 225
  Tensor *input_;
  Tensor *output_;
E
eclipsess 已提交
226
  Tensor *filter_;
W
wangliu 已提交
227 228 229
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
230
  int groups;
朔-望's avatar
朔-望 已提交
231 232 233
};

Print &operator<<(Print &printer, const ConvParam &conv_param);
L
liuruilong 已提交
234
#endif
朔-望's avatar
朔-望 已提交
235

L
liuruilong 已提交
236
#ifdef ELEMENTWISEADD_OP
朔-望's avatar
朔-望 已提交
237
class ElementwiseAddParam : OpParam {
朔-望's avatar
朔-望 已提交
238
 public:
239 240 241 242
  ElementwiseAddParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs,
                      const framework::AttributeMap &attrs,
                      const framework::Scope &scope) {
W
wangliu 已提交
243 244 245
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensor>(outputs, scope);
246 247 248 249 250 251 252 253 254 255 256
    axis_ = GetAttr<int>("axis", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputY() const { return input_y_; }

  Tensor *Out() const { return out_; }

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
257
 private:
258 259 260 261
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *out_;
  int axis_;
朔-望's avatar
朔-望 已提交
262 263
};

L
liuruilong 已提交
264 265 266
#endif

#ifdef MUL_OP
朔-望's avatar
朔-望 已提交
267
class MulParam : OpParam {
朔-望's avatar
朔-望 已提交
268
 public:
269 270 271
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const framework::AttributeMap &attrs,
           const framework::Scope &scope) {
W
wangliu 已提交
272 273 274
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensor>(outputs, scope);
275 276 277
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
278

279
  const Tensor *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
280

281
  const Tensor *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
282

283
  Tensor *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
284

285
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
286

287
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
288

朔-望's avatar
朔-望 已提交
289
 private:
290 291 292 293 294
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *out_;
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
295
};
L
liuruilong 已提交
296
#endif
朔-望's avatar
朔-望 已提交
297

L
liuruilong 已提交
298
#ifdef CONCAT_OP
朔-望's avatar
朔-望 已提交
299
class ConcatParam : public OpParam {
朔-望's avatar
朔-望 已提交
300
 public:
301 302 303
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const framework::AttributeMap &attrs,
              const framework::Scope &scope) {
W
wangliu 已提交
304 305
    inputs_ = InputMultiFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensor>(outputs, scope);
306 307
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
308

W
wangliu 已提交
309
  vector<LoDTensor *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
310

311
  Tensor *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
312

313
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
314

朔-望's avatar
朔-望 已提交
315
 private:
W
wangliu 已提交
316
  vector<LoDTensor *> inputs_;
317 318
  Tensor *out_;
  int axis_;
朔-望's avatar
朔-望 已提交
319
};
L
liuruilong 已提交
320
#endif
朔-望's avatar
朔-望 已提交
321

L
liuruilong 已提交
322
#ifdef LRN_OP
E
eclipsess 已提交
323
class LrnParam : public OpParam {
朔-望's avatar
朔-望 已提交
324
 public:
325 326 327
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const framework::AttributeMap &attrs,
           const framework::Scope &scope) {
W
wangliu 已提交
328 329 330
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensor>(outputs, scope);
    mid_out_ = MidOutFrom<framework::LoDTensor>(outputs, scope);
331 332 333 334
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
335
    data_format_ = GetAttr<string>("data_format", attrs);
336
  }
E
eclipsess 已提交
337

338
  const Tensor *InputX() const { return input_x_; }
E
eclipsess 已提交
339

340
  Tensor *Out() const { return out_; }
E
eclipsess 已提交
341

342
  Tensor *MidOut() const { return mid_out_; }
E
eclipsess 已提交
343

344
  const int &N() const { return n_; }
E
eclipsess 已提交
345

346
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
347

348
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
349

350
  const float &K() const { return k_; }
E
eclipsess 已提交
351

W
wangliu 已提交
352
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
353

朔-望's avatar
朔-望 已提交
354
 private:
355 356 357 358 359 360 361
  Tensor *input_x_;
  Tensor *out_;
  Tensor *mid_out_;
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
362
  string data_format_;
E
eclipsess 已提交
363
};
L
liuruilong 已提交
364 365 366
#endif

