op_param.h 100.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
27 28 29 30 31 32 33

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
34
#endif
朔-望's avatar
朔-望 已提交
35

L
liuruilong 已提交
36 37
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
38
#endif
朔-望's avatar
朔-望 已提交
39 40

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
41 42
namespace operators {

W
wangliu 已提交
43 44 45 46 47
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
48
using framework::Variable;
W
wangliu 已提交
49 50
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
51

N
nhzlx 已提交
52 53 54 55 56 57 58 59 60
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
61
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
62 63 64 65 66 67 68 69
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
70
#endif
L
liuruilong 已提交
71

L
liuruilong 已提交
72
class OpParam {
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
          const AttributeMap &attrs, Scope *scope) {
    scope_pointer_ = scope;
    inputs_ = inputs;
  }

  template <typename T>
  T *CreateNewScale() {
    std::string scale_key = Getkey("Scale", inputs_, 0);
    auto var = scope_pointer_->Var(scale_key + "_new");
    return var->GetMutable<T>();
  }

  template <typename T>
  T *CreateNewBiase() {
    std::string biase_key = Getkey("Bias", inputs_, 0);
    auto var = scope_pointer_->Var(biase_key + "_new");
    return var->GetMutable<T>();
  }

  VariableNameMap inputs_;
  Scope *scope_pointer_ = nullptr;

朔-望's avatar
朔-望 已提交
97
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
98 99 100 101
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
102 103 104 105 106 107 108

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

109 110 111 112 113
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

114 115 116 117 118 119 120 121 122
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
123 124 125 126 127
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

155 156 157 158
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
159 160 161 162 163 164

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

165 166 167 168 169
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
170 171 172 173 174
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

175 176 177 178 179
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
180 181 182 183
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
184 185 186 187 188 189 190 191 192 193 194 195
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
196 197 198 199
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
216

E
eclipsess 已提交
217 218 219 220 221 222 223 224 225 226
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
227 228 229 230
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
231

232
  template <typename T>
W
wangliu 已提交
233 234
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
235 236 237
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
238 239 240 241 242
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
243 244 245 246 247 248
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
249 250 251 252 253
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
254 255 256 257 258 259 260 261 262 263 264
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
265 266 267 268 269 270
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
271 272 273 274 275 276 277 278 279 280 281 282
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

283 284 285 286 287
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
288 289 290 291 292
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

293 294 295 296 297
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
298 299 300 301 302 303
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

304 305 306 307 308
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
309 310 311 312 313 314
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
315 316 317 318 319 320
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
321 322 323 324 325
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
326 327 328 329 330
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
331 332 333 334 335 336
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

337 338 339 340 341 342 343 344 345 346 347
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
348
  static const T GetAttr(const string &key, const AttributeMap &map) {
349 350
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
351 352
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
353 354
    return ((Attribute)map.at(key)).GetString();
  }
355

356 357 358 359
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

360
  template <typename T>
W
wangliu 已提交
361
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
362
                        const Scope &scope) {
W
wangliu 已提交
363 364
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
365 366 367 368 369 370
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
371
    }
372
  }
朔-望's avatar
朔-望 已提交
373

E
eclipsess 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

387
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
388
                            int index) {
389 390
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

409
  template <typename T>
W
wangliu 已提交
410 411 412
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
413 414
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
415
    vector<T *> var_res;
416 417 418
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
419
    }
420 421
    return var_res;
  }
E
eclipsess 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
435 436
};

N
nhzlx 已提交
437
template <typename Dtype>
438
class ConvParam : public OpParam {
N
nhzlx 已提交
439 440 441
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
442
 public:
443
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
444 445 446 447
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
448
    if (outputs.count("Output")) {
449
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
450 451 452 453 454
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
455
  }
朔-望's avatar
朔-望 已提交
456

457
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
458

459
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
460

461
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
462

W
wangliu 已提交
463
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
464

W
wangliu 已提交
465
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
466

W
wangliu 已提交
467
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
468

H
hjchen2 已提交
469 470 471
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
472 473
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
474 475
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
476
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
477
    EXEC_GEMM_INT8,
H
hjchen2 已提交
478
    EXEC_DEPTHWISE3x3_INT8,
479
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
480 481
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
H
hjchen2 已提交
482 483 484 485
  };

  ExecMode &ExecMode() const { return exec_mode_; }

486
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
487

488 489 490 491 492 493 494
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
495
 public:
496 497 498 499
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
500 501 502
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
503
  mutable enum ExecMode exec_mode_;
504
  int groups;
505 506 507 508

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
509 510 511

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
512
 public:
Z
zhangyang 已提交
513 514 515 516 517
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
518 519 520 521 522 523 524

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
525
#endif
朔-望's avatar
朔-望 已提交
526
};
N
nhzlx 已提交
527 528
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
529

N
nhzlx 已提交
530
template <typename Dtype>
531
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
532 533 534
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
535
 public:
536
  ElementwiseAddParam(const VariableNameMap &inputs,
537
                      const VariableNameMap &outputs, const AttributeMap &attrs,
538 539 540 541 542
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
543 544 545
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
546
  const GType *InputX() const { return input_x_; }
547

xiebaiyuan's avatar
xiebaiyuan 已提交
548
  const GType *InputY() const { return input_y_; }
549

xiebaiyuan's avatar
xiebaiyuan 已提交
550
  GType *Out() const { return out_; }
551 552 553

