op_param.h 100.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
27 28 29 30 31 32 33

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
34
#endif
朔-望's avatar
朔-望 已提交
35

L
liuruilong 已提交
36 37
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
38
#endif
朔-望's avatar
朔-望 已提交
39 40

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
41 42
namespace operators {

W
wangliu 已提交
43 44 45 46 47
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
48
using framework::Variable;
W
wangliu 已提交
49 50
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
51

N
nhzlx 已提交
52 53 54 55 56 57 58 59 60
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
61
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
62 63 64 65 66 67 68 69
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
70
#endif
L
liuruilong 已提交
71

L
liuruilong 已提交
72
class OpParam {
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
          const AttributeMap &attrs, Scope *scope) {
    scope_pointer_ = scope;
    inputs_ = inputs;
  }

  template <typename T>
  T *CreateNewScale() {
    std::string scale_key = Getkey("Scale", inputs_, 0);
    auto var = scope_pointer_->Var(scale_key + "_new");
    return var->GetMutable<T>();
  }

  template <typename T>
  T *CreateNewBiase() {
    std::string biase_key = Getkey("Bias", inputs_, 0);
    auto var = scope_pointer_->Var(biase_key + "_new");
    return var->GetMutable<T>();
  }

  VariableNameMap inputs_;
  Scope *scope_pointer_ = nullptr;

朔-望's avatar
朔-望 已提交
97
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
98 99 100 101
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
102 103 104 105 106 107 108

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

109 110 111 112 113
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

114 115 116 117 118 119 120 121 122
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
123 124 125 126 127
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

155 156 157 158
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
159 160 161 162 163 164

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

165 166 167 168 169
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
170 171 172 173 174
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

175 176 177 178 179
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
180 181 182 183
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
184 185 186 187 188 189 190 191 192 193 194 195
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
196 197 198 199
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
216

E
eclipsess 已提交
217 218 219 220 221 222 223 224 225 226
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
227 228 229 230
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
231

232
  template <typename T>
W
wangliu 已提交
233 234
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
235 236 237
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
238 239 240 241 242
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
243 244 245 246 247 248
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
249 250 251 252 253
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
254 255 256 257 258 259 260 261 262 263 264
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
265 266 267 268 269 270
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
271 272 273 274 275 276 277 278 279 280 281 282
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

283 284 285 286 287
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
288 289 290 291 292
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

293 294 295 296 297
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
298 299 300 301 302 303
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

304 305 306 307 308
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
309 310 311 312 313 314
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
315 316 317 318 319 320
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
321 322 323 324 325
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
326 327 328 329 330
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
331 332 333 334 335 336
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

337 338 339 340 341 342 343 344 345 346 347
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
348
  static const T GetAttr(const string &key, const AttributeMap &map) {
349 350
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
351 352
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
353 354
    return ((Attribute)map.at(key)).GetString();
  }
355

356 357 358 359
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

360
  template <typename T>
W
wangliu 已提交
361
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
362
                        const Scope &scope) {
W
wangliu 已提交
363 364
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
365 366 367 368 369 370
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
371
    }
372
  }
朔-望's avatar
朔-望 已提交
373

E
eclipsess 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

387
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
388
                            int index) {
389 390
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

409
  template <typename T>
W
wangliu 已提交
410 411 412
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
413 414
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
415
    vector<T *> var_res;
416 417 418
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
419
    }
420 421
    return var_res;
  }
E
eclipsess 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
435 436
};

437 438 439 440 441 442
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
443
template <typename Dtype>
444
class ConvParam : public OpParam {
N
nhzlx 已提交
445 446 447
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
448
 public:
449
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
450 451 452 453
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
454
    if (outputs.count("Output")) {
455
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
456 457 458 459 460
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
461
  }
朔-望's avatar
朔-望 已提交
462

463
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
464

465
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
466

467
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
468

W
wangliu 已提交
469
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
470

W
wangliu 已提交
471
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
472

W
wangliu 已提交
473
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
474

H
hjchen2 已提交
475 476 477
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
478 479
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
480 481
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
482
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
483
    EXEC_GEMM_INT8,
H
hjchen2 已提交
484
    EXEC_DEPTHWISE3x3_INT8,
485
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
486 487
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
H
hjchen2 已提交
488 489 490 491
  };

  ExecMode &ExecMode() const { return exec_mode_; }

492
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
493

494 495 496 497 498 499 500
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
501
 public:
502 503 504 505
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
506 507 508
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
509
  mutable enum ExecMode exec_mode_;
510
  int groups;
511 512 513 514

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
515 516 517

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
518
 public:
Z
zhangyang 已提交
519 520 521 522 523
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
524 525 526 527 528 529 530

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
531
#endif
朔-望's avatar
朔-望 已提交
532
};
N
nhzlx 已提交
533 534
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
535

N
nhzlx 已提交
536
template <typename Dtype>
537
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
538 539 540
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
541
 public:
542
  ElementwiseAddParam(const VariableNameMap &inputs,
543
                      const VariableNameMap &outputs, const AttributeMap &attrs,
544 545 546 547 548
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
549 550 551
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
552
  const GType *InputX() const { return input_x_; }
553

xiebaiyuan's avatar
xiebaiyuan 已提交
554
  const GType *InputY() const { return input_y_; }
555

xiebaiyuan's avatar
xiebaiyuan 已提交
556
  GType *Out() const { return out_; }
557 558 559

