op_param.h 100.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
          const AttributeMap &attrs, Scope *scope) {
    scope_pointer_ = scope;
    inputs_ = inputs;
  }

  template <typename T>
  T *CreateNewScale() {
    std::string scale_key = Getkey("Scale", inputs_, 0);
    auto var = scope_pointer_->Var(scale_key + "_new");
    return var->GetMutable<T>();
  }

  template <typename T>
  T *CreateNewBiase() {
    std::string biase_key = Getkey("Bias", inputs_, 0);
    auto var = scope_pointer_->Var(biase_key + "_new");
    return var->GetMutable<T>();
  }

  VariableNameMap inputs_;
  Scope *scope_pointer_ = nullptr;

朔-望's avatar
朔-望 已提交
96
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
97 98 99 100
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
101 102 103 104 105 106 107

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

108 109 110 111 112
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

113 114 115 116 117 118 119 120 121
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
122 123 124 125 126
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

154 155 156 157
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
158 159 160 161 162 163

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

164 165 166 167 168
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
169 170 171 172 173
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

174 175 176 177 178
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
179 180 181 182
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
183 184 185 186 187 188 189 190 191 192 193 194
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
215

E
eclipsess 已提交
216 217 218 219 220 221 222 223 224 225
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
226 227 228 229
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
230

231
  template <typename T>
W
wangliu 已提交
232 233
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
234 235 236
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
237 238 239 240 241
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
248 249 250 251 252
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
253 254 255 256 257 258 259 260 261 262 263
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
264 265 266 267 268 269
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
270 271 272 273 274 275 276 277 278 279 280 281
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

282 283 284 285 286
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
287 288 289 290 291
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

292 293 294 295 296
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
297 298 299 300 301 302
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

303 304 305 306 307
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
314 315 316 317 318 319
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
320 321 322 323 324
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
325 326 327 328 329
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
330 331 332 333 334 335
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

336 337 338 339 340 341 342 343 344 345 346
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
347
  static const T GetAttr(const string &key, const AttributeMap &map) {
348 349
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
350 351
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
352 353
    return ((Attribute)map.at(key)).GetString();
  }
354

355 356 357 358
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

359
  template <typename T>
W
wangliu 已提交
360
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
361
                        const Scope &scope) {
W
wangliu 已提交
362 363
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
364 365 366 367 368 369
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
370
    }
371
  }
朔-望's avatar
朔-望 已提交
372

E
eclipsess 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

386
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
387
                            int index) {
388 389
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

408
  template <typename T>
W
wangliu 已提交
409 410 411
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
412 413
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
414
    vector<T *> var_res;
415 416 417
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
418
    }
419 420
    return var_res;
  }
E
eclipsess 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
434 435
};

N
nhzlx 已提交
436
template <typename Dtype>
437
class ConvParam : public OpParam {
N
nhzlx 已提交
438 439 440
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
441
 public:
442
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
443 444 445 446
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
447
    if (outputs.count("Output")) {
448
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
449 450 451 452 453
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
454
  }
朔-望's avatar
朔-望 已提交
455

456
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
457

458
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
459

460
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
461

W
wangliu 已提交
462
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
463

W
wangliu 已提交
464
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
465

W
wangliu 已提交
466
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
467

H
hjchen2 已提交
468 469 470
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
471 472
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
473 474
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
475
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
476
    EXEC_GEMM_INT8,
H
hjchen2 已提交
477
    EXEC_DEPTHWISE3x3_INT8,
478
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
479 480
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
H
hjchen2 已提交
481 482 483 484
  };

  ExecMode &ExecMode() const { return exec_mode_; }

485
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
486

487 488 489 490 491 492 493
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
494
 public:
495 496 497 498
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
499 500 501
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
502
  mutable enum ExecMode exec_mode_;
503
  int groups;
504 505 506 507

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
508 509 510

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
511
 public:
Z
zhangyang 已提交
512 513 514 515 516
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
517 518 519 520 521 522 523

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
524
#endif
朔-望's avatar
朔-望 已提交
525
};
N
nhzlx 已提交
526 527
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
528

N
nhzlx 已提交
529
template <typename Dtype>
530
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
531 532 533
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
534
 public:
535
  ElementwiseAddParam(const VariableNameMap &inputs,
536
                      const VariableNameMap &outputs, const AttributeMap &attrs,
537 538 539 540 541
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
542 543 544
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
545
  const GType *InputX() const { return input_x_; }
546

xiebaiyuan's avatar
xiebaiyuan 已提交
547
  const GType *InputY() const { return input_y_; }
548

xiebaiyuan's avatar
xiebaiyuan 已提交
549
  GType *Out() const { return out_; }
550 551 552

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
553
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
554 555 556
  GType *input_x_;
  GType *input_y_;
  GType *out_;
557
  int axis_;
Z
zhangyang 已提交
558 559 560
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
561
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
562 563

 public:
H
hanbuhe 已提交
564 565
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
566 567 568 569

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
570
#endif
朔-望's avatar
朔-望 已提交
571 572
};

E
eclipsess 已提交
573
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
574
template <typename Dtype>
575
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
576 577 578 579 580 581
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
582 583 584 585 586
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
603 604 605 606 607 608
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
609
};
S
suiyang 已提交
610
#endif
E
eclipsess 已提交
611

