vmscan.c 105.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142 143 144

static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
{
145
	return !mem_cgroup_disabled();
146
}
147
#else
148 149 150 151
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
152 153 154 155 156

static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
{
	return false;
}
157 158
#endif

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

178
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
179
{
180
	if (!mem_cgroup_disabled())
181
		return mem_cgroup_get_lru_size(lruvec, lru);
182

183
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
184 185
}

L
Linus Torvalds 已提交
186 187 188
/*
 * Add a shrinker callback to be called from the vm
 */
189
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
190
{
191
	atomic_long_set(&shrinker->nr_in_batch, 0);
192 193 194
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
195
}
196
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
197 198 199 200

/*
 * Remove one
 */
201
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
202 203 204 205 206
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
207
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
208

209 210 211 212 213 214 215 216
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
217 218 219 220 221 222 223 224 225
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
226
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
227 228 229 230 231 232 233
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
234 235
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
236
 */
237
unsigned long shrink_slab(struct shrink_control *shrink,
238
			  unsigned long nr_pages_scanned,
239
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
240 241
{
	struct shrinker *shrinker;
242
	unsigned long ret = 0;
L
Linus Torvalds 已提交
243

244 245
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
246

247 248 249 250 251
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
252 253 254

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
255 256
		long total_scan;
		long max_pass;
257
		int shrink_ret = 0;
258 259
		long nr;
		long new_nr;
260 261
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
262

263 264 265 266
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

267 268 269 270 271
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
272
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
273 274

		total_scan = nr;
275
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
276
		delta *= max_pass;
L
Linus Torvalds 已提交
277
		do_div(delta, lru_pages + 1);
278 279
		total_scan += delta;
		if (total_scan < 0) {
280 281
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
282 283
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
284 285
		}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

301 302 303 304 305
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
306 307
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
308

309
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
310 311 312
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

313
		while (total_scan >= batch_size) {
314
			int nr_before;
L
Linus Torvalds 已提交
315

316 317
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
318
							batch_size);
L
Linus Torvalds 已提交
319 320
			if (shrink_ret == -1)
				break;
321 322
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
323 324
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
325 326 327 328

			cond_resched();
		}

329 330 331 332 333
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
334 335 336 337 338
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
339 340

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
341 342
	}
	up_read(&shrinker_rwsem);
343 344
out:
	cond_resched();
345
	return ret;
L
Linus Torvalds 已提交
346 347 348 349
}

static inline int is_page_cache_freeable(struct page *page)
{
350 351 352 353 354
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
355
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
356 357
}

358 359
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
360
{
361
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
385
	lock_page(page);
386 387
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
388 389 390
	unlock_page(page);
}

391 392 393 394 395 396 397 398 399 400 401 402
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
403
/*
A
Andrew Morton 已提交
404 405
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
406
 */
407
static pageout_t pageout(struct page *page, struct address_space *mapping,
408
			 struct scan_control *sc)
L
Linus Torvalds 已提交
409 410 411 412 413 414 415 416
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
417
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
433
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
434 435
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
436
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
437 438 439 440 441 442 443
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
444
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
445 446 447 448 449 450 451
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
452 453
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
454 455 456 457 458 459 460
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
461
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
462 463 464
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
465

L
Linus Torvalds 已提交
466 467 468 469
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
470
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
471
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
472 473 474 475 476 477
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

478
/*
N
Nick Piggin 已提交
479 480
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
481
 */
N
Nick Piggin 已提交
482
static int __remove_mapping(struct address_space *mapping, struct page *page)
483
{
484 485
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
486

N
Nick Piggin 已提交
487
	spin_lock_irq(&mapping->tree_lock);
488
	/*
N
Nick Piggin 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
512
	 */
N
Nick Piggin 已提交
513
	if (!page_freeze_refs(page, 2))
514
		goto cannot_free;
N
Nick Piggin 已提交
515 516 517
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
518
		goto cannot_free;
N
Nick Piggin 已提交
519
	}
520 521 522 523

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
524
		spin_unlock_irq(&mapping->tree_lock);
525
		swapcache_free(swap, page);
N
Nick Piggin 已提交
526
	} else {
527 528 529 530
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

531
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
532
		spin_unlock_irq(&mapping->tree_lock);
533
		mem_cgroup_uncharge_cache_page(page);
534 535 536

		if (freepage != NULL)
			freepage(page);
537 538 539 540 541
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
542
	spin_unlock_irq(&mapping->tree_lock);
543 544 545
	return 0;
}

N
Nick Piggin 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
566 567 568 569 570 571 572 573 574 575 576
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
577
	bool is_unevictable;
578
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
579 580 581 582 583 584

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

585
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
586 587 588 589 590 591
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
592
		is_unevictable = false;
593
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
594 595 596 597 598
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
599
		is_unevictable = true;
L
Lee Schermerhorn 已提交
600
		add_page_to_unevictable_list(page);
601
		/*
602 603 604
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
605
		 * isolation/check_move_unevictable_pages,
606
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
607 608
		 * the page back to the evictable list.
		 *
609
		 * The other side is TestClearPageMlocked() or shmem_lock().
610 611
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
612 613 614 615 616 617 618
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
619
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
620 621 622 623 624 625 626 627 628 629
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

630
	if (was_unevictable && !is_unevictable)
631
		count_vm_event(UNEVICTABLE_PGRESCUED);
632
	else if (!was_unevictable && is_unevictable)
633 634
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
635 636 637
	put_page(page);		/* drop ref from isolate */
}

638 639 640
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
641
	PAGEREF_KEEP,
642 643 644 645 646 647
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
648
	int referenced_ptes, referenced_page;
649 650
	unsigned long vm_flags;

651 652
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
653
	referenced_page = TestClearPageReferenced(page);
654 655 656 657 658 659 660 661

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

662
	if (referenced_ptes) {
663
		if (PageSwapBacked(page))
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

