op_param.h 75.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

H
hjchen2 已提交
408
  RType *&Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

H
hjchen2 已提交
410
  RType *&Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

H
hjchen2 已提交
418 419 420 421 422 423 424 425 426 427 428 429
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
    EXEC_GEMM_INT8,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

430
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
431

432 433 434 435 436 437 438
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

朔-望's avatar
朔-望 已提交
439
 private:
N
nhzlx 已提交
440
  RType *input_;
H
hjchen2 已提交
441 442
  mutable RType *output_;
  mutable RType *filter_;
W
wangliu 已提交
443 444 445
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
446
  mutable enum ExecMode exec_mode_;
447
  int groups;
448 449 450 451

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
452 453 454 455 456 457 458 459 460 461

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
462
};
N
nhzlx 已提交
463 464
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
465

N
nhzlx 已提交
466
template <typename Dtype>
朔-望's avatar
朔-望 已提交
467
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
468 469 470
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
471
 public:
472
  ElementwiseAddParam(const VariableNameMap &inputs,
473 474
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
475 476 477
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
478 479 480
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
481
  const GType *InputX() const { return input_x_; }
482

xiebaiyuan's avatar
xiebaiyuan 已提交
483
  const GType *InputY() const { return input_y_; }
484

xiebaiyuan's avatar
xiebaiyuan 已提交
485
  GType *Out() const { return out_; }
486 487 488

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
489
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
490 491 492
  GType *input_x_;
  GType *input_y_;
  GType *out_;
493
  int axis_;
Z
zhangyang 已提交
494 495 496
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
497
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
498 499

 public:
H
hanbuhe 已提交
500 501
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
502
#endif
朔-望's avatar
朔-望 已提交
503 504
};

E
eclipsess 已提交
505
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
535
#endif
E
eclipsess 已提交
536

537
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
538 539
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
540 541
#endif

542
#ifdef ELEMENTWISESUB_OP
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
572
#endif
573

L
liuruilong 已提交
574
#ifdef MUL_OP
N
nhzlx 已提交
575
template <typename Dtype>
朔-望's avatar
朔-望 已提交
576
class MulParam : OpParam {
N
nhzlx 已提交
577 578 579
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
580
 public:
581
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
582
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
583 584 585
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
586 587 588
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
589

xiebaiyuan's avatar
xiebaiyuan 已提交
590
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
591

xiebaiyuan's avatar
xiebaiyuan 已提交
592
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
593

xiebaiyuan's avatar
xiebaiyuan 已提交
594
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
595

596
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
597

598
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
599

朔-望's avatar
朔-望 已提交
600
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
601 602 603
  GType *input_x_;
  GType *input_y_;
  GType *out_;
604 605
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
606
};
L
liuruilong 已提交
607
#endif
朔-望's avatar
朔-望 已提交
608

L
liuruilong 已提交
609
#ifdef CONCAT_OP
N
nhzlx 已提交
610
template <typename Dtype>
朔-望's avatar
朔-望 已提交
611
class ConcatParam : public OpParam {
N
nhzlx 已提交
612 613 614
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
615
 public:
616
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
617
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
618 619
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
620 621
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
622

N
nhzlx 已提交
623
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
624

xiebaiyuan's avatar
xiebaiyuan 已提交
625
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
626

627
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
628

朔-望's avatar
朔-望 已提交
629
 private:
N
nhzlx 已提交
630
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
631
  GType *out_;
632
  int axis_;
Z
zhangyang 已提交
633 634 635 636 637 638 639 640 641
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
642
};
L
liuruilong 已提交
643
#endif
朔-望's avatar
朔-望 已提交
644

E
eclipsess 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
676
#ifdef LRN_OP
N
nhzlx 已提交
677
template <typename Dtype>
E
eclipsess 已提交
678
class LrnParam : public OpParam {
N
nhzlx 已提交
679 680 681
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
682
 public:
683
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
684
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
685 686 687
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
688 689 690 691
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
692
    data_format_ = GetStringAttr("data_format", attrs);
693
  }
E
eclipsess 已提交
694