612
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
613 614
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
615 616
#endif

617
#ifdef ELEMENTWISESUB_OP
618
template <typename Dtype>
619
class ElementwiseSubParam : public OpParam {
620 621 622 623 624 625
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
626 627 628 629 630
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
648
#endif
649

L
liuruilong 已提交
650
#ifdef MUL_OP
N
nhzlx 已提交
651
template <typename Dtype>
652
class MulParam : public OpParam {
N
nhzlx 已提交
653 654 655
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
656
 public:
657
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
658 659 660 661 662
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
663 664 665
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
666

xiebaiyuan's avatar
xiebaiyuan 已提交
667
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
668

xiebaiyuan's avatar
xiebaiyuan 已提交
669
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
670

xiebaiyuan's avatar
xiebaiyuan 已提交
671
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
672

673
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
674

675
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
676

朔-望's avatar
朔-望 已提交
677
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
678 679 680
  GType *input_x_;
  GType *input_y_;
  GType *out_;
681 682
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
683
};
L
liuruilong 已提交
684
#endif
朔-望's avatar
朔-望 已提交
685

L
liuruilong 已提交
686
#ifdef CONCAT_OP
N
nhzlx 已提交
687
template <typename Dtype>
朔-望's avatar
朔-望 已提交
688
class ConcatParam : public OpParam {
N
nhzlx 已提交
689 690 691
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
692
 public:
693
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
694 695 696 697
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
698 699
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
700

N
nhzlx 已提交
701
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
702

xiebaiyuan's avatar
xiebaiyuan 已提交
703
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
704

705
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
706

朔-望's avatar
朔-望 已提交
707
 private:
N
nhzlx 已提交
708
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
709
  GType *out_;
710
  int axis_;
Z
zhangyang 已提交
711 712 713 714 715 716 717 718 719
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
720
};
L
liuruilong 已提交
721
#endif
朔-望's avatar
朔-望 已提交
722

E
eclipsess 已提交
723 724 725 726 727 728 729 730
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
731 732 733 734 735 736
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
755
#ifdef LRN_OP
N
nhzlx 已提交
756
template <typename Dtype>
E
eclipsess 已提交
757
class LrnParam : public OpParam {
N
nhzlx 已提交
758 759 760
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
761
 public:
762
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
763 764 765 766 767
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
768 769 770 771
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
772
    data_format_ = GetStringAttr("data_format", attrs);
773
  }
E
eclipsess 已提交
774

775
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
776

777
  GType *Out() const { return out_; }
E
eclipsess 已提交
778

779
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
780

781
  const int &N() const { return n_; }
E
eclipsess 已提交
782

783
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
784

785
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
786

787
  const float &K() const { return k_; }
E
eclipsess 已提交
788

W
wangliu 已提交
789
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
790

朔-望's avatar
朔-望 已提交
791
 private:
792 793 794
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
795 796 797 798
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
799
  string data_format_;
E
eclipsess 已提交
800
};
L
liuruilong 已提交
801 802
#endif

Z
zhaojiaying01 已提交
803 804
#ifdef NORM_OP
template <typename Dtype>
805
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
806 807 808 809 810
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
811 812 813 814 815
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
816 817 818 819
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

820
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
821

822
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
823

824
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
825 826 827 828 829 830

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
831 832 833
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
834 835 836 837 838
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
839
#ifdef BATCHNORM_OP
N
nhzlx 已提交
840
template <typename Dtype>
841
class BatchNormParam : public OpParam {
N
nhzlx 已提交
842 843 844
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
845
 public:
846
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
847 848 849 850 851 852 853 854
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
855 856
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
857
    //    is_test_ = GetAttr<bool>("is_test", attrs);
858
  }
E
eclipsess 已提交
859

860
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
861

862
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
863

864
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
865

866
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
867

868
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
869

870
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
871

872
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
873

874
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
875

876
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
877

W
wangliu 已提交
878
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
879

880
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
881

882
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
883

884
  const GType *NewScale() const { return new_scale_; }
885

886
  const GType *NewBias() const { return new_bias_; }
887

朔-望's avatar
朔-望 已提交
888
 private:
889 890 891 892 893 894
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
895 896 897
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
898
  string data_format_;
899 900
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
901
};
L
liuruilong 已提交
902 903 904
#endif

#ifdef POOL_OP
N
nhzlx 已提交
905
template <typename Dtype>
906
class PoolParam : public OpParam {
N
nhzlx 已提交
907 908 909
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
910
 public:
911
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
912 913 914
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
915

916
    output_ = OutFrom<GType>(outputs, *scope);
917
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
918 919 920
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
921
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
922
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
923
  }
924

925
  const GType *Input() const { return input_; }
926

927
  GType *Output() const { return output_; }
928

W
wangliu 已提交
929
  const string &PoolingType() const { return pooling_type_; }
930

W
wangliu 已提交
931
  const vector<int> &Ksize() const { return ksize_; }
932

W
wangliu 已提交
933
  const vector<int> &Strides() const { return strides_; }
934

W
wangliu 已提交
935
  const vector<int> &Paddings() const { return paddings_; }
936