681
		if (referenced_page || referenced_ptes > 1)
682 683
			return PAGEREF_ACTIVATE;

684 685 686 687 688 689
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

690 691
		return PAGEREF_KEEP;
	}
692 693

	/* Reclaim if clean, defer dirty pages to writeback */
694
	if (referenced_page && !PageSwapBacked(page))
695 696 697
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
698 699
}

700 701 702 703
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
704 705
	struct address_space *mapping;

706 707 708 709 710 711 712 713 714 715 716 717 718
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
719 720 721 722 723 724 725 726

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
727 728
}

L
Linus Torvalds 已提交
729
/*
A
Andrew Morton 已提交
730
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
731
 */
A
Andrew Morton 已提交
732
static unsigned long shrink_page_list(struct list_head *page_list,
733
				      struct zone *zone,
734
				      struct scan_control *sc,
735
				      enum ttu_flags ttu_flags,
736
				      unsigned long *ret_nr_dirty,
737
				      unsigned long *ret_nr_unqueued_dirty,
738
				      unsigned long *ret_nr_congested,
739
				      unsigned long *ret_nr_writeback,
740
				      unsigned long *ret_nr_immediate,
741
				      bool force_reclaim)
L
Linus Torvalds 已提交
742 743
{
	LIST_HEAD(ret_pages);
744
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
745
	int pgactivate = 0;
746
	unsigned long nr_unqueued_dirty = 0;
747 748
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
749
	unsigned long nr_reclaimed = 0;
750
	unsigned long nr_writeback = 0;
751
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
752 753 754

	cond_resched();

755
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
756 757 758 759
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
760
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
761
		bool dirty, writeback;
L
Linus Torvalds 已提交
762 763 764 765 766 767

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
768
		if (!trylock_page(page))
L
Linus Torvalds 已提交
769 770
			goto keep;

N
Nick Piggin 已提交
771
		VM_BUG_ON(PageActive(page));
772
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
773 774

		sc->nr_scanned++;
775

776
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
777
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
778

779
		if (!sc->may_unmap && page_mapped(page))
780 781
			goto keep_locked;

L
Linus Torvalds 已提交
782 783 784 785
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

786 787 788
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

789 790 791 792 793 794 795 796 797 798 799 800 801
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

802 803 804 805 806 807
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
808
		mapping = page_mapping(page);
809 810
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
811 812
			nr_congested++;

813 814 815 816 817 818 819 820 821 822 823
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
824 825
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
850
		if (PageWriteback(page)) {
851 852 853 854
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
855 856
				nr_immediate++;
				goto keep_locked;
857 858 859

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
860 861 862 863 864 865 866 867 868 869 870 871 872
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
873
				nr_writeback++;
874

875
				goto keep_locked;
876 877 878 879

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
880
			}
881
		}
L
Linus Torvalds 已提交
882

883 884 885
		if (!force_reclaim)
			references = page_check_references(page, sc);

886 887
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
888
			goto activate_locked;
889 890
		case PAGEREF_KEEP:
			goto keep_locked;
891 892 893 894
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
895 896 897 898 899

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
900
		if (PageAnon(page) && !PageSwapCache(page)) {
901 902
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
903
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
904
				goto activate_locked;
905
			may_enter_fs = 1;
L
Linus Torvalds 已提交
906

907 908 909
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
910 911 912 913 914 915

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
916
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
917 918 919 920
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
921 922
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
923 924 925 926 927 928
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
929 930
			/*
			 * Only kswapd can writeback filesystem pages to
931 932
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
933
			 */
934
			if (page_is_file_cache(page) &&
935
					(!current_is_kswapd() ||
936
					 !zone_is_reclaim_dirty(zone))) {
937 938 939 940 941 942 943 944 945
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

946 947 948
				goto keep_locked;
			}

949
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
950
				goto keep_locked;
951
			if (!may_enter_fs)
L
Linus Torvalds 已提交
952
				goto keep_locked;
953
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
954 955 956
				goto keep_locked;

			/* Page is dirty, try to write it out here */
957
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
958 959 960 961 962
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
963
				if (PageWriteback(page))
964
					goto keep;
965
				if (PageDirty(page))
L
Linus Torvalds 已提交
966
					goto keep;
967

L
Linus Torvalds 已提交
968 969 970 971
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
972
				if (!trylock_page(page))
L
Linus Torvalds 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
992
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
993 994 995 996 997 998 999 1000 1001 1002
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1003
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1004 1005
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1022 1023
		}

N
Nick Piggin 已提交
1024
		if (!mapping || !__remove_mapping(mapping, page))
1025
			goto keep_locked;
L
Linus Torvalds 已提交
1026

N
Nick Piggin 已提交
1027 1028 1029 1030 1031 1032 1033 1034
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1035
free_it:
1036
		nr_reclaimed++;
1037 1038 1039 1040 1041 1042

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1043 1044
		continue;

N
Nick Piggin 已提交
1045
cull_mlocked:
1046 1047
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1048 1049 1050 1051
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1052
activate_locked:
1053 1054
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1055
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1056
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1057 1058 1059 1060 1061 1062
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1063
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1064
	}
1065

1066
	free_hot_cold_page_list(&free_pages, 1);
1067

L
Linus Torvalds 已提交
1068
	list_splice(&ret_pages, page_list);
1069
	count_vm_events(PGACTIVATE, pgactivate);
1070
	mem_cgroup_uncharge_end();
1071 1072
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1073
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1074
	*ret_nr_writeback += nr_writeback;
1075
	*ret_nr_immediate += nr_immediate;
1076
	return nr_reclaimed;
L
Linus Torvalds 已提交
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1087
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1099 1100
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1101 1102 1103 1104 1105
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1116
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1117 1118 1119 1120 1121 1122 1123
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1124 1125
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1126 1127
		return ret;

A
Andy Whitcroft 已提交
1128
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1163