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
554
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
555 556 557
  GType *input_x_;
  GType *input_y_;
  GType *out_;
558
  int axis_;
Z
zhangyang 已提交
559 560 561
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
562
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
563 564

 public:
H
hanbuhe 已提交
565 566
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
567 568 569 570

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
571
#endif
朔-望's avatar
朔-望 已提交
572 573
};

E
eclipsess 已提交
574
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
575
template <typename Dtype>
576
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
577 578 579 580 581 582
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
583 584 585 586 587
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
604 605 606 607 608 609
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
610
};
S
suiyang 已提交
611
#endif
E
eclipsess 已提交
612

613
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
614 615
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
616 617
#endif

618
#ifdef ELEMENTWISESUB_OP
619
template <typename Dtype>
620
class ElementwiseSubParam : public OpParam {
621 622 623 624 625 626
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
627 628 629 630 631
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
649
#endif
650

L
liuruilong 已提交
651
#ifdef MUL_OP
N
nhzlx 已提交
652
template <typename Dtype>
653
class MulParam : public OpParam {
N
nhzlx 已提交
654 655 656
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
657
 public:
658
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
659 660 661 662 663
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
664 665 666
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
667

xiebaiyuan's avatar
xiebaiyuan 已提交
668
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
669

xiebaiyuan's avatar
xiebaiyuan 已提交
670
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
671

xiebaiyuan's avatar
xiebaiyuan 已提交
672
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
673

674
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
675

676
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
677

朔-望's avatar
朔-望 已提交
678
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
679 680 681
  GType *input_x_;
  GType *input_y_;
  GType *out_;
682 683
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
684
};
L
liuruilong 已提交
685
#endif
朔-望's avatar
朔-望 已提交
686

L
liuruilong 已提交
687
#ifdef CONCAT_OP
N
nhzlx 已提交
688
template <typename Dtype>
朔-望's avatar
朔-望 已提交
689
class ConcatParam : public OpParam {
N
nhzlx 已提交
690 691 692
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
693
 public:
694
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
695 696 697 698
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
699 700
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
701

N
nhzlx 已提交
702
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
703

xiebaiyuan's avatar
xiebaiyuan 已提交
704
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
705

706
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
707

朔-望's avatar
朔-望 已提交
708
 private:
N
nhzlx 已提交
709
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
710
  GType *out_;
711
  int axis_;
Z
zhangyang 已提交
712 713 714 715 716 717 718 719 720
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
721
};
L
liuruilong 已提交
722
#endif
朔-望's avatar
朔-望 已提交
723

E
eclipsess 已提交
724 725 726 727 728 729 730 731
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
732 733 734 735 736 737
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
756
#ifdef LRN_OP
N
nhzlx 已提交
757
template <typename Dtype>
E
eclipsess 已提交
758
class LrnParam : public OpParam {
N
nhzlx 已提交
759 760 761
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
762
 public:
763
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
764 765 766 767 768
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
769 770 771 772
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
773
    data_format_ = GetStringAttr("data_format", attrs);
774
  }
E
eclipsess 已提交
775

776
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
777

778
  GType *Out() const { return out_; }
E
eclipsess 已提交
779

780
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
781

782
  const int &N() const { return n_; }
E
eclipsess 已提交
783

784
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
785

786
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
787

788
  const float &K() const { return k_; }
E
eclipsess 已提交
789

W
wangliu 已提交
790
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
791

朔-望's avatar
朔-望 已提交
792
 private:
793 794 795
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
796 797 798 799
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
800
  string data_format_;
E
eclipsess 已提交
801
};
L
liuruilong 已提交
802 803
#endif

Z
zhaojiaying01 已提交
804 805
#ifdef NORM_OP
template <typename Dtype>
806
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
807 808 809 810 811
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
812 813 814 815 816
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
817 818 819 820
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

821
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
822

823
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
824

825
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
826 827 828 829 830 831

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
832 833 834
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
835 836 837 838 839
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
840
#ifdef BATCHNORM_OP
N
nhzlx 已提交
841
template <typename Dtype>
842
class BatchNormParam : public OpParam {
N
nhzlx 已提交
843 844 845
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
846
 public:
847
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
848 849 850 851 852 853 854 855
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
856 857
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
858
    //    is_test_ = GetAttr<bool>("is_test", attrs);
859
  }
E
eclipsess 已提交
860

861
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
862

863
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
864

865
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
866

867
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
868

869
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
870

871
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
872

873
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
874

875
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
876

877
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
878

W
wangliu 已提交
879
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
880

881
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
882

883
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
884

885
  const GType *NewScale() const { return new_scale_; }
886

887
  const GType *NewBias() const { return new_bias_; }
888

朔-望's avatar
朔-望 已提交
889
 private:
890 891 892 893 894 895
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
896 897 898
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
899
  string data_format_;
900 901
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
902
};
L
liuruilong 已提交
903 904 905
#endif

#ifdef POOL_OP
N
nhzlx 已提交
906
template <typename Dtype>
907
class PoolParam : public OpParam {
N
nhzlx 已提交
908 909 910
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
911
 public:
912
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
913 914 915
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
916

917
    output_ = OutFrom<GType>(outputs, *scope);
918
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
919 920 921
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
922
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
923
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
924
  }
925