937
  bool isCeilMode() const { return ceil_mode_; }
938

Z
zhangyang 已提交
939
  bool isGlobalPooling() const { return global_pooling_; }
940

朔-望's avatar
朔-望 已提交
941
 private:
942 943
  GType *input_;
  GType *output_;
W
wangliu 已提交
944 945 946 947
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
948
  bool ceil_mode_;
949
  bool global_pooling_ = false;
Z
zhangyang 已提交
950
#ifdef PADDLE_MOBILE_FPGA
951 952

 private:
H
hanbuhe 已提交
953
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
954 955

 public:
H
hanbuhe 已提交
956 957
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
958
#endif
959
};
L
liuruilong 已提交
960 961 962
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
963
template <typename Dtype>
E
eclipsess 已提交
964
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
965 966 967
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
968 969
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
970 971 972 973 974 975
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
976 977 978 979
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
980 981 982 983

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
984 985
    } else {
      min_max_aspect_ratios_order_ = false;
986
    }
E
eclipsess 已提交
987 988 989 990 991 992
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
993
  const GType *Input() const { return input_; }
E
eclipsess 已提交
994

995
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
996

997
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
998

999
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1000

W
wangliu 已提交
1001
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1002

W
wangliu 已提交
1003
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1004

W
wangliu 已提交
1005
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1006

W
wangliu 已提交
1007
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1019 1020 1021 1022
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1023
 private:
1024 1025 1026 1027
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1028 1029 1030 1031
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1032 1033 1034 1035 1036
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1037
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1038
};
L
liuruilong 已提交
1039
#endif
E
eclipsess 已提交
1040

L
liuruilong 已提交
1041
#ifdef BOXCODER_OP
N
nhzlx 已提交
1042
template <typename Dtype>
E
eclipsess 已提交
1043
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1044 1045 1046
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1047 1048
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1049 1050 1051 1052 1053 1054
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1055
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1056
  }
1057
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1058

1059
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1060

1061
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1062

1063
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1064 1065 1066 1067

  const std::string &CodeType() const { return code_type_; }

 private:
1068 1069 1070 1071
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1072 1073
  std::string code_type_;
};
L
liuruilong 已提交
1074
#endif
W
wangliu 已提交
1075

L
liuruilong 已提交
1076
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1077
template <typename Dtype>
W
wangliu 已提交
1078
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1079 1080 1081
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1082 1083
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1084 1085 1086 1087
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1088
  }
H
hjchen2 已提交
1089 1090
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1091 1092

 private:
H
hjchen2 已提交
1093 1094
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1095 1096 1097 1098

#ifdef PADDLE_MOBILE_FPGA

 private:
1099
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1100 1101 1102
  fpga::BypassArgs fpga_bypass_args;

 public:
1103
  GType *FloatInput() const {
H
hanbuhe 已提交
1104 1105
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1106
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1107 1108 1109
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1110
};
L
liuruilong 已提交
1111
#endif
W
wangliu 已提交
1112

L
liuruilong 已提交
1113
#ifdef SIGMOID_OP
N
nhzlx 已提交
1114
template <typename Dtype>
W
wangliu 已提交
1115
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1116 1117 1118
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1119 1120
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1121 1122 1123 1124
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1125
  }
1126 1127
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1128 1129

 private:
1130 1131
  GType *input_x_;
  GType *out_;
1132 1133 1134 1135 1136 1137 1138 1139 1140
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1141
};
L
liuruilong 已提交
1142 1143 1144
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1145
template <typename Dtype>
E
eclipsess 已提交
1146
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1147 1148 1149
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1150 1151 1152
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1153 1154 1155 1156 1157
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1158 1159 1160 1161 1162 1163 1164 1165
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1166
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1167

1168
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1169

1170
  GType *Out() const { return out_; }
E
eclipsess 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1185 1186 1187
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1188 1189 1190 1191 1192 1193 1194
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1195
#endif
W
wangliu 已提交
1196

L
lijiancheng0614 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1206 1207 1208 1209
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1210
  }
1211 1212
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1213 1214

 private:
1215 1216
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1217 1218 1219
};
#endif

N
nhzlx 已提交
1220
template <typename Dtype>
L
liuruilong 已提交
1221
class FeedParam : public OpParam {
N
nhzlx 已提交
1222 1223 1224
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1225 1226
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1227
            const AttributeMap &attrs, Scope *scope)
1228
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1229
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1230
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1231
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1232
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1233
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1234
  }
H
hjchen2 已提交
1235
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1236
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1237
  const int Col() const { return col_; }
W
wangliu 已提交
1238
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1239

L
liuruilong 已提交
1240
 private:
H
hjchen2 已提交
1241
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1242
  GType *out_;
H
update  
hjchen2 已提交
1243
  int col_;
W
wangliu 已提交
1244
  int batch_size;
L
liuruilong 已提交
1245 1246
};

N
nhzlx 已提交
1247
template <typename Dtype>
L
liuruilong 已提交
1248
class FetchParam : public OpParam {
N
nhzlx 已提交
1249 1250 1251
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1252 1253
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1254
             const AttributeMap &attrs, Scope *scope)
1255
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1256 1257
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1258
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1259
  }
L
liuruilong 已提交
1260

H
hjchen2 已提交
1261 1262
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1263
  const int Col() const { return col_; }
L
liuruilong 已提交
1264