1164 1165 1166
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1191
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1192
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1193
 * @nr_scanned:	The number of pages that were scanned.
1194
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1195
 * @mode:	One of the LRU isolation modes
1196
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1197 1198 1199
 *
 * returns how many pages were moved onto *@dst.
 */
1200
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1201
		struct lruvec *lruvec, struct list_head *dst,
1202
		unsigned long *nr_scanned, struct scan_control *sc,
1203
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1204
{
H
Hugh Dickins 已提交
1205
	struct list_head *src = &lruvec->lists[lru];
1206
	unsigned long nr_taken = 0;
1207
	unsigned long scan;
L
Linus Torvalds 已提交
1208

1209
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1210
		struct page *page;
1211
		int nr_pages;
A
Andy Whitcroft 已提交
1212

L
Linus Torvalds 已提交
1213 1214 1215
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1216
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1217

1218
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1219
		case 0:
1220 1221
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1222
			list_move(&page->lru, dst);
1223
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1224 1225 1226 1227 1228 1229
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1230

A
Andy Whitcroft 已提交
1231 1232 1233
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1234 1235
	}

H
Hugh Dickins 已提交
1236
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1237 1238
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1239 1240 1241
	return nr_taken;
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1253 1254 1255
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1271 1272
	VM_BUG_ON(!page_count(page));

1273 1274
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1275
		struct lruvec *lruvec;
1276 1277

		spin_lock_irq(&zone->lru_lock);
1278
		lruvec = mem_cgroup_page_lruvec(page, zone);
1279
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1280
			int lru = page_lru(page);
1281
			get_page(page);
1282
			ClearPageLRU(page);
1283 1284
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1285 1286 1287 1288 1289 1290
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1291
/*
F
Fengguang Wu 已提交
1292 1293 1294 1295 1296
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1297 1298 1299 1300 1301 1302 1303 1304 1305
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1306
	if (!global_reclaim(sc))
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1317 1318 1319 1320 1321 1322 1323 1324
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1325 1326 1327
	return isolated > inactive;
}

1328
static noinline_for_stack void
H
Hugh Dickins 已提交
1329
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1330
{
1331 1332
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1333
	LIST_HEAD(pages_to_free);
1334 1335 1336 1337 1338

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1339
		struct page *page = lru_to_page(page_list);
1340
		int lru;
1341

1342 1343
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1344
		if (unlikely(!page_evictable(page))) {
1345 1346 1347 1348 1349
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1350 1351 1352

		lruvec = mem_cgroup_page_lruvec(page, zone);

1353
		SetPageLRU(page);
1354
		lru = page_lru(page);
1355 1356
		add_page_to_lru_list(page, lruvec, lru);

1357 1358
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1359 1360
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1361
		}
1362 1363 1364
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1365
			del_page_from_lru_list(page, lruvec, lru);
1366 1367 1368 1369 1370 1371 1372

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1373 1374 1375
		}
	}

1376 1377 1378 1379
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1380 1381
}

L
Linus Torvalds 已提交
1382
/*
A
Andrew Morton 已提交
1383 1384
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1385
 */
1386
static noinline_for_stack unsigned long
1387
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1388
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1389 1390
{
	LIST_HEAD(page_list);
1391
	unsigned long nr_scanned;
1392
	unsigned long nr_reclaimed = 0;
1393
	unsigned long nr_taken;
1394 1395
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1396
	unsigned long nr_unqueued_dirty = 0;
1397
	unsigned long nr_writeback = 0;
1398
	unsigned long nr_immediate = 0;
1399
	isolate_mode_t isolate_mode = 0;
1400
	int file = is_file_lru(lru);
1401 1402
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1403

1404
	while (unlikely(too_many_isolated(zone, file, sc))) {
1405
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1406 1407 1408 1409 1410 1411

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1412
	lru_add_drain();
1413 1414

	if (!sc->may_unmap)
1415
		isolate_mode |= ISOLATE_UNMAPPED;
1416
	if (!sc->may_writepage)
1417
		isolate_mode |= ISOLATE_CLEAN;
1418

L
Linus Torvalds 已提交
1419
	spin_lock_irq(&zone->lru_lock);
1420

1421 1422
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1423 1424 1425 1426

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1427
	if (global_reclaim(sc)) {
1428 1429
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1430
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1431
		else
H
Hugh Dickins 已提交
1432
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1433
	}
1434
	spin_unlock_irq(&zone->lru_lock);
1435

1436
	if (nr_taken == 0)
1437
		return 0;
A
Andy Whitcroft 已提交
1438

1439
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1440 1441 1442
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1443

1444 1445
	spin_lock_irq(&zone->lru_lock);

1446
	reclaim_stat->recent_scanned[file] += nr_taken;
1447

Y
Ying Han 已提交
1448 1449 1450 1451 1452 1453 1454 1455
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1456

1457
	putback_inactive_pages(lruvec, &page_list);
1458

1459
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1460 1461 1462 1463

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1475 1476 1477
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1478
	 */
1479
	if (nr_writeback && nr_writeback == nr_taken)
1480
		zone_set_flag(zone, ZONE_WRITEBACK);
1481

1482
	/*
1483 1484
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1485
	 */
1486
	if (global_reclaim(sc)) {
1487 1488 1489 1490 1491 1492 1493
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1512
	}
1513

1514 1515 1516 1517 1518 1519 1520 1521
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1522 1523 1524
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1525
		sc->priority,
M
Mel Gorman 已提交
1526
		trace_shrink_flags(file));
1527
	return nr_reclaimed;
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1547

1548
static void move_active_pages_to_lru(struct lruvec *lruvec,
1549
				     struct list_head *list,
1550
				     struct list_head *pages_to_free,
1551 1552
				     enum lru_list lru)
{
1553
	struct zone *zone = lruvec_zone(lruvec);
1554 1555
	unsigned long pgmoved = 0;
	struct page *page;
1556
	int nr_pages;
1557 1558 1559

	while (!list_empty(list)) {
		page = lru_to_page(list);
1560
		lruvec = mem_cgroup_page_lruvec(page, zone);
1561 1562 1563 1564