#ifdef BATCHNORM_OP
E
eclipsess 已提交
367
class BatchNormParam : OpParam {
朔-望's avatar
朔-望 已提交
368
 public:
369 370 371
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const framework::AttributeMap &attrs,
                 const framework::Scope &scope) {
W
wangliu 已提交
372 373 374 375 376 377
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    output_y_ = OutputYFrom<framework::LoDTensor>(outputs, scope);
    input_bias_ = InputBiasFrom<framework::LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<framework::LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<framework::LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<framework::LoDTensor>(inputs, scope);
378 379 380 381
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    is_test_ = GetAttr<bool>("is_test", attrs);
  }
E
eclipsess 已提交
382

383
  const Tensor *InputX() const { return input_x_; }
E
eclipsess 已提交
384

385
  Tensor *OutputY() const { return output_y_; }
E
eclipsess 已提交
386

387
  const Tensor *InputBias() const { return input_bias_; }
E
eclipsess 已提交
388

389
  const Tensor *InputMean() const { return input_mean_; }
E
eclipsess 已提交
390

391
  const Tensor *InputScale() const { return input_scale_; }
E
eclipsess 已提交
392

393
  const Tensor *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
394

395
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
396

397
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
398

399
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
400

W
wangliu 已提交
401
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
402

朔-望's avatar
朔-望 已提交
403
 private:
404 405 406 407 408 409 410 411 412
  Tensor *input_x_;
  Tensor *output_y_;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
413
  string data_format_;
E
eclipsess 已提交
414
};
L
liuruilong 已提交
415 416 417
#endif

#ifdef POOL_OP
418
class PoolParam : public OpParam {
朔-望's avatar
朔-望 已提交
419
 public:
420 421 422
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const framework::AttributeMap &attrs,
            const framework::Scope &scope) {
W
wangliu 已提交
423
    input_ = InputXFrom<framework::LoDTensor>(inputs, scope);
424

W
wangliu 已提交
425
    output_ = OutFrom<framework::LoDTensor>(outputs, scope);
W
wangliu 已提交
426 427 428 429
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
430 431 432
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
    gloabal_pooling_ = GetAttr<bool>("global_pooling", attrs);
  }
433

434
  const Tensor *Input() const { return input_; }
435

436
  Tensor *Output() const { return output_; }
437

W
wangliu 已提交
438
  const string &PoolingType() const { return pooling_type_; }
439

W
wangliu 已提交
440
  const vector<int> &Ksize() const { return ksize_; }
441

W
wangliu 已提交
442
  const vector<int> &Strides() const { return strides_; }
443

W
wangliu 已提交
444
  const vector<int> &Paddings() const { return paddings_; }
445

446
  bool isCeilMode() const { return ceil_mode_; }
447

448
  bool isGlobalPooling() const { return gloabal_pooling_; }
449

朔-望's avatar
朔-望 已提交
450
 private:
451 452
  Tensor *input_;
  Tensor *output_;
W
wangliu 已提交
453 454 455 456
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
457 458
  bool ceil_mode_;
  bool gloabal_pooling_ = false;
459 460
};