N
nhzlx 已提交
695
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
696

N
nhzlx 已提交
697
  RType *Out() const { return out_; }
E
eclipsess 已提交
698

N
nhzlx 已提交
699
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
700

701
  const int &N() const { return n_; }
E
eclipsess 已提交
702

703
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
704

705
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
706

707
  const float &K() const { return k_; }
E
eclipsess 已提交
708

W
wangliu 已提交
709
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
710

朔-望's avatar
朔-望 已提交
711
 private:
N
nhzlx 已提交
712 713 714
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
715 716 717 718
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
719
  string data_format_;
E
eclipsess 已提交
720
};
L
liuruilong 已提交
721 722 723
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
724
template <typename Dtype>
E
eclipsess 已提交
725
class BatchNormParam : OpParam {
N
nhzlx 已提交
726 727 728
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
729
 public:
730
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
731
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
732 733 734 735 736 737
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
738 739
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
740
    //    is_test_ = GetAttr<bool>("is_test", attrs);
741
  }
E
eclipsess 已提交
742

N
nhzlx 已提交
743
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
744

N
nhzlx 已提交
745
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
746

N
nhzlx 已提交
747
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
748

N
nhzlx 已提交
749
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
750

N
nhzlx 已提交
751
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
752

N
nhzlx 已提交
753
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
754

755
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
756

757
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
758

759
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
760

W
wangliu 已提交
761
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
762

763 764 765 766 767 768 769 770
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
771
 private:
N
nhzlx 已提交
772 773 774 775 776 777
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
778 779 780
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
781
  string data_format_;
782 783
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
784
};
L
liuruilong 已提交
785 786 787
#endif

#ifdef POOL_OP
N
nhzlx 已提交
788
template <typename Dtype>
789
class PoolParam : public OpParam {
N
nhzlx 已提交
790 791 792
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
793
 public:
794
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
795
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
796
    input_ = InputXFrom<GType>(inputs, scope);
797

N
nhzlx 已提交
798
    output_ = OutFrom<GType>(outputs, scope);
799
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
800 801 802
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
803
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
804
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
805
  }
806

N
nhzlx 已提交
807
  const RType *Input() const { return input_; }
808

N
nhzlx 已提交
809
  RType *Output() const { return output_; }
810

W
wangliu 已提交
811
  const string &PoolingType() const { return pooling_type_; }
812

W
wangliu 已提交
813
  const vector<int> &Ksize() const { return ksize_; }
814

W
wangliu 已提交
815
  const vector<int> &Strides() const { return strides_; }
816

W
wangliu 已提交
817
  const vector<int> &Paddings() const { return paddings_; }
818

819
  bool isCeilMode() const { return ceil_mode_; }
820

Z
zhangyang 已提交
821
  bool isGlobalPooling() const { return global_pooling_; }
822

朔-望's avatar
朔-望 已提交
823
 private:
N
nhzlx 已提交
824 825
  RType *input_;
  RType *output_;
W
wangliu 已提交
826 827 828 829
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
830
  bool ceil_mode_;
831
  bool global_pooling_ = false;
Z
zhangyang 已提交
832
#ifdef PADDLE_MOBILE_FPGA
833 834

 private:
H
hanbuhe 已提交
835
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
836 837

 public:
H
hanbuhe 已提交
838 839
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
840
#endif
841
};
L
liuruilong 已提交
842 843 844
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
845
template <typename Dtype>
E
eclipsess 已提交
846
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
847 848 849
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
850 851
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
852
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
853 854 855 856
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
857 858 859 860
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
861 862 863 864 865

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
866 867 868 869 870 871
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
872
  const RType *Input() const { return input_; }
E
eclipsess 已提交
873

N
nhzlx 已提交
874
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
875

N
nhzlx 已提交
876
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
877

N
nhzlx 已提交
878
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
879

W
wangliu 已提交
880
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
881

W
wangliu 已提交
882
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
883

W
wangliu 已提交
884
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
885

W
wangliu 已提交
886
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
887 888 889 890 891 892 893 894 895 896 897

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

898 899 900 901
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
902
 private:
N
nhzlx 已提交
903 904 905 906
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
907 908 909 910
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
911 912 913 914 915
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
916
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
917
};
L
liuruilong 已提交
918
#endif
E
eclipsess 已提交
919