L
liuruilong 已提交
1265
 private:
H
hjchen2 已提交
1266 1267
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1268
  int col_;
qnqinan's avatar
qnqinan 已提交
1269
#ifdef PADDLE_MOBILE_FPGA
1270

qnqinan's avatar
qnqinan 已提交
1271 1272
 public:
  fpga::BypassArgs fpga_bypass_args;
1273
  Tensor aligned_out;
qnqinan's avatar
qnqinan 已提交
1274
#endif
L
liuruilong 已提交
1275 1276
};

L
lijiancheng0614 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1286 1287 1288 1289
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1290 1291 1292 1293 1294 1295 1296
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1297
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1307
  GType *out_;
L
lijiancheng0614 已提交
1308 1309 1310 1311 1312 1313
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1314
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1315
template <typename Dtype>
E
eclipsess 已提交
1316
class TransposeParam : public OpParam {
N
nhzlx 已提交
1317 1318 1319
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1320 1321
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1322 1323 1324 1325
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1326 1327 1328
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1329
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1330

1331
  GType *Out() const { return out_; }
E
eclipsess 已提交
1332 1333 1334 1335

  const vector<int> &Axis() const { return axis_; }

 private:
1336 1337
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1338 1339
  vector<int> axis_;
};
L
liuruilong 已提交
1340
#endif
E
eclipsess 已提交
1341

L
lijiancheng0614 已提交
1342 1343 1344 1345 1346 1347 1348 1349
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1350 1351 1352 1353 1354
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1355 1356 1357
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1358
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1359

1360
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1361

1362
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1363 1364 1365 1366

  const vector<int> &Axis() const { return axis_; }

 private:
1367 1368 1369
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1370 1371 1372 1373
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1374 1375 1376 1377 1378 1379 1380 1381
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1382 1383 1384 1385 1386
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1413 1414
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1415
    // todo crf params
1416 1417 1418 1419
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1420 1421 1422 1423 1424 1425
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1426 1427
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1428 1429 1430 1431 1432 1433 1434 1435
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1436 1437
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1438 1439 1440 1441
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1442
#ifdef RESHAPE_OP
N
nhzlx 已提交
1443
template <typename Dtype>
E
eclipsess 已提交
1444
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1445 1446 1447
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1448 1449
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1450 1451 1452 1453 1454
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1455
    shape_ = GetAttr<vector<int>>("shape", attrs);
1456 1457 1458 1459 1460 1461 1462

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1463 1464
  }

1465
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1466

1467
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1468

1469
  GType *Out() const { return out_; }
E
eclipsess 已提交
1470 1471 1472 1473 1474 1475

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1476 1477 1478
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1479 1480 1481
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1482
#endif
E
eclipsess 已提交
1483

L
lijiancheng0614 已提交
1484 1485 1486 1487 1488 1489 1490 1491
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1492 1493 1494 1495 1496 1497
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1498 1499 1500 1501 1502 1503 1504 1505
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1506
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1507

E
eclipsess 已提交
1508
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1509

E
eclipsess 已提交
1510
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1511

E
eclipsess 已提交
1512
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1513 1514 1515 1516 1517 1518

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1519 1520 1521 1522
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1523 1524 1525 1526 1527
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1528
#ifdef SCALE_OP
N
nhzlx 已提交
1529
template <typename Dtype>
I
itminner 已提交
1530
class ScaleParam : public OpParam {
N
nhzlx 已提交
1531 1532 1533
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1534 1535
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1536 1537 1538 1539
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1540 1541
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1542 1543
  }

1544
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1545

1546
  GType *Out() const { return out_; }
I
itminner 已提交
1547

1548
  const float Scale() const { return scale_; }
I
itminner 已提交
1549

1550
  const float Bias() const { return bias_; }
I
itminner 已提交
1551 1552

 private:
1553 1554
  GType *input_x_;
  GType *out_;
1555 1556
  float scale_;
  float bias_;
I
itminner 已提交
1557
};
T
Tian 已提交
1558 1559 1560
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1561
template <typename Dtype>
I
itminner 已提交
1562
class SliceParam : public OpParam {
N
nhzlx 已提交
1563 1564 1565
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1566 1567
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1568 1569 1570 1571
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1572

1573 1574 1575 1576
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1577

1578 1579 1580 1581 1582 1583
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1584
};
T
Tian 已提交
1585 1586 1587
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1588
template <typename Dtype>
T
Tian 已提交
1589
class ResizeParam : public OpParam {
N
nhzlx 已提交
1590 1591 1592
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1593 1594
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1595 1596 1597 1598 1599
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1600 1601 1602 1603 1604 1605
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1606

1607
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1608

1609
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1610

1611
  GType *Out() const { return out_; }
T
Tian 已提交
1612

I
itminner 已提交
1613
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1614

I
itminner 已提交
1615
  const int &Height() const { return height_; }
T
Tian 已提交
1616

I
itminner 已提交
1617
  const int &Width() const { return width_; }
T
Tian 已提交
1618

I
itminner 已提交
1619
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1620

I
itminner 已提交
1621
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1622

I
itminner 已提交
1623
 private:
1624 1625 1626
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1627 1628 1629 1630 1631
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1632 1633 1634
};
#endif