L
liuruilong 已提交
461 462 463
#endif

#ifdef PRIORBOX_OP
E
eclipsess 已提交
464 465 466 467 468
class PriorBoxParam : public OpParam {
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const framework::AttributeMap &attrs,
                const framework::Scope &scope) {
W
wangliu 已提交
469 470 471 472 473
    input_ = InputFrom<framework::LoDTensor>(inputs, scope);
    input_image_ = InputImageFrom<framework::LoDTensor>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<framework::LoDTensor>(outputs, scope);
    output_variances_ =
        OutputVariancesFrom<framework::LoDTensor>(outputs, scope);
W
wangliu 已提交
474 475 476 477
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
  const Tensor *Input() const { return input_; }

  const Tensor *InputImage() const { return input_image_; }

  Tensor *OutputBoxes() const { return output_boxes_; }

  Tensor *OutputVariances() const { return output_variances_; }

W
wangliu 已提交
492
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
493

W
wangliu 已提交
494
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
495

W
wangliu 已提交
496
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
497

W
wangliu 已提交
498
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
  Tensor *input_;
  Tensor *input_image_;
  Tensor *output_boxes_;
  Tensor *output_variances_;
W
wangliu 已提交
515 516 517 518
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
519 520 521 522 523 524
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
525
#endif
E
eclipsess 已提交
526

L
liuruilong 已提交
527
#ifdef BOXCODER_OP
E
eclipsess 已提交
528 529 530 531 532
class BoxCoderParam : public OpParam {
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const framework::AttributeMap &attrs,
                const framework::Scope &scope) {
W
wangliu 已提交
533 534 535 536 537
    input_priorbox_ = InputPriorBoxFrom<framework::LoDTensor>(inputs, scope);
    input_priorboxvar_ =
        InputPriorBoxVarFrom<framework::LoDTensor>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<framework::LoDTensor>(inputs, scope);
    output_box_ = OutputBoxFrom<framework::LoDTensor>(outputs, scope);
E
eclipsess 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
  const Tensor *InputPriorBox() const { return input_priorbox_; }

  const Tensor *InputPriorBoxVar() const { return input_priorboxvar_; }

  const Tensor *InputTargetBox() const { return input_targetbox_; }

  Tensor *OutputBox() const { return output_box_; }

  const std::string &CodeType() const { return code_type_; }

 private:
  Tensor *input_priorbox_;
  Tensor *input_priorboxvar_;
  Tensor *input_targetbox_;
  Tensor *output_box_;
  std::string code_type_;
};
L
liuruilong 已提交
557
#endif
W
wangliu 已提交
558

L
liuruilong 已提交
559
#ifdef SOFTMAX_OP
W
wangliu 已提交
560 561 562 563 564
class SoftmaxParam : public OpParam {
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const framework::AttributeMap &attrs,
               const framework::Scope &scope) {
W
wangliu 已提交
565 566
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensor>(outputs, scope);
W
wangliu 已提交
567 568 569 570 571 572 573 574
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
575
#endif
W
wangliu 已提交
576

L
liuruilong 已提交
577
#ifdef SIGMOID_OP
W
wangliu 已提交
578 579 580 581 582
class SigmoidParam : public OpParam {
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const framework::AttributeMap &attrs,
               const framework::Scope &scope) {
W
wangliu 已提交
583 584
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensor>(outputs, scope);
W
wangliu 已提交
585 586 587 588 589 590 591 592
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
593 594 595
#endif

#ifdef MULTICLASSNMS_OP
E
eclipsess 已提交
596 597 598 599 600
class MultiClassNMSParam : public OpParam {
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
W
wangliu 已提交
601 602 603
    input_bboxes_ = InputBBoxesFrom<LoDTensor>(inputs, scope);
    input_scores_ = InputScoresFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

  const Tensor *InputBBoxes() const { return input_bboxes_; }

  const Tensor *InputScores() const { return input_scores_; }

  Tensor *Out() const { return out_; }

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
  Tensor *input_bboxes_;
  Tensor *input_scores_;
  Tensor *out_;
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
641
#endif
W
wangliu 已提交
642

L
liuruilong 已提交
643 644 645
class FeedParam : public OpParam {
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
W
wangliu 已提交
646 647 648 649 650
            const framework::AttributeMap &attrs, framework::Scope &scope) {
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensor>(outputs, scope);
    auto var = scope.Var("batch_size");
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
651 652 653
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }
W
wangliu 已提交
654
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
655