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
560
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
561 562 563
  GType *input_x_;
  GType *input_y_;
  GType *out_;
564
  int axis_;
Z
zhangyang 已提交
565 566 567
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
568
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
569 570

 public:
H
hanbuhe 已提交
571 572
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
573 574 575 576

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
577
#endif
朔-望's avatar
朔-望 已提交
578 579
};

E
eclipsess 已提交
580
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
581
template <typename Dtype>
582
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
583 584 585 586 587 588
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
589 590 591 592 593
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
610 611 612 613 614 615
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
616
};
S
suiyang 已提交
617
#endif
E
eclipsess 已提交
618

619
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
620 621
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
622 623
#endif

624
#ifdef ELEMENTWISESUB_OP
625
template <typename Dtype>
626
class ElementwiseSubParam : public OpParam {
627 628 629 630 631 632
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
633 634 635 636 637
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
655
#endif
656

L
liuruilong 已提交
657
#ifdef MUL_OP
N
nhzlx 已提交
658
template <typename Dtype>
659
class MulParam : public OpParam {
N
nhzlx 已提交
660 661 662
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
663
 public:
664
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
665 666 667 668 669
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
670 671 672
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
673

xiebaiyuan's avatar
xiebaiyuan 已提交
674
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
675

xiebaiyuan's avatar
xiebaiyuan 已提交
676
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
677

xiebaiyuan's avatar
xiebaiyuan 已提交
678
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
679

680
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
681

682
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
683

朔-望's avatar
朔-望 已提交
684
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
685 686 687
  GType *input_x_;
  GType *input_y_;
  GType *out_;
688 689
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
690
};
L
liuruilong 已提交
691
#endif
朔-望's avatar
朔-望 已提交
692

L
liuruilong 已提交
693
#ifdef CONCAT_OP
N
nhzlx 已提交
694
template <typename Dtype>
朔-望's avatar
朔-望 已提交
695
class ConcatParam : public OpParam {
N
nhzlx 已提交
696 697 698
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
699
 public:
700
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
701 702 703 704
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
705 706
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
707

N
nhzlx 已提交
708
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
709

xiebaiyuan's avatar
xiebaiyuan 已提交
710
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
711

712
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
713

朔-望's avatar
朔-望 已提交
714
 private:
N
nhzlx 已提交
715
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
716
  GType *out_;
717
  int axis_;
Z
zhangyang 已提交
718 719 720 721 722 723 724 725 726
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
727
};
L
liuruilong 已提交
728
#endif
朔-望's avatar
朔-望 已提交
729

E
eclipsess 已提交
730 731 732 733 734 735 736 737
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
738 739 740 741 742 743
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
762
#ifdef LRN_OP
N
nhzlx 已提交
763
template <typename Dtype>
E
eclipsess 已提交
764
class LrnParam : public OpParam {
N
nhzlx 已提交
765 766 767
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
768
 public:
769
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
770 771 772 773 774
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
775 776 777 778
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
779
    data_format_ = GetStringAttr("data_format", attrs);
780
  }
E
eclipsess 已提交
781

782
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
783

784
  GType *Out() const { return out_; }
E
eclipsess 已提交
785

786
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
787

788
  const int &N() const { return n_; }
E
eclipsess 已提交
789

790
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
791

792
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
793

794
  const float &K() const { return k_; }
E
eclipsess 已提交
795

W
wangliu 已提交
796
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
797

朔-望's avatar
朔-望 已提交
798
 private:
799 800 801
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
802 803 804 805
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
806
  string data_format_;
E
eclipsess 已提交
807
};
L
liuruilong 已提交
808 809
#endif

Z
zhaojiaying01 已提交
810 811
#ifdef NORM_OP
template <typename Dtype>
812
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
813 814 815 816 817
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
818 819 820 821 822
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
823 824 825 826
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

827
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
828

829
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
830

831
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
832 833 834 835 836 837

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
838 839 840
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
841 842 843 844 845
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
846
#ifdef BATCHNORM_OP
N
nhzlx 已提交
847
template <typename Dtype>
848
class BatchNormParam : public OpParam {
N
nhzlx 已提交
849 850 851
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
852
 public:
853
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
854 855 856 857 858 859 860 861
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
862 863
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
864
    //    is_test_ = GetAttr<bool>("is_test", attrs);
865
  }
E
eclipsess 已提交
866

867
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
868

869
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
870

871
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
872

873
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
874

875
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
876

877
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
878

879
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
880

881
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
882

883
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
884

W
wangliu 已提交
885
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
886

887
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
888

889
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
890

891
  const GType *NewScale() const { return new_scale_; }
892

893
  const GType *NewBias() const { return new_bias_; }
894

朔-望's avatar
朔-望 已提交
895
 private:
896 897 898 899 900 901
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
902 903 904
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
905
  string data_format_;
906 907
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
908
};
L
liuruilong 已提交
909 910 911
#endif

#ifdef POOL_OP
N
nhzlx 已提交
912
template <typename Dtype>
913
class PoolParam : public OpParam {
N
nhzlx 已提交
914 915 916
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
917
 public:
918
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
919 920 921
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
922

923
    output_ = OutFrom<GType>(outputs, *scope);
924
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
925 926 927
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
928
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
929
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
930
  }
931