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1565 1566
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1567
		list_move(&page->lru, &lruvec->lists[lru]);
1568
		pgmoved += nr_pages;
1569

1570 1571 1572
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1573
			del_page_from_lru_list(page, lruvec, lru);
1574 1575 1576 1577 1578 1579 1580

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1581 1582 1583 1584 1585 1586
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1587

H
Hugh Dickins 已提交
1588
static void shrink_active_list(unsigned long nr_to_scan,
1589
			       struct lruvec *lruvec,
1590
			       struct scan_control *sc,
1591
			       enum lru_list lru)
L
Linus Torvalds 已提交
1592
{
1593
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1594
	unsigned long nr_scanned;
1595
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1596
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1597
	LIST_HEAD(l_active);
1598
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1599
	struct page *page;
1600
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1601
	unsigned long nr_rotated = 0;
1602
	isolate_mode_t isolate_mode = 0;
1603
	int file = is_file_lru(lru);
1604
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1605 1606

	lru_add_drain();
1607 1608

	if (!sc->may_unmap)
1609
		isolate_mode |= ISOLATE_UNMAPPED;
1610
	if (!sc->may_writepage)
1611
		isolate_mode |= ISOLATE_CLEAN;
1612

L
Linus Torvalds 已提交
1613
	spin_lock_irq(&zone->lru_lock);
1614

1615 1616
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1617
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1618
		zone->pages_scanned += nr_scanned;
1619

1620
	reclaim_stat->recent_scanned[file] += nr_taken;
1621

H
Hugh Dickins 已提交
1622
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1623
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1624
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629 1630
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1631

1632
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1633 1634 1635 1636
			putback_lru_page(page);
			continue;
		}

1637 1638 1639 1640 1641 1642 1643 1644
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1645 1646
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1647
			nr_rotated += hpage_nr_pages(page);
1648 1649 1650 1651 1652 1653 1654 1655 1656
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1657
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1658 1659 1660 1661
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1662

1663
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1664 1665 1666
		list_add(&page->lru, &l_inactive);
	}

1667
	/*
1668
	 * Move pages back to the lru list.
1669
	 */
1670
	spin_lock_irq(&zone->lru_lock);
1671
	/*
1672 1673 1674 1675
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1676
	 */
1677
	reclaim_stat->recent_rotated[file] += nr_rotated;
1678

1679 1680
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1681
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1682
	spin_unlock_irq(&zone->lru_lock);
1683 1684

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1685 1686
}

1687
#ifdef CONFIG_SWAP
1688
static int inactive_anon_is_low_global(struct zone *zone)
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1701 1702
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1703
 * @lruvec: LRU vector to check
1704 1705 1706 1707
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1708
static int inactive_anon_is_low(struct lruvec *lruvec)
1709
{
1710 1711 1712 1713 1714 1715 1716
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1717
	if (!mem_cgroup_disabled())
1718
		return mem_cgroup_inactive_anon_is_low(lruvec);
1719

1720
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1721
}
1722
#else
1723
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1724 1725 1726 1727
{
	return 0;
}
#endif
1728

1729 1730
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1731
 * @lruvec: LRU vector to check
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1743
static int inactive_file_is_low(struct lruvec *lruvec)
1744
{
1745 1746 1747 1748 1749
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1750

1751
	return active > inactive;
1752 1753
}

H
Hugh Dickins 已提交
1754
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1755
{
H
Hugh Dickins 已提交
1756
	if (is_file_lru(lru))
1757
		return inactive_file_is_low(lruvec);
1758
	else
1759
		return inactive_anon_is_low(lruvec);
1760 1761
}

1762
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1763
				 struct lruvec *lruvec, struct scan_control *sc)
1764
{
1765
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1766
		if (inactive_list_is_low(lruvec, lru))
1767
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1768 1769 1770
		return 0;
	}

1771
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1772 1773
}

1774
static int vmscan_swappiness(struct scan_control *sc)
1775
{
1776
	if (global_reclaim(sc))
1777
		return vm_swappiness;
1778
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1779 1780
}

1781 1782 1783 1784 1785 1786 1787
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1788 1789 1790 1791 1792 1793
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1794 1795
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1796
 */
1797
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1798
			   unsigned long *nr)
1799
{
1800 1801 1802 1803
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1804
	unsigned long anon_prio, file_prio;
1805 1806 1807
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1808
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1809
	enum lru_list lru;
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1821
	if (current_is_kswapd() && !zone_reclaimable(zone))
1822
		force_scan = true;
1823
	if (!global_reclaim(sc))
1824
		force_scan = true;
1825 1826

	/* If we have no swap space, do not bother scanning anon pages. */
1827
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1828
		scan_balance = SCAN_FILE;
1829 1830
		goto out;
	}
1831

1832 1833 1834 1835 1836 1837 1838 1839
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1840
		scan_balance = SCAN_FILE;
1841 1842 1843 1844 1845 1846 1847 1848 1849
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1850
		scan_balance = SCAN_EQUAL;
1851 1852 1853
		goto out;
	}

1854 1855 1856 1857
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1858

1859 1860 1861 1862 1863 1864
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1865
	if (global_reclaim(sc)) {
1866
		free = zone_page_state(zone, NR_FREE_PAGES);
1867
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1868
			scan_balance = SCAN_ANON;
1869
			goto out;
1870
		}
1871 1872
	}

1873 1874 1875 1876 1877
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1878
		scan_balance = SCAN_FILE;
1879 1880 1881
		goto out;
	}

1882 1883
	scan_balance = SCAN_FRACT;