L
liuruilong 已提交
656 657 658
 private:
  Tensor *input_x_;
  Tensor *out_;
W
wangliu 已提交
659
  int batch_size;
L
liuruilong 已提交
660 661 662 663 664
};

class FetchParam : public OpParam {
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
665 666
             const framework::AttributeMap &attrs,
             const framework::Scope &scope) {
W
wangliu 已提交
667 668
    input_x_ = InputXFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<framework::LoDTensor>(outputs, scope);
L
liuruilong 已提交
669 670 671
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }
L
liuruilong 已提交
672

L
liuruilong 已提交
673 674 675 676 677
 private:
  Tensor *input_x_;
  Tensor *out_;
};

L
liuruilong 已提交
678
#ifdef TRANSPOSE_OP
E
eclipsess 已提交
679 680 681 682
class TransposeParam : public OpParam {
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
683 684
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  Tensor *Out() const { return out_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
  vector<int> axis_;
};
L
liuruilong 已提交
699
#endif
E
eclipsess 已提交
700

L
liuruilong 已提交
701
#ifdef RESHAPE_OP
E
eclipsess 已提交
702 703 704 705
class ReshapeParam : public OpParam {
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
706 707 708
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    shape_ = GetAttr<vector<int>>("shape", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputShape() const { return input_shape_; }

  Tensor *Out() const { return out_; }

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
  Tensor *input_x_;
  Tensor *input_shape_;
  Tensor *out_;
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
730
#endif
E
eclipsess 已提交
731

T
Tian 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
#ifdef SCALE_OP
    class ScaleParam : public OpParam {
    public:
        ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                     const AttributeMap &attrs, const Scope &scope) {
            input_x_ = InputXFrom<LoDTensor>(inputs, scope);
            input_bias_ = InputBiasFrom<framework::LoDTensor>(inputs, scope);
            out_ = OutFrom<LoDTensor>(outputs, scope);
            inplace_ = GetAttr<bool>("inplace", attrs);
            has_bias_ = GetAttr<bool>("has_bias", attrs);
            scales_ = GetAttr<vector<float>>("scales", attrs);
            biases_ = GetAttr<vector<float>>("biases", attrs);
        }

        const Tensor *InputX() const { return input_x_; }

        const Tensor *InputBias() const { return input_bias_; }

        Tensor *Out() const { return out_; }

        const bool &Inplace() const { return inplace_; }

        const bool &HasBias() const { return has_bias_; }

        const vector<float> &Scales() const { return scales_; }

        const vector<float> &Biases() const { return biases_; }

    private:
        Tensor *input_x_;
        Tensor *input_bias_;
        Tensor *out_;
        bool inplace_;
        bool has_bias_;
        vector<float> scales_;
        vector<float> biases_;
    };
#endif

#ifdef SLICE_OP
    class SliceParam : public OpParam {
    public:
        SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                     const AttributeMap &attrs, const Scope &scope) {
            input_x_ = InputXFrom<LoDTensor>(inputs, scope);
            input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
            out_ = OutFrom<LoDTensor>(outputs, scope);
            axis_ = GetAttr<int>("axis", attrs);
            slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
            inplace_ = GetAttr<bool>("inplace", attrs);
        }

        const Tensor *InputX() const { return input_x_; }

        const Tensor *InputShape() const { return input_shape_; }

        Tensor *Out() const { return out_; }

        const int &Axis() const { return axis_; }

        const vector<int> &SlicePoints() const { return slice_points_; }

        const bool &Inplace() const { return inplace_; }

    private:
        Tensor *input_x_;
        Tensor *input_shape_;
        Tensor *out_;
        int axis_;
        vector<int> slice_points_;
        bool inplace_;
    };
#endif