L
liuruilong 已提交
920
#ifdef BOXCODER_OP
N
nhzlx 已提交
921
template <typename Dtype>
E
eclipsess 已提交
922
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
923 924 925
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
926 927
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
928
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
929 930 931 932
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
933
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
934
  }
N
nhzlx 已提交
935
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
936

N
nhzlx 已提交
937
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
938

N
nhzlx 已提交
939
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
940

N
nhzlx 已提交
941
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
942 943 944 945

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
946 947 948 949
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
950 951
  std::string code_type_;
};
L
liuruilong 已提交
952
#endif
W
wangliu 已提交
953

L
liuruilong 已提交
954
#ifdef SOFTMAX_OP
N
nhzlx 已提交
955
template <typename Dtype>
W
wangliu 已提交
956
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
957 958 959
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
960 961
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
962
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
963 964
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
965
  }
N
nhzlx 已提交
966 967
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
968 969

 private:
N
nhzlx 已提交
970 971
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
972 973 974 975

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
976
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
977 978 979
  fpga::BypassArgs fpga_bypass_args;

 public:
980
  RType *FloatInput() const {
H
hanbuhe 已提交
981 982 983 984 985 986
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
987
};
L
liuruilong 已提交
988
#endif
W
wangliu 已提交
989

L
liuruilong 已提交
990
#ifdef SIGMOID_OP
N
nhzlx 已提交
991
template <typename Dtype>
W
wangliu 已提交
992
class SigmoidParam : public OpParam {
N
nhzlx 已提交
993 994 995
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
996 997
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
998
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
999 1000
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1001
  }
N
nhzlx 已提交
1002 1003
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1004 1005

 private:
N
nhzlx 已提交
1006 1007
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
1008
};
L
liuruilong 已提交
1009 1010 1011
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1012
template <typename Dtype>
E
eclipsess 已提交
1013
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1014 1015 1016
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1017 1018 1019 1020
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1021 1022 1023
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1024 1025 1026 1027 1028 1029 1030 1031
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
1032
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1033

N
nhzlx 已提交
1034
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1035

N
nhzlx 已提交
1036
  RType *Out() const { return out_; }
E
eclipsess 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1051 1052 1053
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1054 1055 1056 1057 1058 1059 1060
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1061
#endif
W
wangliu 已提交
1062

L
lijiancheng0614 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1085
template <typename Dtype>
L
liuruilong 已提交
1086
class FeedParam : public OpParam {
N
nhzlx 已提交
1087 1088 1089
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1090 1091
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1092 1093 1094 1095
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1096
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1097
  }
Y
yangfei 已提交
1098
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1099
  GType *Out() const { return out_; }
W
wangliu 已提交
1100
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1101

L
liuruilong 已提交
1102
 private:
Y
yangfei 已提交
1103
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1104
  GType *out_;
W
wangliu 已提交
1105
  int batch_size;
L
liuruilong 已提交
1106 1107
};

N
nhzlx 已提交
1108
template <typename Dtype>
L
liuruilong 已提交
1109
class FetchParam : public OpParam {
N
nhzlx 已提交
1110 1111 1112
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1113 1114
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1115
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1116
    input_x_ = InputXFrom<GType>(inputs, scope);
1117
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1118
  }
L
liuruilong 已提交
1119

N
nhzlx 已提交
1120
  const RType *InputX() const { return input_x_; }
1121 1122 1123
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1124
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1125
  }
L
liuruilong 已提交
1126

L
liuruilong 已提交
1127
 private:
N
nhzlx 已提交
1128
  RType *input_x_;
Y
yangfei 已提交
1129
  Tensor *out_;
L
liuruilong 已提交
1130 1131
};

L
lijiancheng0614 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1168
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1169
template <typename Dtype>
E
eclipsess 已提交
1170
class TransposeParam : public OpParam {
N
nhzlx 已提交
1171 1172 1173
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1174 1175 1176
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1177 1178
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1179 1180 1181
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1182
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1183

N
nhzlx 已提交
1184
  RType *Out() const { return out_; }
E
eclipsess 已提交
1185 1186 1187 1188

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1189 1190
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1191 1192
  vector<int> axis_;
};
L
liuruilong 已提交
1193
#endif
E
eclipsess 已提交
1194