926
  const GType *Input() const { return input_; }
927

928
  GType *Output() const { return output_; }
929

W
wangliu 已提交
930
  const string &PoolingType() const { return pooling_type_; }
931

W
wangliu 已提交
932
  const vector<int> &Ksize() const { return ksize_; }
933

W
wangliu 已提交
934
  const vector<int> &Strides() const { return strides_; }
935

W
wangliu 已提交
936
  const vector<int> &Paddings() const { return paddings_; }
937

938
  bool isCeilMode() const { return ceil_mode_; }
939

Z
zhangyang 已提交
940
  bool isGlobalPooling() const { return global_pooling_; }
941

朔-望's avatar
朔-望 已提交
942
 private:
943 944
  GType *input_;
  GType *output_;
W
wangliu 已提交
945 946 947 948
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
949
  bool ceil_mode_;
950
  bool global_pooling_ = false;
Z
zhangyang 已提交
951
#ifdef PADDLE_MOBILE_FPGA
952 953

 private:
H
hanbuhe 已提交
954
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
955 956

 public:
H
hanbuhe 已提交
957 958
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
959
#endif
960
};
L
liuruilong 已提交
961 962 963
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
964
template <typename Dtype>
E
eclipsess 已提交
965
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
966 967 968
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
969 970
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
971 972 973 974 975 976
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
977 978 979 980
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
981 982 983 984

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
985 986
    } else {
      min_max_aspect_ratios_order_ = false;
987
    }
E
eclipsess 已提交
988 989 990 991 992 993
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
994
  const GType *Input() const { return input_; }
E
eclipsess 已提交
995

996
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
997

998
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
999

1000
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1001

W
wangliu 已提交
1002
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1003

W
wangliu 已提交
1004
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1005

W
wangliu 已提交
1006
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1007

W
wangliu 已提交
1008
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1020 1021 1022 1023
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1024
 private:
1025 1026 1027 1028
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1029 1030 1031 1032
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1033 1034 1035 1036 1037
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1038
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1039
};
L
liuruilong 已提交
1040
#endif
E
eclipsess 已提交
1041

L
liuruilong 已提交
1042
#ifdef BOXCODER_OP
N
nhzlx 已提交
1043
template <typename Dtype>
E
eclipsess 已提交
1044
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1045 1046 1047
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1048 1049
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1050 1051 1052 1053 1054 1055
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1056
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1057
  }
1058
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1059

1060
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1061

1062
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1063

1064
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1065 1066 1067 1068

  const std::string &CodeType() const { return code_type_; }

 private:
1069 1070 1071 1072
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1073 1074
  std::string code_type_;
};
L
liuruilong 已提交
1075
#endif
W
wangliu 已提交
1076

L
liuruilong 已提交
1077
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1078
template <typename Dtype>
W
wangliu 已提交
1079
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1080 1081 1082
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1083 1084
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1085 1086 1087 1088
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1089
  }
H
hjchen2 已提交
1090 1091
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1092 1093

 private:
H
hjchen2 已提交
1094 1095
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1096 1097 1098 1099

#ifdef PADDLE_MOBILE_FPGA

 private:
1100
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1101 1102 1103
  fpga::BypassArgs fpga_bypass_args;

 public:
1104
  GType *FloatInput() const {
H
hanbuhe 已提交
1105 1106
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1107
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1108 1109 1110
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1111
};
L
liuruilong 已提交
1112
#endif
W
wangliu 已提交
1113

L
liuruilong 已提交
1114
#ifdef SIGMOID_OP
N
nhzlx 已提交
1115
template <typename Dtype>
W
wangliu 已提交
1116
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1117 1118 1119
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1120 1121
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1122 1123 1124 1125
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1126
  }
1127 1128
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1129 1130

 private:
1131 1132
  GType *input_x_;
  GType *out_;
1133 1134 1135 1136 1137 1138 1139 1140 1141
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1142
};
L
liuruilong 已提交
1143 1144 1145
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1146
template <typename Dtype>
E
eclipsess 已提交
1147
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1148 1149 1150
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1151 1152 1153
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1154 1155 1156 1157 1158
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1159 1160 1161 1162 1163 1164 1165 1166
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1167
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1168

1169
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1170

1171
  GType *Out() const { return out_; }
E
eclipsess 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1186 1187 1188
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1189 1190 1191 1192 1193 1194 1195
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1196
#endif
W
wangliu 已提交
1197

L
lijiancheng0614 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1207 1208 1209 1210
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1211
  }
1212 1213
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1214 1215

 private:
1216 1217
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1218 1219 1220
};
#endif

N
nhzlx 已提交
1221
template <typename Dtype>
L
liuruilong 已提交
1222
class FeedParam : public OpParam {
N
nhzlx 已提交
1223 1224 1225
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1226 1227
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1228
            const AttributeMap &attrs, Scope *scope)
1229
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1230
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1231
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1232
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1233
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1234
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1235
  }
H
hjchen2 已提交
1236
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1237
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1238
  const int Col() const { return col_; }
W
wangliu 已提交
1239
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1240

L
liuruilong 已提交
1241
 private:
H
hjchen2 已提交
1242
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1243
  GType *out_;
H
update  
hjchen2 已提交
1244
  int col_;
W
wangliu 已提交
1245
  int batch_size;
L
liuruilong 已提交
1246 1247
};