L
liuruilong 已提交
1635
#ifdef RELU_OP
L
liuruilong 已提交
1636 1637 1638
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1639
template <typename Dtype>
D
relu  
dolphin8 已提交
1640
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1641 1642 1643
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1644
 public:
D
relu  
dolphin8 已提交
1645
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1646 1647 1648 1649
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1650 1651
  }

1652
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1653

1654
  GType *Out() const { return out_; }
E
eclipsess 已提交
1655 1656

 private:
1657 1658
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1659
};
D
relu  
dolphin8 已提交
1660 1661 1662

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1663
 public:
D
relu  
dolphin8 已提交
1664 1665 1666
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1667
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1668 1669
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1670
 public:
D
relu  
dolphin8 已提交
1671
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1672 1673 1674
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1675 1676
  framework::CLImage midImage;
};
Y
yangfei 已提交
1677
#endif
D
relu  
dolphin8 已提交
1678

L
liuruilong 已提交
1679
#endif
E
eclipsess 已提交
1680

Z
zhangyang 已提交
1681 1682 1683 1684 1685 1686 1687 1688
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1689 1690 1691 1692
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1693
  }
1694 1695
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1696 1697

 private:
1698 1699
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1700 1701 1702
#ifdef PADDLE_MOBILE_FPGA

 private:
1703
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1704 1705 1706
  fpga::BypassArgs fpga_bypass_args;

 public:
1707
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1708 1709
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1710
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1711 1712 1713
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1714
};
L
liuruilong 已提交
1715
#endif
E
eclipsess 已提交
1716

T
Tian 已提交
1717
#ifdef PRELU_OP
N
nhzlx 已提交
1718
template <typename Dtype>
T
Tian 已提交
1719
class PReluParam : public OpParam {
N
nhzlx 已提交
1720 1721 1722
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1723 1724
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1725 1726
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1727
    DLOG << "PReluParam inputs before";
1728 1729
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1730
    framework::DDim dims = alpha_->dims();
1731
    out_ = OutFrom<GType>(outputs, *scope);
1732
    mode_ = GetStringAttr("mode", attrs);
1733
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1734
  }
1735 1736 1737
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1738
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1739

I
itminner 已提交
1740
 private:
1741 1742 1743
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1744
  std::string mode_;
T
Tian 已提交
1745 1746 1747
};
#endif

N
nhzlx 已提交
1748
template <typename Dtype>
L
liuruilong 已提交
1749
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1750 1751 1752
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1753
 public:
L
liuruilong 已提交
1754
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1755 1756 1757 1758 1759 1760
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1761 1762 1763 1764
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1765
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1766

1767
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1768

1769
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1770

xiebaiyuan's avatar
xiebaiyuan 已提交
1771
  GType *Out() const { return out_; }
E
eclipsess 已提交
1772 1773 1774 1775 1776 1777 1778 1779

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1780
  GType *input_x_;
1781 1782
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1783
  GType *out_;
E
eclipsess 已提交
1784 1785 1786
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1787

Z
ZhenWang 已提交
1788
#ifdef PADDLE_MOBILE_FPGA
1789
 private:  // NOLINT
Z
zhangyang 已提交
1790
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1791 1792

 public:
Z
zhangyang 已提交
1793 1794
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1795
#endif
E
eclipsess 已提交
1796
};
1797 1798

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1799 1800
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1801
#endif
E
eclipsess 已提交
1802

N
nhzlx 已提交
1803
template <typename Dtype>
1804
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1805 1806 1807
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1808
 public:
L
liuruilong 已提交
1809
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1810
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1811
                     Scope *scope)
1812
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1813
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1814
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1815
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1816
  }
1817
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1818 1819 1820

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1821
 protected:
1822
  GType *bias_;
W
wangliu 已提交
1823 1824 1825
  int axis_;
};

N
nhzlx 已提交
1826 1827
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1828

Z
zhangyang 已提交
1829
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1830 1831
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1832
 public:
L
liuruilong 已提交
1833
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1834
                         const VariableNameMap &outputs,
1835
                         const AttributeMap &attrs, Scope *scope)
1836
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1837 1838 1839
};
#endif

1840
#ifdef FUSION_CONVADDPRELU_OP
1841 1842 1843 1844
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1845 1846 1847 1848

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1849
                          const AttributeMap &attrs, Scope *scope)
1850
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1851
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1852
    mode_ = OpParam::GetStringAttr("mode", attrs);
1853
    framework::DDim dims = alpha_->dims();
1854
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1855
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1856
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1857
  }
1858
  const GType *InputAlpha() const { return alpha_; }
1859
  const std::string &Mode() const { return mode_; }
1860
  GType *Bias() const { return bias_; }
1861 1862 1863
  const int &Axis() const { return axis_; }

 protected:
1864
  GType *bias_;
1865
  int axis_;
1866
  GType *alpha_;
1867 1868 1869 1870 1871
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1872 1873 1874 1875
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1876 1877 1878 1879