L
lijiancheng0614 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1292
#ifdef RESHAPE_OP
N
nhzlx 已提交
1293
template <typename Dtype>
E
eclipsess 已提交
1294
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1295 1296 1297
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1298 1299 1300
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1301 1302 1303
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1304
    shape_ = GetAttr<vector<int>>("shape", attrs);
1305 1306 1307 1308 1309 1310 1311

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1312 1313
  }

N
nhzlx 已提交
1314
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1315

N
nhzlx 已提交
1316
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1317

N
nhzlx 已提交
1318
  RType *Out() const { return out_; }
E
eclipsess 已提交
1319 1320 1321 1322 1323 1324

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1325 1326 1327
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1328 1329 1330
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1331
#endif
E
eclipsess 已提交
1332

L
lijiancheng0614 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1354
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1355

E
eclipsess 已提交
1356
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1357

E
eclipsess 已提交
1358
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1359

E
eclipsess 已提交
1360
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1361 1362 1363 1364 1365 1366

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1367 1368 1369 1370
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1371 1372 1373 1374 1375
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1376
#ifdef SCALE_OP
N
nhzlx 已提交
1377
template <typename Dtype>
I
itminner 已提交
1378
class ScaleParam : public OpParam {
N
nhzlx 已提交
1379 1380 1381
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1382 1383 1384
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1385 1386 1387
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1388 1389 1390 1391 1392 1393
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1394
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1395

N
nhzlx 已提交
1396
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1397

N
nhzlx 已提交
1398
  RType *Out() const { return out_; }
I
itminner 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1409 1410 1411
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1412 1413 1414 1415 1416
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1417 1418 1419
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1420
template <typename Dtype>
I
itminner 已提交
1421
class SliceParam : public OpParam {
N
nhzlx 已提交
1422 1423 1424
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1425 1426 1427
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1428 1429 1430
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1431 1432 1433 1434 1435
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1436
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1437

N
nhzlx 已提交
1438
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1439

N
nhzlx 已提交
1440
  RType *Out() const { return out_; }
I
itminner 已提交
1441 1442 1443 1444 1445 1446 1447 1448

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1449 1450 1451
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1452 1453 1454 1455
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1456 1457 1458
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1459
template <typename Dtype>
T
Tian 已提交
1460
class ResizeParam : public OpParam {
N
nhzlx 已提交
1461 1462 1463
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1464 1465 1466
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1467 1468 1469
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1470 1471 1472 1473 1474 1475
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1476

N
nhzlx 已提交
1477
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1478

N
nhzlx 已提交
1479
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1480

N
nhzlx 已提交
1481
  RType *Out() const { return out_; }
T
Tian 已提交
1482

I
itminner 已提交
1483
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1484

I
itminner 已提交
1485
  const int &Height() const { return height_; }
T
Tian 已提交
1486

I
itminner 已提交
1487
  const int &Width() const { return width_; }
T
Tian 已提交
1488

I
itminner 已提交
1489
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1490

I
itminner 已提交
1491
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1492

I
itminner 已提交
1493
 private:
N
nhzlx 已提交
1494 1495 1496
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1497 1498 1499 1500 1501
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1502 1503 1504
};
#endif

L
liuruilong 已提交
1505
#ifdef RELU_OP
L
liuruilong 已提交
1506 1507 1508
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1509
template <typename Dtype>
D
relu  
dolphin8 已提交
1510
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1511 1512 1513
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1514
 public:
D
relu  
dolphin8 已提交
1515
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1516
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1517 1518
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1519 1520
  }

N
nhzlx 已提交
1521
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1522

N
nhzlx 已提交
1523
  RType *Out() const { return out_; }
E
eclipsess 已提交
1524 1525

 private:
N
nhzlx 已提交
1526 1527
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1528
};
D
relu  
dolphin8 已提交
1529 1530 1531

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1532
 public:
D
relu  
dolphin8 已提交
1533 1534 1535
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1536
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1537 1538
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1539
 public:
D
relu  
dolphin8 已提交
1540
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1541 1542 1543
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1544 1545
  framework::CLImage midImage;
};
Y
yangfei 已提交
1546
#endif
D
relu  
dolphin8 已提交
1547