932
  const GType *Input() const { return input_; }
933

934
  GType *Output() const { return output_; }
935

W
wangliu 已提交
936
  const string &PoolingType() const { return pooling_type_; }
937

W
wangliu 已提交
938
  const vector<int> &Ksize() const { return ksize_; }
939

W
wangliu 已提交
940
  const vector<int> &Strides() const { return strides_; }
941

W
wangliu 已提交
942
  const vector<int> &Paddings() const { return paddings_; }
943

944
  bool isCeilMode() const { return ceil_mode_; }
945

Z
zhangyang 已提交
946
  bool isGlobalPooling() const { return global_pooling_; }
947

朔-望's avatar
朔-望 已提交
948
 private:
949 950
  GType *input_;
  GType *output_;
W
wangliu 已提交
951 952 953 954
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
955
  bool ceil_mode_;
956
  bool global_pooling_ = false;
Z
zhangyang 已提交
957
#ifdef PADDLE_MOBILE_FPGA
958 959

 private:
H
hanbuhe 已提交
960
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
961 962

 public:
H
hanbuhe 已提交
963 964
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
965
#endif
966
};
L
liuruilong 已提交
967 968 969
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
970
template <typename Dtype>
E
eclipsess 已提交
971
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
972 973 974
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
975 976
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
977 978 979 980 981 982
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
983 984 985 986
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
987 988 989 990

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
991 992
    } else {
      min_max_aspect_ratios_order_ = false;
993
    }
E
eclipsess 已提交
994 995 996 997 998 999
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
1000
  const GType *Input() const { return input_; }
E
eclipsess 已提交
1001

1002
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
1003

1004
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1005

1006
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1007

W
wangliu 已提交
1008
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1009

W
wangliu 已提交
1010
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1011

W
wangliu 已提交
1012
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1013

W
wangliu 已提交
1014
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1026 1027 1028 1029
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1030
 private:
1031 1032 1033 1034
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1035 1036 1037 1038
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1039 1040 1041 1042 1043
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1044
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1045
};
L
liuruilong 已提交
1046
#endif
E
eclipsess 已提交
1047

L
liuruilong 已提交
1048
#ifdef BOXCODER_OP
N
nhzlx 已提交
1049
template <typename Dtype>
E
eclipsess 已提交
1050
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1051 1052 1053
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1054 1055
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1056 1057 1058 1059 1060 1061
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1062
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1063
  }
1064
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1065

1066
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1067

1068
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1069

1070
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1071 1072 1073 1074

  const std::string &CodeType() const { return code_type_; }

 private:
1075 1076 1077 1078
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1079 1080
  std::string code_type_;
};
L
liuruilong 已提交
1081
#endif
W
wangliu 已提交
1082

L
liuruilong 已提交
1083
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1084
template <typename Dtype>
W
wangliu 已提交
1085
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1086 1087 1088
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1089 1090
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1091 1092 1093 1094
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1095
  }
H
hjchen2 已提交
1096 1097
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1098 1099

 private:
H
hjchen2 已提交
1100 1101
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1102 1103 1104 1105

#ifdef PADDLE_MOBILE_FPGA

 private:
1106
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1107 1108 1109
  fpga::BypassArgs fpga_bypass_args;

 public:
1110
  GType *FloatInput() const {
H
hanbuhe 已提交
1111 1112
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1113
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1114 1115 1116
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1117
};
L
liuruilong 已提交
1118
#endif
W
wangliu 已提交
1119

L
liuruilong 已提交
1120
#ifdef SIGMOID_OP
N
nhzlx 已提交
1121
template <typename Dtype>
W
wangliu 已提交
1122
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1123 1124 1125
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1126 1127
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1128 1129 1130 1131
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1132
  }
1133 1134
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1135 1136

 private:
1137 1138
  GType *input_x_;
  GType *out_;
1139 1140 1141 1142 1143 1144 1145 1146 1147
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1148
};
L
liuruilong 已提交
1149 1150 1151
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1152
template <typename Dtype>
E
eclipsess 已提交
1153
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1154 1155 1156
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1157 1158 1159
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1160 1161 1162 1163 1164
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1165 1166 1167 1168 1169 1170 1171 1172
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1173
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1174

1175
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1176

1177
  GType *Out() const { return out_; }
E
eclipsess 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1192 1193 1194
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1195 1196 1197 1198 1199 1200 1201
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1202
#endif
W
wangliu 已提交
1203

L
lijiancheng0614 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1213 1214 1215 1216
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1217
  }
1218 1219
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1220 1221

 private:
1222 1223
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1224 1225 1226
};
#endif

N
nhzlx 已提交
1227
template <typename Dtype>
L
liuruilong 已提交
1228
class FeedParam : public OpParam {
N
nhzlx 已提交
1229 1230 1231
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1232 1233
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1234
            const AttributeMap &attrs, Scope *scope)
1235
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1236
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1237
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1238
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1239
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1240
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1241
  }
H
hjchen2 已提交
1242
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1243
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1244
  const int Col() const { return col_; }
W
wangliu 已提交
1245
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1246

L
liuruilong 已提交
1247
 private:
H
hjchen2 已提交
1248
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1249
  GType *out_;
H
update  
hjchen2 已提交
1250
  int col_;
W
wangliu 已提交
1251
  int batch_size;
L
liuruilong 已提交
1252 1253
};