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1880
                             const AttributeMap &attrs, Scope *scope)
1881
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1882 1883
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1884
    mode_ = OpParam::GetStringAttr("mode", attrs);
1885
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1886
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1887
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1888 1889 1890
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1891
    if (keyX1_ == keyOutput_) {
1892
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1893
    } else if (keyY1_ == keyOutput_) {
1894
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1895
    }
H
update  
hjchen2 已提交
1896
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1897
  }
1898
  const GType *InputAlpha() const { return alpha_; }
1899
  const std::string &Mode() const { return mode_; }
1900
  const GType *Bias1() const { return bias1_; }
1901

1902
  GType *Bias() const { return bias_; }
1903 1904 1905 1906

  const int &Axis() const { return axis_; }

 protected:
1907
  GType *bias_;
1908
  int axis_;
1909
  GType *alpha_;
1910
  std::string mode_;
1911
  GType *bias1_;
1912 1913 1914 1915 1916 1917
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1918
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1919
template <typename Dtype>
1920
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1921 1922 1923
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1924 1925 1926
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1927
                           const AttributeMap &attrs, Scope *scope)
1928
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1929
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1930
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1931 1932 1933 1934
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1935 1936
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1937
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1938
  }
1939
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1940 1941 1942

  const int &Axis() const { return axis_; }

1943
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1944

1945
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1946

1947
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1948

1949
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1950 1951 1952 1953 1954

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1955
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1956

1957
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1958

1959
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1960

1961
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1962 1963

 protected:
1964
  GType *bias_;
E
eclipsess 已提交
1965
  int axis_;
1966 1967 1968 1969
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1970 1971
  float epsilon_;
  float momentum_;
1972 1973
  GType *new_bias_;
  GType *new_scale_;
1974 1975 1976 1977 1978
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1979
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1980 1981 1982 1983 1984 1985
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1986
                           const AttributeMap &attrs, Scope *scope)
1987
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1988
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1989
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1990 1991 1992 1993
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1994 1995
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
1996 1997 1998
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
1999
    if (keyX_ == keyBNY_) {
2000
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2001
    } else if (keyY_ == keyBNY_) {
2002
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2003
    }
H
update  
hjchen2 已提交
2004
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2005
  }
2006
  GType *Bias() const { return bias_; }
2007 2008 2009

  const int &Axis() const { return axis_; }

2010
  const GType *InputBias() const { return input_bias_; }
2011

2012
  const GType *InputMean() const { return input_mean_; }
2013

2014
  const GType *InputScale() const { return input_scale_; }
2015

2016
  const GType *InputVariance() const { return input_variance_; }
2017 2018 2019 2020 2021

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2022
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2023

2024
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2025

2026
  const GType *NewScale() const { return new_scale_; }
2027

2028
  const GType *NewBias() const { return new_bias_; }
2029 2030

 protected:
2031
  GType *bias_;
2032
  int axis_;
2033 2034 2035 2036
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2037 2038
  float epsilon_;
  float momentum_;
2039 2040
  GType *new_bias_;
  GType *new_scale_;
2041 2042 2043
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2044
};
2045
#endif
E
eclipsess 已提交
2046

Z
zhangyang 已提交
2047
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2048
template <typename Dtype>
2049
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2050 2051 2052
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2053 2054 2055
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2056
                    Scope *scope)
2057
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2058 2059 2060 2061
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2062 2063
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2064
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2065 2066
  }

2067
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2068

2069
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2070

2071
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2072

2073
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2074 2075 2076 2077 2078

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2079
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2080

2081
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2082

2083
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2084

2085
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2086 2087

 protected:
2088 2089 2090 2091
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2092 2093
  float epsilon_;
  float momentum_;
2094 2095
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2096 2097 2098
};
#endif

2099
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2100
template <typename Dtype>
2101
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2102 2103 2104
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2105 2106 2107
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2108
                       const AttributeMap &attrs, Scope *scope)
2109
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2110
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2111
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2112 2113 2114 2115
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2116 2117
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2118
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2119
  }
2120
  GType *Bias() const { return bias_; }
2121 2122 2123

  const int &Axis() const { return axis_; }

2124
  const GType *InputBias() const { return input_bias_; }
2125

2126
  const GType *InputMean() const { return input_mean_; }
2127

2128
  const GType *InputScale() const { return input_scale_; }
2129

2130
  const GType *InputVariance() const { return input_variance_; }
2131 2132 2133 2134 2135

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2136
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2137

2138
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2139

2140
  const GType *NewScale() const { return new_scale_; }
2141

2142
  const GType *NewBias() const { return new_bias_; }
2143 2144

 protected:
2145
  GType *bias_;
2146
  int axis_;
2147 2148 2149 2150
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2151 2152
  float epsilon_;
  float momentum_;
2153 2154
  GType *new_bias_;
  GType *new_scale_;
2155
};
E
eclipsess 已提交
2156
#endif
Y
Yao,kun 已提交
2157

E
eclipsess 已提交
2158
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2159
template <typename Dtype>
2160
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2161 2162 2163
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2164 2165 2166
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2167
                          const AttributeMap &attrs, Scope *scope)
2168
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2169 2170 2171 2172
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2173 2174
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2175
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2176 2177
  }

2178
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2179

2180
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2181

2182
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2183

2184
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2185 2186 2187 2188 2189

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2190
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2191

2192
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2193

2194
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2195

2196
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2197 2198

 protected:
2199 2200 2201 2202
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2203 2204
  float epsilon_;
  float momentum_;
2205 2206
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2207 2208 2209 2210
};