N
nhzlx 已提交
1248
template <typename Dtype>
L
liuruilong 已提交
1249
class FetchParam : public OpParam {
N
nhzlx 已提交
1250 1251 1252
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1253 1254
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1255
             const AttributeMap &attrs, Scope *scope)
1256
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1257 1258
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1259
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1260
  }
L
liuruilong 已提交
1261

H
hjchen2 已提交
1262 1263
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1264
  const int Col() const { return col_; }
L
liuruilong 已提交
1265

L
liuruilong 已提交
1266
 private:
H
hjchen2 已提交
1267 1268
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1269
  int col_;
qnqinan's avatar
qnqinan 已提交
1270
#ifdef PADDLE_MOBILE_FPGA
1271

qnqinan's avatar
qnqinan 已提交
1272 1273
 public:
  fpga::BypassArgs fpga_bypass_args;
1274
  Tensor aligned_out;
qnqinan's avatar
qnqinan 已提交
1275
#endif
L
liuruilong 已提交
1276 1277
};

L
lijiancheng0614 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1287 1288 1289 1290
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1291 1292 1293 1294 1295 1296 1297
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1298
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1308
  GType *out_;
L
lijiancheng0614 已提交
1309 1310 1311 1312 1313 1314
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1315
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1316
template <typename Dtype>
E
eclipsess 已提交
1317
class TransposeParam : public OpParam {
N
nhzlx 已提交
1318 1319 1320
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1321 1322
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1323 1324 1325 1326
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1327 1328 1329
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1330
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1331

1332
  GType *Out() const { return out_; }
E
eclipsess 已提交
1333 1334 1335 1336

  const vector<int> &Axis() const { return axis_; }

 private:
1337 1338
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1339 1340
  vector<int> axis_;
};
L
liuruilong 已提交
1341
#endif
E
eclipsess 已提交
1342

L
lijiancheng0614 已提交
1343 1344 1345 1346 1347 1348 1349 1350
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1351 1352 1353 1354 1355
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1356 1357 1358
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1359
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1360

1361
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1362

1363
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1364 1365 1366 1367

  const vector<int> &Axis() const { return axis_; }

 private:
1368 1369 1370
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1371 1372 1373 1374
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1375 1376 1377 1378 1379 1380 1381 1382
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1383 1384 1385 1386 1387
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1414 1415
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1416
    // todo crf params
1417 1418 1419 1420
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1421 1422 1423 1424 1425 1426
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1427 1428
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1429 1430 1431 1432 1433 1434 1435 1436
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1437 1438
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1439 1440 1441 1442
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1443
#ifdef RESHAPE_OP
N
nhzlx 已提交
1444
template <typename Dtype>
E
eclipsess 已提交
1445
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1446 1447 1448
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1449 1450
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1451 1452 1453 1454 1455
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1456
    shape_ = GetAttr<vector<int>>("shape", attrs);
1457 1458 1459 1460 1461 1462 1463

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1464 1465
  }

1466
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1467

1468
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1469

1470
  GType *Out() const { return out_; }
E
eclipsess 已提交
1471 1472 1473 1474 1475 1476

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1477 1478 1479
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1480 1481 1482
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1483
#endif
E
eclipsess 已提交
1484

L
lijiancheng0614 已提交
1485 1486 1487 1488 1489 1490 1491 1492
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1493 1494 1495 1496 1497 1498
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1499 1500 1501 1502 1503 1504 1505 1506
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1507
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1508

E
eclipsess 已提交
1509
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1510

E
eclipsess 已提交
1511
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1512

E
eclipsess 已提交
1513
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1514 1515 1516 1517 1518 1519

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1520 1521 1522 1523
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1524 1525 1526 1527 1528
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1529
#ifdef SCALE_OP
N
nhzlx 已提交
1530
template <typename Dtype>
I
itminner 已提交
1531
class ScaleParam : public OpParam {
N
nhzlx 已提交
1532 1533 1534
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1535 1536
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1537 1538 1539 1540
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1541 1542
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1543 1544
  }

1545
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1546

1547
  GType *Out() const { return out_; }
I
itminner 已提交
1548

1549
  const float Scale() const { return scale_; }
I
itminner 已提交
1550

1551
  const float Bias() const { return bias_; }
I
itminner 已提交
1552 1553

 private:
1554 1555
  GType *input_x_;
  GType *out_;
1556 1557
  float scale_;
  float bias_;
I
itminner 已提交
1558
};
T
Tian 已提交
1559 1560 1561
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1562
template <typename Dtype>
I
itminner 已提交
1563
class SliceParam : public OpParam {
N
nhzlx 已提交
1564 1565 1566
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1567 1568
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1569 1570 1571 1572
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1573

1574 1575 1576 1577
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1578

1579 1580 1581 1582 1583 1584
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1585
};
T
Tian 已提交
1586 1587 1588
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1589
template <typename Dtype>
T
Tian 已提交
1590
class ResizeParam : public OpParam {
N
nhzlx 已提交
1591 1592 1593
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1594 1595
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1596 1597 1598 1599 1600
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1601 1602 1603 1604 1605 1606
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1607

1608
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1609

1610
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1611

1612
  GType *Out() const { return out_; }
T
Tian 已提交
1613

I
itminner 已提交
1614
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1615

I
itminner 已提交
1616
  const int &Height() const { return height_; }
T
Tian 已提交
1617