1884 1885 1886 1887
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1888
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1889
	file_prio = 200 - anon_prio;
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1902
	spin_lock_irq(&zone->lru_lock);
1903 1904 1905
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1906 1907
	}

1908 1909 1910
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1911 1912 1913
	}

	/*
1914 1915 1916
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1917
	 */
1918
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1919
	ap /= reclaim_stat->recent_rotated[0] + 1;
1920

1921
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1922
	fp /= reclaim_stat->recent_rotated[1] + 1;
1923
	spin_unlock_irq(&zone->lru_lock);
1924

1925 1926 1927 1928
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1929 1930
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1931
		unsigned long size;
1932
		unsigned long scan;
1933

1934
		size = get_lru_size(lruvec, lru);
1935
		scan = size >> sc->priority;
1936

1937 1938
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1961
		nr[lru] = scan;
1962
	}
1963
}
1964

1965 1966 1967 1968 1969 1970
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1971
	unsigned long targets[NR_LRU_LISTS];
1972 1973 1974 1975 1976
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1977
	bool scan_adjusted = false;
1978 1979 1980

	get_scan_count(lruvec, sc, nr);

1981 1982 1983
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1984 1985 1986
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1987 1988 1989
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1990 1991 1992 1993 1994 1995 1996 1997 1998
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1999 2000 2001 2002

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

2003
		/*
2004 2005 2006 2007
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
2008
		 */
2009
		if (global_reclaim(sc) && !current_is_kswapd())
2010
			break;
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2068
/* Use reclaim/compaction for costly allocs or under memory pressure */
2069
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2070
{
2071
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2072
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2073
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2074 2075 2076 2077 2078
		return true;

	return false;
}

2079
/*
M
Mel Gorman 已提交
2080 2081 2082 2083 2084
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2085
 */
2086
static inline bool should_continue_reclaim(struct zone *zone,
2087 2088 2089 2090 2091 2092 2093 2094
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2095
	if (!in_reclaim_compaction(sc))
2096 2097
		return false;

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2120 2121 2122 2123 2124 2125

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2126
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2127
	if (get_nr_swap_pages() > 0)
2128
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2129 2130 2131 2132 2133
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2134
	switch (compaction_suitable(zone, sc->order)) {
2135 2136 2137 2138 2139 2140 2141 2142
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2143 2144
static void
__shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
L
Linus Torvalds 已提交
2145
{
2146
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2147

2148 2149 2150 2151 2152 2153 2154
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2155

2156 2157
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2158

2159 2160 2161
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2162

2163
			if (soft_reclaim &&
2164
			    !mem_cgroup_soft_reclaim_eligible(memcg, root)) {
2165 2166 2167 2168
				memcg = mem_cgroup_iter(root, memcg, &reclaim);
				continue;
			}

2169
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2170

2171
			shrink_lruvec(lruvec, sc);
2172

2173
			/*
2174 2175
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2176
			 * zone.
2177 2178 2179 2180 2181
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2182
			 */
2183 2184
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2185 2186 2187 2188 2189
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2190 2191 2192 2193 2194

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2195 2196
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2197 2198
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

static void shrink_zone(struct zone *zone, struct scan_control *sc)
{
	bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
	unsigned long nr_scanned = sc->nr_scanned;

	__shrink_zone(zone, sc, do_soft_reclaim);

	/*
	 * No group is over the soft limit or those that are do not have
	 * pages in the zone we are reclaiming so we have to reclaim everybody
	 */
	if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
		__shrink_zone(zone, sc, false);
		return;
	}
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2234
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2235 2236 2237 2238 2239 2240 2241 2242
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2243
	if (compaction_deferred(zone, sc->order))
2244 2245 2246 2247 2248 2249 2250 2251 2252
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2253 2254 2255 2256 2257
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2258 2259
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2260 2261
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2262 2263 2264
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2265 2266 2267
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2268 2269
 *
 * This function returns true if a zone is being reclaimed for a costly
2270
 * high-order allocation and compaction is ready to begin. This indicates to
2271 2272
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2273
 */
2274
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2275
{
2276
	struct zoneref *z;
2277
	struct zone *zone;
2278
	bool aborted_reclaim = false;
2279

2280 2281 2282 2283 2284 2285 2286 2287
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2288 2289
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2290
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2291
			continue;
2292 2293 2294 2295
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2296
		if (global_reclaim(sc)) {
2297 2298
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2299 2300
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2301
				continue;	/* Let kswapd poll it */
2302
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2303
				/*
2304 2305 2306 2307 2308
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2309 2310
				 * noticeable problem, like transparent huge
				 * page allocations.
2311
				 */
2312
				if (compaction_ready(zone, sc)) {
2313
					aborted_reclaim = true;
2314
					continue;
2315
				}
2316
			}
2317
			/* need some check for avoid more shrink_zone() */
2318
		}
2319

2320
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2321
	}
2322

2323
	return aborted_reclaim;
2324 2325
}

2326
/* All zones in zonelist are unreclaimable? */
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2339
		if (zone_reclaimable(zone))
2340
			return false;
2341 2342
	}

2343
	return true;
L
Linus Torvalds 已提交
2344
}
2345

L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351 2352 2353
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2354 2355 2356 2357
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2358 2359 2360
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2361
 */
2362
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2363 2364
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2365
{
2366
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2367
	struct reclaim_state *reclaim_state = current->reclaim_state;
2368
	struct zoneref *z;
2369
	struct zone *zone;
2370
	unsigned long writeback_threshold;
2371
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2372

2373 2374
	delayacct_freepages_start();

2375
	if (global_reclaim(sc))
2376
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2377

2378
	do {
2379 2380
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2381
		sc->nr_scanned = 0;
2382
		aborted_reclaim = shrink_zones(zonelist, sc);
2383