#endif

2211
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2212
template <typename Dtype>
2213
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2214 2215 2216
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2217 2218 2219
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2220
                        const AttributeMap &attrs, Scope *scope)
2221
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2222 2223 2224 2225
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2226 2227
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2228
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2229 2230
  }

2231
  const GType *InputBias() const { return input_bias_; }
2232

2233
  const GType *InputMean() const { return input_mean_; }
2234

2235
  const GType *InputScale() const { return input_scale_; }
2236

2237
  const GType *InputVariance() const { return input_variance_; }
2238 2239 2240 2241 2242

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2243
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2244

2245
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2246

2247
  const GType *NewScale() const { return new_scale_; }
2248

2249
  const GType *NewBias() const { return new_bias_; }
2250 2251

 protected:
2252 2253 2254 2255
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2256 2257
  float epsilon_;
  float momentum_;
2258 2259
  GType *new_bias_;
  GType *new_scale_;
2260 2261 2262
};
#endif

Y
Yao,kun 已提交
2263
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2264
template <typename Dtype>
Y
Yao,kun 已提交
2265
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2266 2267 2268
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2269 2270 2271
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2272 2273 2274 2275
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2276 2277 2278 2279 2280
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2281
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2282

E
eclipsess 已提交
2283
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2284 2285 2286 2287 2288 2289 2290 2291

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2292 2293
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2294 2295 2296 2297
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2298
#endif
Y
Yao,kun 已提交
2299

2300
#ifdef DROPOUT_OP
N
nhzlx 已提交
2301
template <typename Dtype>
Y
Yao,kun 已提交
2302
class DropoutParam : public OpParam {
N
nhzlx 已提交
2303 2304 2305
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2306 2307
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2308 2309 2310 2311
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2312 2313

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2314 2315
  }

2316
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2317

2318
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2319

Y
yangfei 已提交
2320 2321
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2322
 private:
2323 2324
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2325
  float dropout_prob_;
Y
Yao,kun 已提交
2326
};
2327
#endif
Y
Yao,kun 已提交
2328

N
nhzlx 已提交
2329
template <typename Dtype>
L
liuruilong 已提交
2330
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2331 2332 2333
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2334 2335 2336
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2337 2338 2339 2340
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2341
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2342
    if (outputs.count("Output")) {
2343
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2344
    }
L
liuruilong 已提交
2345 2346 2347 2348 2349 2350
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2351
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2352

2353
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2354

2355
  GType *Output() const { return output_; }
L
liuruilong 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2374
 private:
2375 2376 2377
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2378 2379 2380 2381
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2382
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2383 2384 2385 2386 2387

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2388
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2389 2390 2391

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2392 2393 2394
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2395
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2396 2397 2398
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2399
#endif
L
liuruilong 已提交
2400
};
Z
zhangyang 已提交
2401

qnqinan's avatar
qnqinan 已提交
2402 2403 2404 2405 2406
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2407 2408

 public:
qnqinan's avatar
qnqinan 已提交
2409
  FusionDeconvAddParam(const VariableNameMap &inputs,
2410
                       const VariableNameMap &outputs,
2411
                       const AttributeMap &attrs, Scope *scope)
2412
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2413
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2414
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2415
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2416
  }
2417
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2418 2419 2420

  const int &Axis() const { return axis_; }

2421
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2422 2423

 protected:
2424
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2425
  int axis_;
2426
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2427 2428 2429 2430 2431 2432 2433
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2434 2435 2436 2437 2438 2439 2440 2441 2442
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2443
                         const AttributeMap &attrs, Scope *scope)
2444
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2445 2446 2447 2448 2449
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2450 2451 2452 2453 2454 2455 2456
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2500
                          const AttributeMap &attrs, Scope *scope)
2501
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2502 2503 2504 2505 2506
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2507 2508 2509 2510 2511 2512
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2556
                             const AttributeMap &attrs, Scope *scope)
2557
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2558 2559 2560 2561 2562
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2604

Z
zhangyang 已提交
2605 2606 2607 2608 2609
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2624 2625 2626 2627 2628 2629 2630 2631
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2632
    output_batch_reset_hidden_prev_ =
2633 2634 2635
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2636 2637
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2671 2672 2673 2674 2675 2676 2677
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2678 2679 2680 2681 2682 2683 2684 2685
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2686
    output_reset_hidden_prev_ =
2687 2688
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2717 2718 2719 2720 2721 2722 2723 2724
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2725 2726 2727 2728
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2729
    axis = GetAttr<int>("axis", attrs);
2730
  }
2731 2732
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2733
  const int &Axis() const { return axis; }
2734 2735

 private:
2736 2737
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2738
  int axis;
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2750 2751 2752 2753
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2754
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2755 2756 2757 2758 2759 2760
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2761
  }
2762
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2763 2764 2765 2766 2767
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2768 2769

 private:
2770
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2771
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2772
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2773 2774 2775
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2776 2777 2778 2779 2780 2781 2782 2783 2784
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2797 2798 2799 2800 2801
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2802 2803
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2804
  }
2805 2806 2807
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2808 2809
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2810 2811