N
nhzlx 已提交
1254
template <typename Dtype>
L
liuruilong 已提交
1255
class FetchParam : public OpParam {
N
nhzlx 已提交
1256 1257 1258
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1259 1260
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1261
             const AttributeMap &attrs, Scope *scope)
1262
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1263 1264
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1265
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1266
  }
L
liuruilong 已提交
1267

H
hjchen2 已提交
1268 1269
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1270
  const int Col() const { return col_; }
L
liuruilong 已提交
1271

L
liuruilong 已提交
1272
 private:
H
hjchen2 已提交
1273 1274
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1275
  int col_;
qnqinan's avatar
qnqinan 已提交
1276
#ifdef PADDLE_MOBILE_FPGA
1277

qnqinan's avatar
qnqinan 已提交
1278 1279
 public:
  fpga::BypassArgs fpga_bypass_args;
1280
  Tensor aligned_out;
qnqinan's avatar
qnqinan 已提交
1281
#endif
L
liuruilong 已提交
1282 1283
};

L
lijiancheng0614 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1293 1294 1295 1296
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1297 1298 1299 1300 1301 1302 1303
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1304
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1314
  GType *out_;
L
lijiancheng0614 已提交
1315 1316 1317 1318 1319 1320
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1321
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1322
template <typename Dtype>
E
eclipsess 已提交
1323
class TransposeParam : public OpParam {
N
nhzlx 已提交
1324 1325 1326
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1327 1328
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1329 1330 1331 1332
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1333 1334 1335
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1336
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1337

1338
  GType *Out() const { return out_; }
E
eclipsess 已提交
1339 1340 1341 1342

  const vector<int> &Axis() const { return axis_; }

 private:
1343 1344
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1345 1346
  vector<int> axis_;
};
L
liuruilong 已提交
1347
#endif
E
eclipsess 已提交
1348

L
lijiancheng0614 已提交
1349 1350 1351 1352 1353 1354 1355 1356
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1357 1358 1359 1360 1361
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1362 1363 1364
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1365
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1366

1367
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1368

1369
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1370 1371 1372 1373

  const vector<int> &Axis() const { return axis_; }

 private:
1374 1375 1376
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1377 1378 1379 1380
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1381 1382 1383 1384 1385 1386 1387 1388
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1389 1390 1391 1392 1393
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1420 1421
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1422
    // todo crf params
1423 1424 1425 1426
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1427 1428 1429 1430 1431 1432
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1433 1434
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1435 1436 1437 1438 1439 1440 1441 1442
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1443 1444
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1445 1446 1447 1448
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1449
#ifdef RESHAPE_OP
N
nhzlx 已提交
1450
template <typename Dtype>
E
eclipsess 已提交
1451
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1452 1453 1454
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1455 1456
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1457 1458 1459 1460 1461
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1462
    shape_ = GetAttr<vector<int>>("shape", attrs);
1463 1464 1465 1466 1467 1468 1469

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1470 1471
  }

1472
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1473

1474
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1475

1476
  GType *Out() const { return out_; }
E
eclipsess 已提交
1477 1478 1479 1480 1481 1482

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1483 1484 1485
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1486 1487 1488
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1489
#endif
E
eclipsess 已提交
1490

L
lijiancheng0614 已提交
1491 1492 1493 1494 1495 1496 1497 1498
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1499 1500 1501 1502 1503 1504
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1505 1506 1507 1508 1509 1510 1511 1512
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1513
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1514

E
eclipsess 已提交
1515
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1516

E
eclipsess 已提交
1517
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1518

E
eclipsess 已提交
1519
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1520 1521 1522 1523 1524 1525

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1526 1527 1528 1529
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1530 1531 1532 1533 1534
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1535
#ifdef SCALE_OP
N
nhzlx 已提交
1536
template <typename Dtype>
I
itminner 已提交
1537
class ScaleParam : public OpParam {
N
nhzlx 已提交
1538 1539 1540
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1541 1542
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1543 1544 1545 1546
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1547 1548
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1549 1550
  }

1551
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1552

1553
  GType *Out() const { return out_; }
I
itminner 已提交
1554

1555
  const float Scale() const { return scale_; }
I
itminner 已提交
1556

1557
  const float Bias() const { return bias_; }
I
itminner 已提交
1558 1559

 private:
1560 1561
  GType *input_x_;
  GType *out_;
1562 1563
  float scale_;
  float bias_;
I
itminner 已提交
1564
};
T
Tian 已提交
1565 1566 1567
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1568
template <typename Dtype>
I
itminner 已提交
1569
class SliceParam : public OpParam {
N
nhzlx 已提交
1570 1571 1572
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1573 1574
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1575 1576 1577 1578
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1579

1580 1581 1582 1583
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1584

1585 1586 1587 1588 1589 1590
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1591
};
T
Tian 已提交
1592 1593 1594
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1595
template <typename Dtype>
T
Tian 已提交
1596
class ResizeParam : public OpParam {
N
nhzlx 已提交
1597 1598 1599
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1600 1601
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1602 1603 1604 1605 1606
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1607 1608 1609 1610 1611 1612
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1613

1614
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1615

1616
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1617

1618
  GType *Out() const { return out_; }
T
Tian 已提交
1619

I
itminner 已提交
1620
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1621

I
itminner 已提交
1622
  const int &Height() const { return height_; }
T
Tian 已提交
1623