2384
		/*
2385 2386 2387 2388
		 * Don't shrink slabs when reclaiming memory from over limit
		 * cgroups but do shrink slab at least once when aborting
		 * reclaim for compaction to avoid unevenly scanning file/anon
		 * LRU pages over slab pages.
2389
		 */
2390
		if (global_reclaim(sc)) {
2391
			unsigned long lru_pages = 0;
2392 2393
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2394 2395 2396 2397 2398 2399
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2400
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2401
			if (reclaim_state) {
2402
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2403 2404
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2405
		}
2406
		total_scanned += sc->nr_scanned;
2407
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2408 2409
			goto out;

2410 2411 2412 2413 2414 2415 2416
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2417 2418 2419 2420 2421 2422 2423
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2424 2425
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2426 2427
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2428
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2429
		}
2430
	} while (--sc->priority >= 0 && !aborted_reclaim);
2431

L
Linus Torvalds 已提交
2432
out:
2433 2434
	delayacct_freepages_end();

2435 2436 2437
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2438 2439 2440 2441 2442 2443 2444 2445
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2446 2447
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2448 2449
		return 1;

2450
	/* top priority shrink_zones still had more to do? don't OOM, then */
2451
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2452 2453 2454
		return 1;

	return 0;
L
Linus Torvalds 已提交
2455 2456
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2487 2488 2489 2490
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2491
 */
2492
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2507 2508 2509 2510 2511 2512 2513 2514
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2515 2516 2517 2518 2519

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2520
		goto out;
2521

2522 2523 2524
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2536 2537

		goto check_pending;
2538 2539 2540 2541 2542
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2543 2544 2545 2546 2547 2548 2549

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2550 2551
}

2552
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2553
				gfp_t gfp_mask, nodemask_t *nodemask)
2554
{
2555
	unsigned long nr_reclaimed;
2556
	struct scan_control sc = {
2557
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2558
		.may_writepage = !laptop_mode,
2559
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2560
		.may_unmap = 1,
2561
		.may_swap = 1,
2562
		.order = order,
2563
		.priority = DEF_PRIORITY,
2564
		.target_mem_cgroup = NULL,
2565
		.nodemask = nodemask,
2566
	};
2567 2568 2569
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2570

2571
	/*
2572 2573 2574
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2575
	 */
2576
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2577 2578
		return 1;

2579 2580 2581 2582
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2583
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2584 2585 2586 2587

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2588 2589
}

A
Andrew Morton 已提交
2590
#ifdef CONFIG_MEMCG
2591

2592
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2593
						gfp_t gfp_mask, bool noswap,
2594 2595
						struct zone *zone,
						unsigned long *nr_scanned)
2596 2597
{
	struct scan_control sc = {
2598
		.nr_scanned = 0,
2599
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2600 2601 2602 2603
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2604
		.priority = 0,
2605
		.target_mem_cgroup = memcg,
2606
	};
2607
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2608

2609 2610
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2611

2612
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2613 2614 2615
						      sc.may_writepage,
						      sc.gfp_mask);

2616 2617 2618 2619 2620 2621 2622
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2623
	shrink_lruvec(lruvec, &sc);
2624 2625 2626

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2627
	*nr_scanned = sc.nr_scanned;
2628 2629 2630
	return sc.nr_reclaimed;
}

2631
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2632
					   gfp_t gfp_mask,
2633
					   bool noswap)
2634
{
2635
	struct zonelist *zonelist;
2636
	unsigned long nr_reclaimed;
2637
	int nid;
2638 2639
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2640
		.may_unmap = 1,
2641
		.may_swap = !noswap,
2642
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2643
		.order = 0,
2644
		.priority = DEF_PRIORITY,
2645
		.target_mem_cgroup = memcg,
2646
		.nodemask = NULL, /* we don't care the placement */
2647 2648 2649 2650 2651
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2652 2653
	};

2654 2655 2656 2657 2658
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2659
	nid = mem_cgroup_select_victim_node(memcg);
2660 2661

	zonelist = NODE_DATA(nid)->node_zonelists;
2662 2663 2664 2665 2666

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2667
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2668 2669 2670 2671

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2672 2673 2674
}
#endif

2675
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2676
{
2677
	struct mem_cgroup *memcg;
2678

2679 2680 2681 2682 2683
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2684
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2685

2686
		if (inactive_anon_is_low(lruvec))
2687
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2688
					   sc, LRU_ACTIVE_ANON);
2689 2690 2691

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2692 2693
}

2694 2695 2696 2697 2698 2699 2700
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2701 2702
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2703 2704 2705 2706 2707
		return false;

	return true;
}

2708
/*
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2719 2720 2721 2722
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2723
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2724 2725 2726 2727
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2728
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2729
{
2730
	unsigned long managed_pages = 0;
2731
	unsigned long balanced_pages = 0;
2732 2733
	int i;

2734 2735 2736
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2737

2738 2739 2740
		if (!populated_zone(zone))
			continue;

2741
		managed_pages += zone->managed_pages;
2742 2743 2744 2745 2746 2747 2748 2749

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2750
		if (!zone_reclaimable(zone)) {
2751
			balanced_pages += zone->managed_pages;
2752 2753 2754 2755
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2756
			balanced_pages += zone->managed_pages;
2757 2758 2759 2760 2761
		else if (!order)
			return false;
	}

	if (order)
2762
		return balanced_pages >= (managed_pages >> 2);
2763 2764
	else
		return true;
2765 2766
}

2767 2768 2769 2770 2771 2772 2773
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2774
					int classzone_idx)
2775 2776 2777
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2793

2794
	return pgdat_balanced(pgdat, order, classzone_idx);
2795 2796
}

2797 2798 2799
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2800 2801
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2802 2803
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2804
 */
2805
static bool kswapd_shrink_zone(struct zone *zone,
2806
			       int classzone_idx,
2807
			       struct scan_control *sc,
2808 2809
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2810
{
2811 2812
	int testorder = sc->order;
	unsigned long balance_gap;
2813 2814 2815 2816
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2817
	bool lowmem_pressure;
2818 2819 2820