 private:
2812 2813 2814
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2815 2816
  int out_h_;
  int out_w_;
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2828 2829 2830 2831
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2832
  }
2833 2834
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2835 2836

 private:
2837 2838
  GType *input_;
  GType *out_;
2839 2840 2841
};
#endif

H
hjchen2 已提交
2842 2843 2844 2845 2846 2847 2848 2849
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2850 2851 2852 2853 2854
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2855 2856 2857 2858
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2859 2860 2861
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2874 2875 2876 2877
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2878 2879 2880 2881 2882
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2883 2884
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2885 2886 2887 2888 2889
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2890
#ifdef QUANT_OP
2891
template <typename Dtype>
2892 2893 2894 2895 2896
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2897
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2898 2899 2900 2901
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2902 2903
    // online
    // scale = max(abs(x))
2904
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2905
    // offline
2906
    if (inputs.count("InScale")) {
2907
      offline_ = true;
2908
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2909 2910
    }
    // x = round(scale * x)
2911 2912
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2913
    }
2914 2915 2916 2917
  }

 public:
  // op input
2918
  GType *input_;
2919
  // op output
2920
  GType *output_;
2921
  GType *online_scale_;
2922
  // quantize offline scale
2923
  GType *offline_scale_;
2924 2925
  // if offine scale or not
  bool offline_ = false;
2926
  // round method type
2927 2928
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2929
};
2930
#endif
2931

2932
#ifdef DEQUANT_OP
2933
template <typename Dtype>
2934 2935 2936 2937 2938
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2939
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2940 2941 2942 2943 2944
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2945
    // dequantization is performed as x = x / static_scale / online_scale
2946 2947
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2948
    } else {
2949
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2950 2951 2952 2953 2954
    }
  }

 public:
  // op input
2955
  GType *input_;
2956
  // op output
2957
  GType *output_;
2958
  GType *activation_scale_;
2959 2960
  float weight_scale_;
};
2961
#endif
2962

2963 2964 2965 2966
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2967
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2968
template <typename Dtype>
2969
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2970 2971 2972 2973
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2974 2975
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2976
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
2977 2978
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
2979 2980 2981 2982
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
2983 2984 2985 2986 2987
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2988 2989 2990 2991
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
2992
  float epsilon_;
2993 2994 2995
};
#endif

2996 2997 2998 2999
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3000 3001 3002 3003 3004 3005 3006 3007
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3008
                          const AttributeMap &attrs, Scope *scope)
3009 3010 3011
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3012
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3013 3014 3015 3016 3017
  }

 public:
  // elementwise add
  int axis_;
3018
  GType *bias_;
3019 3020 3021
};
#endif

3022 3023 3024 3025 3026 3027 3028 3029 3030
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3031
                               const AttributeMap &attrs, Scope *scope)
3032 3033
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3034
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3035
    // offline
3036 3037
    if (inputs.count("InScale")) {
      offline_ = true;
3038
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3039 3040 3041 3042 3043 3044 3045 3046
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3047
  GType *online_scale_;
3048
  // quantize offline scale
3049
  GType *offline_scale_;
3050 3051
  // if offine scale or not
  bool offline_ = false;
3052 3053 3054 3055 3056 3057
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3058 3059 3060 3061 3062 3063 3064 3065 3066
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3067 3068 3069 3070 3071
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3095 3096 3097 3098
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3099 3100
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3101
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3112 3113 3114 3115 3116 3117 3118 3119
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3120 3121 3122 3123
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3124 3125
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3126
      input_y_ = InputYFrom<GType>(inputs, *scope);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3140 3141 3142 3143 3144 3145 3146 3147
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3148 3149 3150 3151 3152
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3164
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3165
template <typename Dtype>
Z
zhaojiaying01 已提交
3166
class LogicalBinaryParam : public OpParam {
3167 3168 3169 3170
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3171 3172
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3173 3174 3175 3176 3177
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3189
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3190 3191 3192

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3193
class LogicalUnaryParam : public OpParam {
3194 3195 3196 3197
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3198 3199
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3200 3201 3202 3203
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3215 3216 3217
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3218 3219 3220
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3221 3222 3223
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3224 3225
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3226 3227 3228
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3229 3230 3231
  }

 public:
H
hjchen2 已提交
3232 3233 3234
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3235 3236 3237 3238 3239 3240
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3241 3242 3243
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3244 3245 3246
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3247 3248
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3249 3250 3251
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3252 3253 3254
  }

 public:
H
hjchen2 已提交
3255 3256 3257
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3258 3259 3260
};
#endif

Z
zhaojiaying01 已提交
3261 3262 3263 3264 3265 3266 3267 3268
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3269 3270 3271 3272
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3292
                 const AttributeMap &attrs, Scope *scope)
3293
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3294 3295
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3296
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3297 3298 3299 3300
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3301
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3302 3303 3304 3305

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3306
  float step_;
Z
zhaojiaying01 已提交
3307 3308
};
#endif  // INCREMENT_OP
3309 3310 3311 3312 3313 3314 3315 3316
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3317 3318 3319 3320
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3321 3322 3323 3324 3325 3326 3327 3328 3329
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3330

朔-望's avatar
朔-望 已提交
3331 3332
}  // namespace operators
}  // namespace paddle_mobile