I
itminner 已提交
1624
  const int &Width() const { return width_; }
T
Tian 已提交
1625

I
itminner 已提交
1626
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1627

I
itminner 已提交
1628
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1629

I
itminner 已提交
1630
 private:
1631 1632 1633
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1634 1635 1636 1637 1638
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1639 1640 1641
};
#endif

L
liuruilong 已提交
1642
#ifdef RELU_OP
L
liuruilong 已提交
1643 1644 1645
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1646
template <typename Dtype>
D
relu  
dolphin8 已提交
1647
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1648 1649 1650
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1651
 public:
D
relu  
dolphin8 已提交
1652
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1653 1654 1655 1656
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1657 1658
  }

1659
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1660

1661
  GType *Out() const { return out_; }
E
eclipsess 已提交
1662 1663

 private:
1664 1665
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1666
};
D
relu  
dolphin8 已提交
1667 1668 1669

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1670
 public:
D
relu  
dolphin8 已提交
1671 1672 1673
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1674
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1675 1676
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1677
 public:
D
relu  
dolphin8 已提交
1678
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1679 1680 1681
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1682 1683
  framework::CLImage midImage;
};
Y
yangfei 已提交
1684
#endif
D
relu  
dolphin8 已提交
1685

L
liuruilong 已提交
1686
#endif
E
eclipsess 已提交
1687

Z
zhangyang 已提交
1688 1689 1690 1691 1692 1693 1694 1695
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1696 1697 1698 1699
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1700
  }
1701 1702
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1703 1704

 private:
1705 1706
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1707 1708 1709
#ifdef PADDLE_MOBILE_FPGA

 private:
1710
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1711 1712 1713
  fpga::BypassArgs fpga_bypass_args;

 public:
1714
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1715 1716
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1717
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1718 1719 1720
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1721
};
L
liuruilong 已提交
1722
#endif
E
eclipsess 已提交
1723

T
Tian 已提交
1724
#ifdef PRELU_OP
N
nhzlx 已提交
1725
template <typename Dtype>
T
Tian 已提交
1726
class PReluParam : public OpParam {
N
nhzlx 已提交
1727 1728 1729
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1730 1731
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1732 1733
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1734
    DLOG << "PReluParam inputs before";
1735 1736
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1737
    framework::DDim dims = alpha_->dims();
1738
    out_ = OutFrom<GType>(outputs, *scope);
1739
    mode_ = GetStringAttr("mode", attrs);
1740
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1741
  }
1742 1743 1744
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1745
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1746

I
itminner 已提交
1747
 private:
1748 1749 1750
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1751
  std::string mode_;
T
Tian 已提交
1752 1753 1754
};
#endif

N
nhzlx 已提交
1755
template <typename Dtype>
L
liuruilong 已提交
1756
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1757 1758 1759
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1760
 public:
L
liuruilong 已提交
1761
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1762 1763 1764 1765 1766 1767
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1768 1769 1770 1771
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1772
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1773

1774
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1775

1776
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1777

xiebaiyuan's avatar
xiebaiyuan 已提交
1778
  GType *Out() const { return out_; }
E
eclipsess 已提交
1779 1780 1781 1782 1783 1784 1785 1786

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1787
  GType *input_x_;
1788 1789
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1790
  GType *out_;
E
eclipsess 已提交
1791 1792 1793
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1794

Z
ZhenWang 已提交
1795
#ifdef PADDLE_MOBILE_FPGA
1796
 private:  // NOLINT
Z
zhangyang 已提交
1797
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1798 1799

 public:
Z
zhangyang 已提交
1800 1801
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1802
#endif
E
eclipsess 已提交
1803
};
1804 1805

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1806 1807
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1808
#endif
E
eclipsess 已提交
1809

N
nhzlx 已提交
1810
template <typename Dtype>
1811
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1812 1813 1814
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1815
 public:
L
liuruilong 已提交
1816
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1817
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1818
                     Scope *scope)
1819
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1820
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1821
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1822
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1823
  }
1824
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1825 1826 1827

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1828
 protected:
1829
  GType *bias_;
W
wangliu 已提交
1830 1831 1832
  int axis_;
};

N
nhzlx 已提交
1833 1834
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1835

Z
zhangyang 已提交
1836
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1837 1838
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1839
 public:
L
liuruilong 已提交
1840
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1841
                         const VariableNameMap &outputs,
1842
                         const AttributeMap &attrs, Scope *scope)
1843
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1844 1845 1846
};
#endif

1847
#ifdef FUSION_CONVADDPRELU_OP
1848 1849 1850 1851
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1852 1853 1854 1855

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1856
                          const AttributeMap &attrs, Scope *scope)
1857
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1858
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1859
    mode_ = OpParam::GetStringAttr("mode", attrs);
1860
    framework::DDim dims = alpha_->dims();
1861
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1862
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1863
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1864
  }
1865
  const GType *InputAlpha() const { return alpha_; }
1866
  const std::string &Mode() const { return mode_; }
1867
  GType *Bias() const { return bias_; }
1868 1869 1870
  const int &Axis() const { return axis_; }

 protected:
1871
  GType *bias_;
1872
  int axis_;
1873
  GType *alpha_;
1874 1875 1876 1877 1878
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1879 1880 1881 1882
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1883 1884 1885 1886