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2852 2853 2854
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
2855
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2856 2857
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2858 2859 2860
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2861 2862
	zone_clear_flag(zone, ZONE_WRITEBACK);

2863 2864 2865 2866 2867 2868
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2869
	if (zone_reclaimable(zone) &&
2870 2871 2872 2873 2874
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2875
	return sc->nr_scanned >= sc->nr_to_reclaim;
2876 2877
}

L
Linus Torvalds 已提交
2878 2879
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2880
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2881
 *
2882
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2893 2894 2895 2896 2897
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2898
 */
2899
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2900
							int *classzone_idx)
L
Linus Torvalds 已提交
2901 2902
{
	int i;
2903
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2904 2905
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2906
		.priority = DEF_PRIORITY,
2907
		.may_unmap = 1,
2908
		.may_swap = 1,
2909
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2910
		.order = order,
2911
		.target_mem_cgroup = NULL,
2912
	};
2913
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2914

2915
	do {
L
Linus Torvalds 已提交
2916
		unsigned long lru_pages = 0;
2917
		unsigned long nr_attempted = 0;
2918
		bool raise_priority = true;
2919
		bool pgdat_needs_compaction = (order > 0);
2920 2921

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2922

2923 2924 2925 2926 2927 2928
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2929

2930 2931
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2932

2933 2934
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2935
				continue;
L
Linus Torvalds 已提交
2936

2937 2938 2939 2940
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2941
			age_active_anon(zone, &sc);
2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2954
			if (!zone_balanced(zone, order, 0, 0)) {
2955
				end_zone = i;
A
Andrew Morton 已提交
2956
				break;
2957
			} else {
2958 2959 2960 2961
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2962
				zone_clear_flag(zone, ZONE_CONGESTED);
2963
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2964 2965
			}
		}
2966

2967
		if (i < 0)
A
Andrew Morton 已提交
2968 2969
			goto out;

L
Linus Torvalds 已提交
2970 2971 2972
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2973 2974 2975
			if (!populated_zone(zone))
				continue;

2976
			lru_pages += zone_reclaimable_pages(zone);
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2988 2989
		}

2990 2991 2992 2993 2994 2995 2996
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3009
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3010 3011
				continue;

3012 3013
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3014 3015 3016
				continue;

			sc.nr_scanned = 0;
3017

3018
			/*
3019 3020 3021 3022
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3023
			 */
3024 3025 3026
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3027
		}
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3038
		/*
3039 3040 3041 3042 3043 3044
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3045
		 */
3046 3047
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3048

3049 3050 3051
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3052

3053 3054 3055 3056 3057 3058 3059
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3060
		/*
3061 3062
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3063
		 */
3064 3065
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3066
	} while (sc.priority >= 1 &&
3067
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3068

3069
out:
3070
	/*
3071
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3072 3073 3074 3075
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3076
	*classzone_idx = end_zone;
3077
	return order;
L
Linus Torvalds 已提交
3078 3079
}

3080
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3091
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3092 3093 3094 3095 3096 3097 3098 3099 3100
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3101
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3113

3114 3115 3116 3117 3118 3119 3120 3121
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3122 3123 3124
		if (!kthread_should_stop())
			schedule();

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3135 3136
/*
 * The background pageout daemon, started as a kernel thread
3137
 * from the init process.
L
Linus Torvalds 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3150
	unsigned long order, new_order;
3151
	unsigned balanced_order;
3152
	int classzone_idx, new_classzone_idx;
3153
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3154 3155
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3156

L
Linus Torvalds 已提交
3157 3158 3159
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3160
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3161

3162 3163
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3164
	if (!cpumask_empty(cpumask))
3165
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3180
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3181
	set_freezable();
L
Linus Torvalds 已提交
3182

3183
	order = new_order = 0;
3184
	balanced_order = 0;
3185
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3186
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3187
	for ( ; ; ) {
3188
		bool ret;
3189

3190 3191 3192 3193 3194
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3195 3196
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3197 3198 3199 3200 3201 3202
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3203
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3204 3205
			/*
			 * Don't sleep if someone wants a larger 'order'
3206
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3207 3208
			 */
			order = new_order;
3209
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3210
		} else {
3211 3212
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3213
			order = pgdat->kswapd_max_order;
3214
			classzone_idx = pgdat->classzone_idx;
3215 3216
			new_order = order;
			new_classzone_idx = classzone_idx;
3217
			pgdat->kswapd_max_order = 0;
3218
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3219 3220
		}

3221 3222 3223 3224 3225 3226 3227 3228
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3229 3230
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3231 3232 3233
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3234
		}
L
Linus Torvalds 已提交
3235
	}
3236 3237

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3238 3239 3240 3241 3242 3243
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3244
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3245 3246 3247
{
	pg_data_t *pgdat;

3248
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3249 3250
		return;

3251
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3252
		return;
3253
	pgdat = zone->zone_pgdat;
3254
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3255
		pgdat->kswapd_max_order = order;
3256 3257
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3258
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3259
		return;
3260
	if (zone_balanced(zone, order, 0, 0))
3261 3262 3263
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3264
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3265 3266
}

3267 3268 3269 3270 3271 3272 3273 3274
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3275
{
3276 3277 3278 3279 3280
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3281
	if (get_nr_swap_pages() > 0)
3282 3283 3284 3285 3286 3287
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

3288
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3289
/*
3290
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3291 3292 3293 3294 3295
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3296
 */
3297
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3298
{
3299 3300
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3301 3302 3303
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3304
		.may_writepage = 1,
3305 3306 3307
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3308
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3309
	};
3310 3311 3312 3313
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3314 3315
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3316

3317 3318 3319 3320
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3321

3322
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3323

3324 3325 3326
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3327

3328
	return nr_reclaimed;
L
Linus Torvalds 已提交
3329
}
3330
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3331 3332 3333 3334 3335