I
itminner 已提交
1618
  const int &Width() const { return width_; }
T
Tian 已提交
1619

I
itminner 已提交
1620
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1621

I
itminner 已提交
1622
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1623

I
itminner 已提交
1624
 private:
1625 1626 1627
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1628 1629 1630 1631 1632
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1633 1634 1635
};
#endif

L
liuruilong 已提交
1636
#ifdef RELU_OP
L
liuruilong 已提交
1637 1638 1639
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1640
template <typename Dtype>
D
relu  
dolphin8 已提交
1641
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1642 1643 1644
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1645
 public:
D
relu  
dolphin8 已提交
1646
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1647 1648 1649 1650
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1651 1652
  }

1653
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1654

1655
  GType *Out() const { return out_; }
E
eclipsess 已提交
1656 1657

 private:
1658 1659
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1660
};
D
relu  
dolphin8 已提交
1661 1662 1663

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1664
 public:
D
relu  
dolphin8 已提交
1665 1666 1667
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1668
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1669 1670
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1671
 public:
D
relu  
dolphin8 已提交
1672
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1673 1674 1675
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1676 1677
  framework::CLImage midImage;
};
Y
yangfei 已提交
1678
#endif
D
relu  
dolphin8 已提交
1679

L
liuruilong 已提交
1680
#endif
E
eclipsess 已提交
1681

Z
zhangyang 已提交
1682 1683 1684 1685 1686 1687 1688 1689
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1690 1691 1692 1693
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1694
  }
1695 1696
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1697 1698

 private:
1699 1700
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1701 1702 1703
#ifdef PADDLE_MOBILE_FPGA

 private:
1704
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1705 1706 1707
  fpga::BypassArgs fpga_bypass_args;

 public:
1708
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1709 1710
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1711
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1712 1713 1714
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1715
};
L
liuruilong 已提交
1716
#endif
E
eclipsess 已提交
1717

T
Tian 已提交
1718
#ifdef PRELU_OP
N
nhzlx 已提交
1719
template <typename Dtype>
T
Tian 已提交
1720
class PReluParam : public OpParam {
N
nhzlx 已提交
1721 1722 1723
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1724 1725
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1726 1727
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1728
    DLOG << "PReluParam inputs before";
1729 1730
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1731
    framework::DDim dims = alpha_->dims();
1732
    out_ = OutFrom<GType>(outputs, *scope);
1733
    mode_ = GetStringAttr("mode", attrs);
1734
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1735
  }
1736 1737 1738
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1739
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1740

I
itminner 已提交
1741
 private:
1742 1743 1744
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1745
  std::string mode_;
T
Tian 已提交
1746 1747 1748
};
#endif

N
nhzlx 已提交
1749
template <typename Dtype>
L
liuruilong 已提交
1750
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1751 1752 1753
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1754
 public:
L
liuruilong 已提交
1755
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1756 1757 1758 1759 1760 1761
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1762 1763 1764 1765
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1766
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1767

1768
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1769

1770
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1771

xiebaiyuan's avatar
xiebaiyuan 已提交
1772
  GType *Out() const { return out_; }
E
eclipsess 已提交
1773 1774 1775 1776 1777 1778 1779 1780

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1781
  GType *input_x_;
1782 1783
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1784
  GType *out_;
E
eclipsess 已提交
1785 1786 1787
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1788

Z
ZhenWang 已提交
1789
#ifdef PADDLE_MOBILE_FPGA
1790
 private:  // NOLINT
Z
zhangyang 已提交
1791
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1792 1793

 public:
Z
zhangyang 已提交
1794 1795
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1796
#endif
E
eclipsess 已提交
1797
};
1798 1799

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1800 1801
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1802
#endif
E
eclipsess 已提交
1803

N
nhzlx 已提交
1804
template <typename Dtype>
1805
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1806 1807 1808
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1809
 public:
L
liuruilong 已提交
1810
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1811
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1812
                     Scope *scope)
1813
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1814
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1815
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1816
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1817
  }
1818
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1819 1820 1821

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1822
 protected:
1823
  GType *bias_;
W
wangliu 已提交
1824 1825 1826
  int axis_;
};

N
nhzlx 已提交
1827 1828
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1829

Z
zhangyang 已提交
1830
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1831 1832
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1833
 public:
L
liuruilong 已提交
1834
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1835
                         const VariableNameMap &outputs,
1836
                         const AttributeMap &attrs, Scope *scope)
1837
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1838 1839 1840
};
#endif

1841
#ifdef FUSION_CONVADDPRELU_OP
1842 1843 1844 1845
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1846 1847 1848 1849

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1850
                          const AttributeMap &attrs, Scope *scope)
1851
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1852
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1853
    mode_ = OpParam::GetStringAttr("mode", attrs);
1854
    framework::DDim dims = alpha_->dims();
1855
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1856
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1857
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1858
  }
1859
  const GType *InputAlpha() const { return alpha_; }
1860
  const std::string &Mode() const { return mode_; }
1861
  GType *Bias() const { return bias_; }
1862 1863 1864
  const int &Axis() const { return axis_; }

 protected:
1865
  GType *bias_;
1866
  int axis_;
1867
  GType *alpha_;
1868 1869 1870 1871 1872
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1873 1874 1875 1876
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1877 1878 1879 1880