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1887
                             const AttributeMap &attrs, Scope *scope)
1888
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1889 1890
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1891
    mode_ = OpParam::GetStringAttr("mode", attrs);
1892
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1893
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1894
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1895 1896 1897
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1898
    if (keyX1_ == keyOutput_) {
1899
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1900
    } else if (keyY1_ == keyOutput_) {
1901
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1902
    }
H
update  
hjchen2 已提交
1903
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1904
  }
1905
  const GType *InputAlpha() const { return alpha_; }
1906
  const std::string &Mode() const { return mode_; }
1907
  const GType *Bias1() const { return bias1_; }
1908

1909
  GType *Bias() const { return bias_; }
1910 1911 1912 1913

  const int &Axis() const { return axis_; }

 protected:
1914
  GType *bias_;
1915
  int axis_;
1916
  GType *alpha_;
1917
  std::string mode_;
1918
  GType *bias1_;
1919 1920 1921 1922 1923 1924
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1925
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1926
template <typename Dtype>
1927
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1928 1929 1930
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1931 1932 1933
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1934
                           const AttributeMap &attrs, Scope *scope)
1935
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1936
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1937
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1938 1939 1940 1941
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1942 1943
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1944
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1945
  }
1946
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1947 1948 1949

  const int &Axis() const { return axis_; }

1950
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1951

1952
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1953

1954
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1955

1956
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1957 1958 1959 1960 1961

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1962
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1963

1964
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1965

1966
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1967

1968
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1969 1970

 protected:
1971
  GType *bias_;
E
eclipsess 已提交
1972
  int axis_;
1973 1974 1975 1976
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1977 1978
  float epsilon_;
  float momentum_;
1979 1980
  GType *new_bias_;
  GType *new_scale_;
1981 1982 1983 1984 1985
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1986
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1987 1988 1989 1990 1991 1992
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1993
                           const AttributeMap &attrs, Scope *scope)
1994
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1995
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1996
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1997 1998 1999 2000
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2001 2002
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2003 2004 2005
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2006
    if (keyX_ == keyBNY_) {
2007
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2008
    } else if (keyY_ == keyBNY_) {
2009
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2010
    }
H
update  
hjchen2 已提交
2011
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2012
  }
2013
  GType *Bias() const { return bias_; }
2014 2015 2016

  const int &Axis() const { return axis_; }

2017
  const GType *InputBias() const { return input_bias_; }
2018

2019
  const GType *InputMean() const { return input_mean_; }
2020

2021
  const GType *InputScale() const { return input_scale_; }
2022

2023
  const GType *InputVariance() const { return input_variance_; }
2024 2025 2026 2027 2028

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2029
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2030

2031
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2032

2033
  const GType *NewScale() const { return new_scale_; }
2034

2035
  const GType *NewBias() const { return new_bias_; }
2036 2037

 protected:
2038
  GType *bias_;
2039
  int axis_;
2040 2041 2042 2043
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2044 2045
  float epsilon_;
  float momentum_;
2046 2047
  GType *new_bias_;
  GType *new_scale_;
2048 2049 2050
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2051
};
2052
#endif
E
eclipsess 已提交
2053

Z
zhangyang 已提交
2054
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2055
template <typename Dtype>
2056
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2057 2058 2059
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2060 2061 2062
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2063
                    Scope *scope)
2064
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2065 2066 2067 2068
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2069 2070
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2071
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2072 2073
  }

2074
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2075

2076
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2077

2078
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2079

2080
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2081 2082 2083 2084 2085

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2086
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2087

2088
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2089

2090
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2091

2092
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2093 2094

 protected:
2095 2096 2097 2098
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2099 2100
  float epsilon_;
  float momentum_;
2101 2102
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2103 2104 2105
};
#endif

2106
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2107
template <typename Dtype>
2108
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2109 2110 2111
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2112 2113 2114
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2115
                       const AttributeMap &attrs, Scope *scope)
2116
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2117
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2118
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2119 2120 2121 2122
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2123 2124
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2125
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2126
  }
2127
  GType *Bias() const { return bias_; }
2128 2129 2130

  const int &Axis() const { return axis_; }

2131
  const GType *InputBias() const { return input_bias_; }
2132

2133
  const GType *InputMean() const { return input_mean_; }
2134

2135
  const GType *InputScale() const { return input_scale_; }
2136

2137
  const GType *InputVariance() const { return input_variance_; }
2138 2139 2140 2141 2142

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2143
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2144

2145
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2146

2147
  const GType *NewScale() const { return new_scale_; }
2148

2149
  const GType *NewBias() const { return new_bias_; }
2150 2151

 protected:
2152
  GType *bias_;
2153
  int axis_;
2154 2155 2156 2157
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2158 2159
  float epsilon_;
  float momentum_;
2160 2161
  GType *new_bias_;
  GType *new_scale_;
2162
};
E
eclipsess 已提交
2163
#endif
Y
Yao,kun 已提交
2164

E
eclipsess 已提交
2165
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2166
template <typename Dtype>
2167
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2168 2169 2170
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2171 2172 2173
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2174
                          const AttributeMap &attrs, Scope *scope)
2175
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2176 2177 2178 2179
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2180 2181
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2182
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2183 2184
  }

2185
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2186

2187
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2188

2189
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2190

2191
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2192 2193 2194 2195 2196