L
liuruilong 已提交
1548
#endif
E
eclipsess 已提交
1549

Z
zhangyang 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
L
liuruilong 已提交
1569
#endif
E
eclipsess 已提交
1570

T
Tian 已提交
1571
#ifdef PRELU_OP
N
nhzlx 已提交
1572
template <typename Dtype>
T
Tian 已提交
1573
class PReluParam : public OpParam {
N
nhzlx 已提交
1574 1575 1576
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1577 1578 1579
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1580
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1581
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1582
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1583
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1584
    out_ = OutFrom<GType>(outputs, scope);
1585
    mode_ = GetStringAttr("mode", attrs);
1586
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1587
  }
N
nhzlx 已提交
1588
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1589
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1590
  RType *Out() const { return out_; }
1591
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1592

I
itminner 已提交
1593
 private:
N
nhzlx 已提交
1594 1595
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1596
  RType *alpha_;
1597
  std::string mode_;
T
Tian 已提交
1598 1599 1600
};
#endif

N
nhzlx 已提交
1601
template <typename Dtype>
L
liuruilong 已提交
1602
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1603 1604 1605
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1606
 public:
L
liuruilong 已提交
1607
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1608
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1609 1610 1611 1612
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1613 1614 1615 1616
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1617
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1618

N
nhzlx 已提交
1619
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1620

N
nhzlx 已提交
1621
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1622

xiebaiyuan's avatar
xiebaiyuan 已提交
1623
  GType *Out() const { return out_; }
E
eclipsess 已提交
1624 1625 1626 1627 1628 1629 1630 1631

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1632
  GType *input_x_;
N
nhzlx 已提交
1633 1634
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1635
  GType *out_;
E
eclipsess 已提交
1636 1637 1638
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1639 1640 1641
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1642
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1643 1644

 public:
Z
zhangyang 已提交
1645 1646
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1647
#endif
E
eclipsess 已提交
1648
};
1649 1650

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1651 1652
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1653
#endif
E
eclipsess 已提交
1654

N
nhzlx 已提交
1655
template <typename Dtype>
1656
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1657 1658 1659
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1660
 public:
L
liuruilong 已提交
1661
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1662
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1663 1664 1665 1666 1667
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1668
  }
N
nhzlx 已提交
1669
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1670 1671 1672

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1673
  RType *Output() const { return output_; }
W
wangliu 已提交
1674

L
liuruilong 已提交
1675
 protected:
N
nhzlx 已提交
1676
  RType *bias_;
W
wangliu 已提交
1677
  int axis_;
N
nhzlx 已提交
1678
  RType *output_;
W
wangliu 已提交
1679 1680
};

N
nhzlx 已提交
1681 1682
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1683

Z
zhangyang 已提交
1684
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1685 1686
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1687
 public:
L
liuruilong 已提交
1688
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1689 1690
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1691
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1692 1693 1694
};
#endif

1695
#ifdef FUSION_CONVADDPRELU_OP
1696 1697 1698 1699
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1700 1701 1702 1703

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1704 1705 1706
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1707
    mode_ = OpParam::GetStringAttr("mode", attrs);
1708
    framework::DDim dims = alpha_->dims();
1709 1710 1711
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1729 1730 1731 1732
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1733 1734 1735 1736

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1737 1738 1739 1740
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1741
    mode_ = OpParam::GetStringAttr("mode", attrs);
1742
    framework::DDim dims = alpha_->dims();
1743 1744 1745 1746 1747 1748
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1749
    if (keyX1_ == keyOutput_) {
1750
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1751
    } else if (keyY1_ == keyOutput_) {
1752
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1777
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1778
template <typename Dtype>
1779
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1780 1781 1782
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1783 1784 1785
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1798
  }
N
nhzlx 已提交
1799
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1800 1801 1802

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1803
  RType *Output() const { return output_; }
E
eclipsess 已提交
1804

N
nhzlx 已提交
1805
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1806

N
nhzlx 已提交
1807
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1808

N
nhzlx 已提交
1809
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1810

N
nhzlx 已提交
1811
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1812 1813 1814 1815 1816 1817 1818