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1881
                             const AttributeMap &attrs, Scope *scope)
1882
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1883 1884
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1885
    mode_ = OpParam::GetStringAttr("mode", attrs);
1886
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1887
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1888
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1889 1890 1891
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1892
    if (keyX1_ == keyOutput_) {
1893
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1894
    } else if (keyY1_ == keyOutput_) {
1895
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1896
    }
H
update  
hjchen2 已提交
1897
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1898
  }
1899
  const GType *InputAlpha() const { return alpha_; }
1900
  const std::string &Mode() const { return mode_; }
1901
  const GType *Bias1() const { return bias1_; }
1902

1903
  GType *Bias() const { return bias_; }
1904 1905 1906 1907

  const int &Axis() const { return axis_; }

 protected:
1908
  GType *bias_;
1909
  int axis_;
1910
  GType *alpha_;
1911
  std::string mode_;
1912
  GType *bias1_;
1913 1914 1915 1916 1917 1918
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1919
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1920
template <typename Dtype>
1921
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1922 1923 1924
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1925 1926 1927
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1928
                           const AttributeMap &attrs, Scope *scope)
1929
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1930
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1931
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1932 1933 1934 1935
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1936 1937
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1938
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1939
  }
1940
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1941 1942 1943

  const int &Axis() const { return axis_; }

1944
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1945

1946
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1947

1948
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1949

1950
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1951 1952 1953 1954 1955

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1956
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1957

1958
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1959

1960
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1961

1962
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1963 1964

 protected:
1965
  GType *bias_;
E
eclipsess 已提交
1966
  int axis_;
1967 1968 1969 1970
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1971 1972
  float epsilon_;
  float momentum_;
1973 1974
  GType *new_bias_;
  GType *new_scale_;
1975 1976 1977 1978 1979
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1980
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1981 1982 1983 1984 1985 1986
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1987
                           const AttributeMap &attrs, Scope *scope)
1988
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1989
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1990
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1991 1992 1993 1994
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1995 1996
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
1997 1998 1999
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2000
    if (keyX_ == keyBNY_) {
2001
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2002
    } else if (keyY_ == keyBNY_) {
2003
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2004
    }
H
update  
hjchen2 已提交
2005
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2006
  }
2007
  GType *Bias() const { return bias_; }
2008 2009 2010

  const int &Axis() const { return axis_; }

2011
  const GType *InputBias() const { return input_bias_; }
2012

2013
  const GType *InputMean() const { return input_mean_; }
2014

2015
  const GType *InputScale() const { return input_scale_; }
2016

2017
  const GType *InputVariance() const { return input_variance_; }
2018 2019 2020 2021 2022

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2023
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2024

2025
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2026

2027
  const GType *NewScale() const { return new_scale_; }
2028

2029
  const GType *NewBias() const { return new_bias_; }
2030 2031

 protected:
2032
  GType *bias_;
2033
  int axis_;
2034 2035 2036 2037
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2038 2039
  float epsilon_;
  float momentum_;
2040 2041
  GType *new_bias_;
  GType *new_scale_;
2042 2043 2044
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2045
};
2046
#endif
E
eclipsess 已提交
2047

Z
zhangyang 已提交
2048
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2049
template <typename Dtype>
2050
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2051 2052 2053
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2054 2055 2056
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2057
                    Scope *scope)
2058
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2059 2060 2061 2062
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2063 2064
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2065
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2066 2067
  }

2068
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2069

2070
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2071

2072
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2073

2074
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2075 2076 2077 2078 2079

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2080
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2081

2082
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2083

2084
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2085

2086
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2087 2088

 protected:
2089 2090 2091 2092
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2093 2094
  float epsilon_;
  float momentum_;
2095 2096
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2097 2098 2099
};
#endif

2100
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2101
template <typename Dtype>
2102
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2103 2104 2105
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2106 2107 2108
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2109
                       const AttributeMap &attrs, Scope *scope)
2110
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2111
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2112
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2113 2114 2115 2116
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2117 2118
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2119
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2120
  }
2121
  GType *Bias() const { return bias_; }
2122 2123 2124

  const int &Axis() const { return axis_; }

2125
  const GType *InputBias() const { return input_bias_; }
2126

2127
  const GType *InputMean() const { return input_mean_; }
2128

2129
  const GType *InputScale() const { return input_scale_; }
2130

2131
  const GType *InputVariance() const { return input_variance_; }
2132 2133 2134 2135 2136

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2137
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2138

2139
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2140

2141
  const GType *NewScale() const { return new_scale_; }
2142

2143
  const GType *NewBias() const { return new_bias_; }
2144 2145

 protected:
2146
  GType *bias_;
2147
  int axis_;
2148 2149 2150 2151
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2152 2153
  float epsilon_;
  float momentum_;
2154 2155
  GType *new_bias_;
  GType *new_scale_;
2156
};
E
eclipsess 已提交
2157
#endif
Y
Yao,kun 已提交
2158

E
eclipsess 已提交
2159
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2160
template <typename Dtype>
2161
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2162 2163 2164
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2165 2166 2167
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2168
                          const AttributeMap &attrs, Scope *scope)
2169
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2170 2171 2172 2173
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2174 2175
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2176
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2177 2178
  }

2179
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2180

2181
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2182

2183
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2184

2185
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2186 2187 2188 2189 2190