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2197
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2198

2199
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2200

2201
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2202

2203
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2204 2205

 protected:
2206 2207 2208 2209
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2210 2211
  float epsilon_;
  float momentum_;
2212 2213
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2214 2215 2216 2217
};

#endif

2218
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2219
template <typename Dtype>
2220
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2221 2222 2223
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2224 2225 2226
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2227
                        const AttributeMap &attrs, Scope *scope)
2228
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2229 2230 2231 2232
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2233 2234
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2235
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2236 2237
  }

2238
  const GType *InputBias() const { return input_bias_; }
2239

2240
  const GType *InputMean() const { return input_mean_; }
2241

2242
  const GType *InputScale() const { return input_scale_; }
2243

2244
  const GType *InputVariance() const { return input_variance_; }
2245 2246 2247 2248 2249

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2250
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2251

2252
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2253

2254
  const GType *NewScale() const { return new_scale_; }
2255

2256
  const GType *NewBias() const { return new_bias_; }
2257 2258

 protected:
2259 2260 2261 2262
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2263 2264
  float epsilon_;
  float momentum_;
2265 2266
  GType *new_bias_;
  GType *new_scale_;
2267 2268 2269
};
#endif

Y
Yao,kun 已提交
2270
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2271
template <typename Dtype>
Y
Yao,kun 已提交
2272
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2273 2274 2275
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2276 2277 2278
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2279 2280 2281 2282
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2283 2284 2285 2286 2287
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2288
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2289

E
eclipsess 已提交
2290
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2291 2292 2293 2294 2295 2296 2297 2298

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2299 2300
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2301 2302 2303 2304
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2305
#endif
Y
Yao,kun 已提交
2306

2307
#ifdef DROPOUT_OP
N
nhzlx 已提交
2308
template <typename Dtype>
Y
Yao,kun 已提交
2309
class DropoutParam : public OpParam {
N
nhzlx 已提交
2310 2311 2312
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2313 2314
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2315 2316 2317 2318
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2319 2320

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2321 2322
  }

2323
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2324

2325
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2326

Y
yangfei 已提交
2327 2328
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2329
 private:
2330 2331
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2332
  float dropout_prob_;
Y
Yao,kun 已提交
2333
};
2334
#endif
Y
Yao,kun 已提交
2335

N
nhzlx 已提交
2336
template <typename Dtype>
L
liuruilong 已提交
2337
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2338 2339 2340
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2341 2342 2343
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2344 2345 2346 2347
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2348
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2349
    if (outputs.count("Output")) {
2350
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2351
    }
L
liuruilong 已提交
2352 2353 2354 2355 2356 2357
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2358
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2359

2360
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2361

2362
  GType *Output() const { return output_; }
L
liuruilong 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2381
 private:
2382 2383 2384
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2385 2386 2387 2388
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2389
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2390 2391 2392 2393 2394

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2395
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2396 2397 2398

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2399 2400 2401
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2402
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2403 2404 2405
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2406
#endif
L
liuruilong 已提交
2407
};
Z
zhangyang 已提交
2408

qnqinan's avatar
qnqinan 已提交
2409 2410 2411 2412 2413
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2414 2415

 public:
qnqinan's avatar
qnqinan 已提交
2416
  FusionDeconvAddParam(const VariableNameMap &inputs,
2417
                       const VariableNameMap &outputs,
2418
                       const AttributeMap &attrs, Scope *scope)
2419
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2420
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2421
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2422
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2423
  }
2424
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2425 2426 2427

  const int &Axis() const { return axis_; }

2428
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2429 2430

 protected:
2431
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2432
  int axis_;
2433
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2434 2435 2436 2437 2438 2439 2440
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2441 2442 2443 2444 2445 2446 2447 2448 2449
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2450
                         const AttributeMap &attrs, Scope *scope)
2451
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2452 2453 2454 2455 2456
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2457 2458 2459 2460 2461 2462 2463
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2507
                          const AttributeMap &attrs, Scope *scope)
2508
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2509 2510 2511 2512 2513
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2514 2515 2516 2517 2518 2519
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2563
                             const AttributeMap &attrs, Scope *scope)
2564
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2565 2566 2567 2568 2569
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2611

Z
zhangyang 已提交
2612 2613 2614 2615 2616
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2631 2632 2633 2634 2635 2636 2637 2638
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2639
    output_batch_reset_hidden_prev_ =
2640 2641 2642
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2643 2644
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2678 2679 2680 2681 2682 2683 2684
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2685 2686 2687 2688 2689 2690 2691 2692
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2693
    output_reset_hidden_prev_ =
2694 2695
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2724 2725 2726 2727 2728 2729 2730 2731
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2732 2733 2734 2735
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2736
    axis = GetAttr<int>("axis", attrs);
2737
  }
2738 2739
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2740
  const int &Axis() const { return axis; }
2741 2742

 private:
2743 2744
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2745
  int axis;
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2757 2758 2759 2760
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2761
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2762 2763 2764 2765 2766 2767
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2768
  }
2769
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2770 2771 2772 2773 2774
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2775 2776

 private:
2777
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2778
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2779
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2780 2781 2782
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2783 2784 2785 2786 2787 2788 2789 2790 2791
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2804 2805 2806 2807 2808
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2809 2810
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2811
  }
2812 2813 2814
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2815 2816
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2817 2818