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3336 3337
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3338
{
3339
	int nid;
L
Linus Torvalds 已提交
3340

3341
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3342
		for_each_node_state(nid, N_MEMORY) {
3343
			pg_data_t *pgdat = NODE_DATA(nid);
3344 3345 3346
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3347

3348
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3349
				/* One of our CPUs online: restore mask */
3350
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3351 3352 3353 3354 3355
		}
	}
	return NOTIFY_OK;
}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3372 3373
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3374
		pgdat->kswapd = NULL;
3375 3376 3377 3378
	}
	return ret;
}

3379
/*
3380 3381
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3382 3383 3384 3385 3386
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3387
	if (kswapd) {
3388
		kthread_stop(kswapd);
3389 3390
		NODE_DATA(nid)->kswapd = NULL;
	}
3391 3392
}

L
Linus Torvalds 已提交
3393 3394
static int __init kswapd_init(void)
{
3395
	int nid;
3396

L
Linus Torvalds 已提交
3397
	swap_setup();
3398
	for_each_node_state(nid, N_MEMORY)
3399
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3400 3401 3402 3403 3404
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3415
#define RECLAIM_OFF 0
3416
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3417 3418 3419
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3420 3421 3422 3423 3424 3425 3426
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3427 3428 3429 3430 3431 3432
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3433 3434 3435 3436 3437 3438
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3481 3482 3483
/*
 * Try to free up some pages from this zone through reclaim.
 */
3484
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3485
{
3486
	/* Minimum pages needed in order to stay on node */
3487
	const unsigned long nr_pages = 1 << order;
3488 3489
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3490 3491
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3492
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3493
		.may_swap = 1,
3494
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3495
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3496
		.order = order,
3497
		.priority = ZONE_RECLAIM_PRIORITY,
3498
	};
3499 3500 3501
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3502
	unsigned long nr_slab_pages0, nr_slab_pages1;
3503 3504

	cond_resched();
3505 3506 3507 3508 3509 3510
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3511
	lockdep_set_current_reclaim_state(gfp_mask);
3512 3513
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3514

3515
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3516 3517 3518 3519 3520
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3521 3522
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3523
	}
3524

3525 3526
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3527
		/*
3528
		 * shrink_slab() does not currently allow us to determine how
3529 3530 3531 3532
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3533
		 *
3534 3535
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3536
		 */
3537 3538 3539 3540
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3541
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3542 3543 3544 3545 3546 3547 3548 3549
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3550 3551 3552 3553 3554

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3555 3556 3557
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3558 3559
	}

3560
	p->reclaim_state = NULL;
3561
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3562
	lockdep_clear_current_reclaim_state();
3563
	return sc.nr_reclaimed >= nr_pages;
3564
}
3565 3566 3567 3568

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3569
	int ret;
3570 3571

	/*
3572 3573
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3574
	 *
3575 3576 3577 3578 3579
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3580
	 */
3581 3582
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3583
		return ZONE_RECLAIM_FULL;
3584

3585
	if (!zone_reclaimable(zone))
3586
		return ZONE_RECLAIM_FULL;
3587

3588
	/*
3589
	 * Do not scan if the allocation should not be delayed.
3590
	 */
3591
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3592
		return ZONE_RECLAIM_NOSCAN;
3593 3594 3595 3596 3597 3598 3599

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3600
	node_id = zone_to_nid(zone);
3601
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3602
		return ZONE_RECLAIM_NOSCAN;
3603 3604

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3605 3606
		return ZONE_RECLAIM_NOSCAN;

3607 3608 3609
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3610 3611 3612
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3613
	return ret;
3614
}
3615
#endif
L
Lee Schermerhorn 已提交
3616 3617 3618 3619 3620 3621

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3622
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3623 3624
 *
 * Reasons page might not be evictable:
3625
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3626
 * (2) page is part of an mlocked VMA
3627
 *
L
Lee Schermerhorn 已提交
3628
 */
3629
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3630
{
3631
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3632
}
3633

3634
#ifdef CONFIG_SHMEM
3635
/**
3636 3637 3638
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3639
 *
3640
 * Checks pages for evictability and moves them to the appropriate lru list.
3641 3642
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3643
 */
3644
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3645
{
3646
	struct lruvec *lruvec;
3647 3648 3649 3650
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3651

3652 3653 3654
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3655

3656 3657 3658 3659 3660 3661 3662 3663
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3664
		lruvec = mem_cgroup_page_lruvec(page, zone);
3665

3666 3667
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3668

3669
		if (page_evictable(page)) {
3670 3671 3672 3673
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3674 3675
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3676
			pgrescued++;
3677
		}
3678
	}
3679

3680 3681 3682 3683
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3684 3685
	}
}
3686
#endif /* CONFIG_SHMEM */
3687

3688
static void warn_scan_unevictable_pages(void)
3689
{
3690
	printk_once(KERN_WARNING
3691
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3692
		    "disabled for lack of a legitimate use case.  If you have "
3693 3694
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3695 3696 3697 3698 3699 3700 3701 3702 3703
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3704
			   void __user *buffer,
3705 3706
			   size_t *length, loff_t *ppos)
{
3707
	warn_scan_unevictable_pages();
3708
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3709 3710 3711 3712
	scan_unevictable_pages = 0;
	return 0;
}

3713
#ifdef CONFIG_NUMA
3714 3715 3716 3717 3718
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3719 3720
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3721 3722
					  char *buf)
{
3723
	warn_scan_unevictable_pages();
3724 3725 3726
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3727 3728
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3729 3730
					const char *buf, size_t count)
{
3731
	warn_scan_unevictable_pages();
3732 3733 3734 3735
	return 1;
}


3736
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3737 3738 3739 3740 3741
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3742
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3743 3744 3745 3746
}

void scan_unevictable_unregister_node(struct node *node)
{
3747
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3748
}
3749
#endif