#ifdef RESIZE_OP
class ResizeParam : public OpParam {
public:
    ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
        input_x_ = InputXFrom<LoDTensor>(inputs, scope);
        input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
        out_ = OutFrom<LoDTensor>(outputs, scope);
        is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
        height_ = GetAttr<int>("height", attrs);
        width_ = GetAttr<int>("width", attrs);
        out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
        out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
    }

    const Tensor *InputX() const { return input_x_; }

    const Tensor *InputShape() const { return input_shape_; }

    Tensor *Out() const { return out_; }

    const bool &IsPyramidTest() const { return is_pyramid_test_; }

    const int &Height() const { return height_; }

    const int &Width() const { return width_; }

    const float &OutHeightScale() const { return out_height_scale_; }

    const float &OutWidthScale() const { return out_width_scale_; }

private:
    Tensor *input_x_;
    Tensor *input_shape_;
    Tensor *out_;
    bool is_pyramid_test_;
    int height_;
	int width_;
	float out_height_scale_;
	float out_width_scale_;
};
#endif


L
liuruilong 已提交
850
#ifdef RELU_OP
L
liuruilong 已提交
851 852 853
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
E
eclipsess 已提交
854 855 856 857
class ReluParam : public OpParam {
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
858 859
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
860 861 862 863 864 865 866 867 868 869
  }

  const Tensor *InputX() const { return input_x_; }

  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
870
#endif
E
eclipsess 已提交
871

T
Tian 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
#ifdef PRELU_OP
class PReluParam : public OpParam {
public:
    PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
        input_x_ = InputXFrom<LoDTensor>(inputs, scope);
        out_ = OutFrom<LoDTensor>(outputs, scope);
        slopes_ = GetAttr<vector<float>>("slopes", attrs);
    }

    const Tensor *InputX() const { return input_x_; }
    Tensor *Out() const { return out_; }
    const vector<float> &Slopes() const { return slopes_; }

private:
    Tensor *input_x_;
    Tensor *out_;
    vector<float> slopes_;
};
#endif

L
liuruilong 已提交
893
#ifdef FUSION_FC_OP
L
liuruilong 已提交
894
class FusionFcParam : public OpParam {
E
eclipsess 已提交
895
 public:
L
liuruilong 已提交
896
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
897
                const AttributeMap &attrs, const Scope &scope) {
E
eclipsess 已提交
898 899 900 901
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<LoDTensor>(inputs, scope);
    input_z_ = InputZFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputY() const { return input_y_; }

  const Tensor *InputZ() const { return input_z_; }

  Tensor *Out() const { return out_; }

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *input_z_;
  Tensor *out_;
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
};
L
liuruilong 已提交
929
#endif
E
eclipsess 已提交
930

W
wangliu 已提交
931
#ifdef FUSION_CONVADD_OP
L
liuruilong 已提交
932
class FusionConvAddParam : public OpParam {
W
wangliu 已提交
933
 public:
L
liuruilong 已提交
934
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
935 936
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
W
wangliu 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    bias_ = InputYFrom<LoDTensor>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
  Tensor *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
965
 protected:
W
wangliu 已提交
966 967 968 969 970 971 972 973 974 975 976
  Tensor *bias_;
  int axis_;
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};

L
liuruilong 已提交
977
Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
W
wangliu 已提交
978 979
#endif

L
liuruilong 已提交
980
#ifdef FUSION_CONVADD_RELU_OP
L
liuruilong 已提交
981
class FusionConvAddReluParam : public FusionConvAddParam {
L
liuruilong 已提交
982
 public:
L
liuruilong 已提交
983
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
984 985
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
L
liuruilong 已提交
986
      : FusionConvAddParam(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
987 988 989
};
#endif

E
eclipsess 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
#ifdef FUSION_CONVADDBNRELU_OP
class FusionConvAddBNReluParam : public OpParam {
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<LoDTensor>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<framework::LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<framework::LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<framework::LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<framework::LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  Tensor *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *bias_;
  int axis_;
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
};

Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
#endif
朔-望's avatar
朔-望 已提交
1076 1077
}  // namespace operators
}  // namespace paddle_mobile