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1819
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1820

N
nhzlx 已提交
1821
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1822

N
nhzlx 已提交
1823
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1824

N
nhzlx 已提交
1825
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1826 1827

 protected:
N
nhzlx 已提交
1828
  RType *bias_;
E
eclipsess 已提交
1829
  int axis_;
N
nhzlx 已提交
1830 1831 1832 1833 1834
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1835 1836 1837
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1838 1839
  RType *new_bias_;
  RType *new_scale_;
1840 1841 1842 1843 1844
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1845
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1846 1847 1848 1849 1850 1851
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1866
    if (keyX_ == keyBNY_) {
1867
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1868
    } else if (keyY_ == keyBNY_) {
1869
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1870
    }
1871
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1917
};
1918
#endif
E
eclipsess 已提交
1919

Z
zhangyang 已提交
1920
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1921
template <typename Dtype>
1922
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1923 1924 1925
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1926 1927 1928
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1939
  }
N
nhzlx 已提交
1940
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1941

N
nhzlx 已提交
1942
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1943

N
nhzlx 已提交
1944
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1945

N
nhzlx 已提交
1946
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1947

N
nhzlx 已提交
1948
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1949 1950 1951 1952 1953 1954 1955

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1956
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1957

N
nhzlx 已提交
1958
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1959

N
nhzlx 已提交
1960
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1961

N
nhzlx 已提交
1962
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1963 1964

 protected:
N
nhzlx 已提交
1965 1966 1967 1968 1969
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1970 1971 1972
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1973 1974
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1975 1976 1977
};
#endif

1978
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1979
template <typename Dtype>
1980
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1981 1982 1983
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1984 1985 1986
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1999
  }
N
nhzlx 已提交
2000
  RType *Bias() const { return bias_; }
2001 2002 2003

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2004
  RType *Output() const { return output_y_; }
2005

N
nhzlx 已提交
2006
  const RType *InputBias() const { return input_bias_; }
2007

N
nhzlx 已提交
2008
  const RType *InputMean() const { return input_mean_; }
2009

N
nhzlx 已提交
2010
  const RType *InputScale() const { return input_scale_; }
2011

N
nhzlx 已提交
2012
  const RType *InputVariance() const { return input_variance_; }
2013 2014 2015 2016 2017 2018 2019

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2020
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2021

N
nhzlx 已提交
2022
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2023

N
nhzlx 已提交
2024
  const RType *NewScale() const { return new_scale_; }
2025

N
nhzlx 已提交
2026
  const RType *NewBias() const { return new_bias_; }
2027 2028

 protected:
N
nhzlx 已提交
2029
  RType *bias_;
2030
  int axis_;
N
nhzlx 已提交
2031 2032 2033 2034 2035
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2036 2037 2038
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2039 2040
  RType *new_bias_;
  RType *new_scale_;
2041
};
E
eclipsess 已提交
2042
#endif
Y
Yao,kun 已提交
2043

E
eclipsess 已提交
2044
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2045
template <typename Dtype>
2046
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2047 2048 2049
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2050 2051 2052
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2063
  }
N
nhzlx 已提交
2064
  RType *Output() const { return output_; }
E
eclipsess 已提交
2065

N
nhzlx 已提交
2066
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2067

N
nhzlx 已提交
2068
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2069

N
nhzlx 已提交
2070
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2071

N
nhzlx 已提交
2072
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2073 2074 2075 2076 2077 2078 2079

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2080
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2081

N
nhzlx 已提交
2082
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2083

N
nhzlx 已提交
2084
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2085

N
nhzlx 已提交
2086
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2087 2088

 protected:
N
nhzlx 已提交
2089 2090 2091 2092 2093
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2094 2095 2096
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2097 2098
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2099 2100 2101 2102
};

#endif

2103
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2104
template <typename Dtype>
2105
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2106 2107 2108
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2109 2110 2111
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2122
  }
N
nhzlx 已提交
2123
  RType *Output() const { return output_; }
2124