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2191
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2192

2193
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2194

2195
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2196

2197
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2198 2199

 protected:
2200 2201 2202 2203
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2204 2205
  float epsilon_;
  float momentum_;
2206 2207
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2208 2209 2210 2211
};

#endif

2212
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2213
template <typename Dtype>
2214
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2215 2216 2217
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2218 2219 2220
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2221
                        const AttributeMap &attrs, Scope *scope)
2222
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2223 2224 2225 2226
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2227 2228
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2229
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2230 2231
  }

2232
  const GType *InputBias() const { return input_bias_; }
2233

2234
  const GType *InputMean() const { return input_mean_; }
2235

2236
  const GType *InputScale() const { return input_scale_; }
2237

2238
  const GType *InputVariance() const { return input_variance_; }
2239 2240 2241 2242 2243

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2244
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2245

2246
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2247

2248
  const GType *NewScale() const { return new_scale_; }
2249

2250
  const GType *NewBias() const { return new_bias_; }
2251 2252

 protected:
2253 2254 2255 2256
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2257 2258
  float epsilon_;
  float momentum_;
2259 2260
  GType *new_bias_;
  GType *new_scale_;
2261 2262 2263
};
#endif

Y
Yao,kun 已提交
2264
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2265
template <typename Dtype>
Y
Yao,kun 已提交
2266
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2267 2268 2269
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2270 2271 2272
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2273 2274 2275 2276
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2277 2278 2279 2280 2281
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2282
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2283

E
eclipsess 已提交
2284
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2285 2286 2287 2288 2289 2290 2291 2292

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2293 2294
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2295 2296 2297 2298
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2299
#endif
Y
Yao,kun 已提交
2300

2301
#ifdef DROPOUT_OP
N
nhzlx 已提交
2302
template <typename Dtype>
Y
Yao,kun 已提交
2303
class DropoutParam : public OpParam {
N
nhzlx 已提交
2304 2305 2306
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2307 2308
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2309 2310 2311 2312
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2313 2314

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2315 2316
  }

2317
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2318

2319
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2320

Y
yangfei 已提交
2321 2322
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2323
 private:
2324 2325
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2326
  float dropout_prob_;
Y
Yao,kun 已提交
2327
};
2328
#endif
Y
Yao,kun 已提交
2329

N
nhzlx 已提交
2330
template <typename Dtype>
L
liuruilong 已提交
2331
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2332 2333 2334
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2335 2336 2337
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2338 2339 2340 2341
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2342
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2343
    if (outputs.count("Output")) {
2344
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2345
    }
L
liuruilong 已提交
2346 2347 2348 2349 2350 2351
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2352
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2353

2354
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2355

2356
  GType *Output() const { return output_; }
L
liuruilong 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2375
 private:
2376 2377 2378
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2379 2380 2381 2382
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2383
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2384 2385 2386 2387 2388

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2389
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2390 2391 2392

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2393 2394 2395
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2396
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2397 2398 2399
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2400
#endif
L
liuruilong 已提交
2401
};
Z
zhangyang 已提交
2402

qnqinan's avatar
qnqinan 已提交
2403 2404 2405 2406 2407
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2408 2409

 public:
qnqinan's avatar
qnqinan 已提交
2410
  FusionDeconvAddParam(const VariableNameMap &inputs,
2411
                       const VariableNameMap &outputs,
2412
                       const AttributeMap &attrs, Scope *scope)
2413
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2414
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2415
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2416
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2417
  }
2418
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2419 2420 2421

  const int &Axis() const { return axis_; }

2422
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2423 2424

 protected:
2425
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2426
  int axis_;
2427
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2428 2429 2430 2431 2432 2433 2434
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2435 2436 2437 2438 2439 2440 2441 2442 2443
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2444
                         const AttributeMap &attrs, Scope *scope)
2445
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2446 2447 2448 2449 2450
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2451 2452 2453 2454 2455 2456 2457
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2501
                          const AttributeMap &attrs, Scope *scope)
2502
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2503 2504 2505 2506 2507
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2508 2509 2510 2511 2512 2513
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2557
                             const AttributeMap &attrs, Scope *scope)
2558
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2559 2560 2561 2562 2563
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2605

Z
zhangyang 已提交
2606 2607 2608 2609 2610
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2625 2626 2627 2628 2629 2630 2631 2632
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2633
    output_batch_reset_hidden_prev_ =
2634 2635 2636
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2637 2638
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2672 2673 2674 2675 2676 2677 2678
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2679 2680 2681 2682 2683 2684 2685 2686
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2687
    output_reset_hidden_prev_ =
2688 2689
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2718 2719 2720 2721 2722 2723 2724 2725
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2726 2727 2728 2729
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2730
    axis = GetAttr<int>("axis", attrs);
2731
  }
2732 2733
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2734
  const int &Axis() const { return axis; }
2735 2736

 private:
2737 2738
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2739
  int axis;
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2751 2752 2753 2754
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2755
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2756 2757 2758 2759 2760 2761
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2762
  }
2763
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2764 2765 2766 2767 2768
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2769 2770

 private:
2771
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2772
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2773
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2774 2775 2776
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2777 2778 2779 2780 2781 2782 2783 2784 2785
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2798 2799 2800 2801 2802
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2803 2804
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2805
  }
2806 2807 2808
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2809 2810
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2811 2812