 private:
2819 2820 2821
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2822 2823
  int out_h_;
  int out_w_;
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2835 2836 2837 2838
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2839
  }
2840 2841
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2842 2843

 private:
2844 2845
  GType *input_;
  GType *out_;
2846 2847 2848
};
#endif

H
hjchen2 已提交
2849 2850 2851 2852 2853 2854 2855 2856
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2857 2858 2859 2860 2861
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2862 2863 2864 2865
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2866 2867 2868
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2881 2882 2883 2884
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2885 2886 2887 2888 2889
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2890 2891
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2892 2893 2894 2895 2896
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2897
#ifdef QUANT_OP
2898
template <typename Dtype>
2899 2900 2901 2902 2903
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2904
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2905 2906 2907 2908
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2909 2910
    // online
    // scale = max(abs(x))
2911
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2912
    // offline
2913
    if (inputs.count("InScale")) {
2914
      offline_ = true;
2915
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2916 2917
    }
    // x = round(scale * x)
2918 2919
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2920
    }
2921 2922 2923 2924
  }

 public:
  // op input
2925
  GType *input_;
2926
  // op output
2927
  GType *output_;
2928
  GType *online_scale_;
2929
  // quantize offline scale
2930
  GType *offline_scale_;
2931 2932
  // if offine scale or not
  bool offline_ = false;
2933
  // round method type
2934 2935
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2936
};
2937
#endif
2938

2939
#ifdef DEQUANT_OP
2940
template <typename Dtype>
2941 2942 2943 2944 2945
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2946
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2947 2948 2949 2950 2951
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2952
    // dequantization is performed as x = x / static_scale / online_scale
2953 2954
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2955
    } else {
2956
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2957 2958 2959 2960 2961
    }
  }

 public:
  // op input
2962
  GType *input_;
2963
  // op output
2964
  GType *output_;
2965
  GType *activation_scale_;
2966 2967
  float weight_scale_;
};
2968
#endif
2969

2970 2971 2972 2973
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2974
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2975
template <typename Dtype>
2976
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2977 2978 2979 2980
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2981 2982
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2983
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
2984 2985
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
2986 2987 2988 2989
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
2990 2991 2992 2993 2994
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2995 2996 2997 2998
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
2999
  float epsilon_;
3000 3001 3002
};
#endif

3003 3004 3005 3006
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3007 3008 3009 3010 3011 3012 3013 3014
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3015
                          const AttributeMap &attrs, Scope *scope)
3016 3017 3018
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3019
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3020 3021 3022 3023 3024
  }

 public:
  // elementwise add
  int axis_;
3025
  GType *bias_;
3026 3027 3028
};
#endif

3029 3030 3031 3032 3033 3034 3035 3036 3037
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3038
                               const AttributeMap &attrs, Scope *scope)
3039 3040
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3041
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3042
    // offline
3043 3044
    if (inputs.count("InScale")) {
      offline_ = true;
3045
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3046 3047 3048 3049 3050 3051 3052 3053
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3054
  GType *online_scale_;
3055
  // quantize offline scale
3056
  GType *offline_scale_;
3057 3058
  // if offine scale or not
  bool offline_ = false;
3059 3060 3061 3062 3063 3064
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3065 3066 3067 3068 3069 3070 3071 3072 3073
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3074 3075 3076 3077 3078
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3102 3103 3104 3105
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3106 3107
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3108
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3119 3120 3121 3122 3123 3124 3125 3126
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3127 3128 3129 3130
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3131 3132
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3133
      input_y_ = InputYFrom<GType>(inputs, *scope);
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3147 3148 3149 3150 3151 3152 3153 3154
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3155 3156 3157 3158 3159
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3171
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3172
template <typename Dtype>
Z
zhaojiaying01 已提交
3173
class LogicalBinaryParam : public OpParam {
3174 3175 3176 3177
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3178 3179
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3180 3181 3182 3183 3184
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3196
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3197 3198 3199

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3200
class LogicalUnaryParam : public OpParam {
3201 3202 3203 3204
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3205 3206
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3207 3208 3209 3210
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3222 3223 3224
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3225 3226 3227
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3228 3229 3230
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3231 3232
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3233 3234 3235
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3236 3237 3238
  }

 public:
H
hjchen2 已提交
3239 3240 3241
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3242 3243 3244 3245 3246 3247
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3248 3249 3250
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3251 3252 3253
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3254 3255
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3256 3257 3258
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3259 3260 3261
  }

 public:
H
hjchen2 已提交
3262 3263 3264
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3265 3266 3267
};
#endif

Z
zhaojiaying01 已提交
3268 3269 3270 3271 3272 3273 3274 3275
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3276 3277 3278 3279
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3299
                 const AttributeMap &attrs, Scope *scope)
3300
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3301 3302
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3303
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3304 3305 3306 3307
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3308
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3309 3310 3311 3312

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3313
  float step_;
Z
zhaojiaying01 已提交
3314 3315
};
#endif  // INCREMENT_OP
3316 3317 3318 3319 3320 3321 3322 3323
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3324 3325 3326 3327
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3328 3329 3330 3331 3332 3333 3334 3335 3336
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3337

朔-望's avatar
朔-望 已提交
3338 3339
}  // namespace operators
}  // namespace paddle_mobile