N
nhzlx 已提交
2125
  const RType *InputBias() const { return input_bias_; }
2126

N
nhzlx 已提交
2127
  const RType *InputMean() const { return input_mean_; }
2128

N
nhzlx 已提交
2129
  const RType *InputScale() const { return input_scale_; }
2130

N
nhzlx 已提交
2131
  const RType *InputVariance() const { return input_variance_; }
2132 2133 2134 2135 2136 2137 2138

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2139
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2140

N
nhzlx 已提交
2141
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2142

N
nhzlx 已提交
2143
  const RType *NewScale() const { return new_scale_; }
2144

N
nhzlx 已提交
2145
  const RType *NewBias() const { return new_bias_; }
2146 2147

 protected:
N
nhzlx 已提交
2148 2149 2150 2151 2152
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2153 2154 2155
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2156 2157
  RType *new_bias_;
  RType *new_scale_;
2158 2159 2160
};
#endif

Y
Yao,kun 已提交
2161
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2162
template <typename Dtype>
Y
Yao,kun 已提交
2163
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2164 2165 2166
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2167 2168 2169 2170
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2171 2172
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2173 2174 2175 2176 2177
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2178
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2179

E
eclipsess 已提交
2180
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2181 2182 2183 2184 2185 2186 2187 2188

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2189 2190
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2191 2192 2193 2194
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2195
#endif
Y
Yao,kun 已提交
2196

2197
#ifdef DROPOUT_OP
N
nhzlx 已提交
2198
template <typename Dtype>
Y
Yao,kun 已提交
2199
class DropoutParam : public OpParam {
N
nhzlx 已提交
2200 2201 2202
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2203 2204 2205
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2206 2207
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2208 2209

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2210 2211
  }

N
nhzlx 已提交
2212
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2213

N
nhzlx 已提交
2214
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2215

Y
yangfei 已提交
2216 2217
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2218
 private:
N
nhzlx 已提交
2219 2220
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2221
  float dropout_prob_;
Y
Yao,kun 已提交
2222
};
2223
#endif
Y
Yao,kun 已提交
2224

H
hjchen2 已提交
2225
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2226
template <typename Dtype>
L
liuruilong 已提交
2227
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2228 2229 2230
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2231 2232 2233 2234
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2235 2236
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2237
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2238
    if (outputs.count("Output")) {
2239
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2240
    }
L
liuruilong 已提交
2241 2242 2243 2244 2245 2246
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2247
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2248

N
nhzlx 已提交
2249
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2250

N
nhzlx 已提交
2251
  RType *Output() const { return output_; }
L
liuruilong 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2262 2263 2264
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2265 2266 2267 2268
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
#endif
L
liuruilong 已提交
2279 2280
};
#endif
qnqinan's avatar
qnqinan 已提交
2281 2282 2283 2284 2285
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2286 2287

 public:
qnqinan's avatar
qnqinan 已提交
2288
  FusionDeconvAddParam(const VariableNameMap &inputs,
2289 2290 2291
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2313

Z
zhangyang 已提交
2314 2315 2316 2317 2318
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2344 2345
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2390
    axis = GetAttr<int>("axis", attrs);
2391 2392 2393
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2394
  const int &Axis() const { return axis; }
2395 2396 2397 2398

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2399
  int axis;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2413
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2414
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2415 2416 2417 2418 2419 2420
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2421 2422
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2423 2424 2425 2426 2427
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2428 2429 2430

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2431
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2432
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2433 2434 2435
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2452 2453
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2454 2455
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2456
  const RType *InputOutPutSize() const { return input_outsize_; }
2457
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2458 2459
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2460 2461 2462 2463 2464

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2465 2466
  int out_h_;
  int out_w_;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2482
  const RType *Input() const { return input_; }
2483 2484 2485 2486 2487 2488 2489 2490
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2491
#ifdef QUANT_OP
2492
template <typename Dtype>
2493 2494 2495 2496 2497
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2498 2499
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2500 2501 2502 2503 2504 2505 2506
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2507
      is_static_ = true;
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
2529
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
2530
};
2531
#endif
2532

2533
#ifdef DEQUANT_OP
2534
template <typename Dtype>
2535 2536 2537 2538 2539
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2540 2541
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};
2561
#endif
2562

朔-望's avatar
朔-望 已提交
2563 2564
}  // namespace operators
}  // namespace paddle_mobile