 private:
2813 2814 2815
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2816 2817
  int out_h_;
  int out_w_;
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2829 2830 2831 2832
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2833
  }
2834 2835
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2836 2837

 private:
2838 2839
  GType *input_;
  GType *out_;
2840 2841 2842
};
#endif

H
hjchen2 已提交
2843 2844 2845 2846 2847 2848 2849 2850
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2851 2852 2853 2854 2855
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2856 2857 2858 2859
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2860 2861 2862
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2875 2876 2877 2878
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2879 2880 2881 2882 2883
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2884 2885
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2886 2887 2888 2889 2890
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2891
#ifdef QUANT_OP
2892
template <typename Dtype>
2893 2894 2895 2896 2897
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2898
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2899 2900 2901 2902
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2903 2904
    // online
    // scale = max(abs(x))
2905
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2906
    // offline
2907
    if (inputs.count("InScale")) {
2908
      offline_ = true;
2909
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2910 2911
    }
    // x = round(scale * x)
2912 2913
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2914
    }
2915 2916 2917 2918
  }

 public:
  // op input
2919
  GType *input_;
2920
  // op output
2921
  GType *output_;
2922
  GType *online_scale_;
2923
  // quantize offline scale
2924
  GType *offline_scale_;
2925 2926
  // if offine scale or not
  bool offline_ = false;
2927
  // round method type
2928 2929
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2930
};
2931
#endif
2932

2933
#ifdef DEQUANT_OP
2934
template <typename Dtype>
2935 2936 2937 2938 2939
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2940
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2941 2942 2943 2944 2945
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2946
    // dequantization is performed as x = x / static_scale / online_scale
2947 2948
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2949
    } else {
2950
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2951 2952 2953 2954 2955
    }
  }

 public:
  // op input
2956
  GType *input_;
2957
  // op output
2958
  GType *output_;
2959
  GType *activation_scale_;
2960 2961
  float weight_scale_;
};
2962
#endif
2963

2964 2965 2966 2967
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2968
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2969
template <typename Dtype>
2970
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2971 2972 2973 2974
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2975 2976
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2977
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
2978 2979
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
2980 2981 2982 2983
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
2984 2985 2986 2987 2988
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2989 2990 2991 2992
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
2993
  float epsilon_;
2994 2995 2996
};
#endif

2997 2998 2999 3000
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3001 3002 3003 3004 3005 3006 3007 3008
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3009
                          const AttributeMap &attrs, Scope *scope)
3010 3011 3012
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3013
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3014 3015 3016 3017 3018
  }

 public:
  // elementwise add
  int axis_;
3019
  GType *bias_;
3020 3021 3022
};
#endif

3023 3024 3025 3026 3027 3028 3029 3030 3031
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3032
                               const AttributeMap &attrs, Scope *scope)
3033 3034
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3035
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3036
    // offline
3037 3038
    if (inputs.count("InScale")) {
      offline_ = true;
3039
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3040 3041 3042 3043 3044 3045 3046 3047
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3048
  GType *online_scale_;
3049
  // quantize offline scale
3050
  GType *offline_scale_;
3051 3052
  // if offine scale or not
  bool offline_ = false;
3053 3054 3055 3056 3057 3058
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3059 3060 3061 3062 3063 3064 3065 3066 3067
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3068 3069 3070 3071 3072
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3096 3097 3098 3099
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3100 3101
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3102
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3113 3114 3115 3116 3117 3118 3119 3120
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3121 3122 3123 3124
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3125 3126
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3127
      input_y_ = InputYFrom<GType>(inputs, *scope);
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3141 3142 3143 3144 3145 3146 3147 3148
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3149 3150 3151 3152 3153
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3165
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3166
template <typename Dtype>
Z
zhaojiaying01 已提交
3167
class LogicalBinaryParam : public OpParam {
3168 3169 3170 3171
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3172 3173
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3174 3175 3176 3177 3178
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3190
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3191 3192 3193

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3194
class LogicalUnaryParam : public OpParam {
3195 3196 3197 3198
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3199 3200
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3201 3202 3203 3204
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3216 3217 3218
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3219 3220 3221
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3222 3223 3224
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3225 3226
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3227 3228 3229
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3230 3231 3232
  }

 public:
H
hjchen2 已提交
3233 3234 3235
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3236 3237 3238 3239 3240 3241
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3242 3243 3244
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3245 3246 3247
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3248 3249
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3250 3251 3252
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3253 3254 3255
  }

 public:
H
hjchen2 已提交
3256 3257 3258
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3259 3260 3261
};
#endif

Z
zhaojiaying01 已提交
3262 3263 3264 3265 3266 3267 3268 3269
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3270 3271 3272 3273
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3293
                 const AttributeMap &attrs, Scope *scope)
3294
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3295 3296
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3297
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3298 3299 3300 3301
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3302
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3303 3304 3305 3306

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3307
  float step_;
Z
zhaojiaying01 已提交
3308 3309
};
#endif  // INCREMENT_OP
3310 3311 3312 3313 3314 3315 3316 3317
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3318 3319 3320 3321
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3322 3323 3324 3325 3326 3327 3328 3329 3330
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3331

朔-望's avatar
朔-望 已提交
3332 3333
}  // namespace operators
}  // namespace paddle_mobile